Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

torchvision.transforms.v2.functional.convert_bounding_box_format is wrong #8258

Closed
eugeneteoh opened this issue Feb 6, 2024 · 5 comments · Fixed by #8265
Closed

torchvision.transforms.v2.functional.convert_bounding_box_format is wrong #8258

eugeneteoh opened this issue Feb 6, 2024 · 5 comments · Fixed by #8265
Labels

Comments

@eugeneteoh
Copy link

🐛 Describe the bug

Hi, unless I'm inputting the wrong data format, I found that the output of torchvision.transforms.v2.functional.convert_bounding_box_format is not consistent with torchvision.ops.box_convert. Please see the example below for reproduction:

import torch
from torchvision.transforms.v2.functional import convert_bounding_box_format
from torchvision.ops import box_convert

input = torch.tensor([[328.0770, 231.1015, 279.2261, 457.5734]])
out1 = convert_bounding_box_format(input, "CXCYWH", "XYXY")
out2 = box_convert(input, "cxcywh", "xyxy")

print(torch.allclose(out1, out2))
print((out1 - out2).norm())

Versions

PyTorch version: 2.2.0
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.18.4
Libc version: glibc-2.31

Python version: 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.10.0-27-cloud-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA L4
Nvidia driver version: 535.86.10
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 2
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping: 7
CPU MHz: 2200.180
BogoMIPS: 4400.36
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 64 KiB
L1i cache: 64 KiB
L2 cache: 2 MiB
L3 cache: 38.5 MiB
NUMA node0 CPU(s): 0,1
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.3
[pip3] pytorch-lightning==2.1.4
[pip3] torch==2.2.0
[pip3] torchaudio==2.2.0
[pip3] torchmetrics==1.3.0.post0
[pip3] torchvision==0.17.0
[pip3] triton==2.2.0
[conda] blas 1.0 mkl conda-forge
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] mkl 2023.1.0 h213fc3f_46344
[conda] numpy 1.26.3 py310hb13e2d6_0 conda-forge
[conda] pytorch 2.2.0 py3.10_cuda12.1_cudnn8.9.2_0 pytorch
[conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch
[conda] pytorch-lightning 2.1.4 pypi_0 pypi
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torchaudio 2.2.0 py310_cu121 pytorch
[conda] torchmetrics 1.3.0.post0 pypi_0 pypi
[conda] torchtriton 2.2.0 py310 pytorch
[conda] torchvision 0.17.0 py310_cu121 pytorch

@mantasu
Copy link
Contributor

mantasu commented Feb 7, 2024

Hey, convert_bounding_box_format does not accept string literals. Only enum values work:

import torch
from torchvision.ops import box_convert
from torchvision.transforms.v2.functional import convert_bounding_box_format
from torchvision.tv_tensors import BoundingBoxFormat as BBF

input = torch.tensor([[328.0770, 231.1015, 279.2261, 457.5734]])
out1 = convert_bounding_box_format(input, BBF.CXCYWH, BBF.XYXY)
out2 = box_convert(input, "cxcywh", "xyxy")

print(torch.allclose(out1, out2)) # True
print((out1 - out2).norm()) # tensor(0.)

@kargibora
Copy link

Shouldn't be there some assertions, error or warnings for passing a str? (although the expected format is obvious from the docs, still can happen and confuse people)

@mantasu
Copy link
Contributor

mantasu commented Feb 8, 2024

I agree, I actually think both enums and strings (lowercase and uppercase) could be supported

@NicolasHug
Copy link
Member

NicolasHug commented Feb 8, 2024

Thank you all for the report. This is a bug, convert_bounding_box_format should properly support strings. Right now the results are silently wrong and it's safer to just use enums. We'll push a fix soon (#8265). Hopefully it will be available soon in the bugfix release 0.17.1, otherwise it will be 0.18

@NicolasHug
Copy link
Member

Hi folks, just FYI you can now install 0.17.1 with the fix!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging a pull request may close this issue.

4 participants