diff --git a/diffsims/generators/rotation_list_generators.py b/diffsims/generators/rotation_list_generators.py index 2e1be595..69b404d2 100644 --- a/diffsims/generators/rotation_list_generators.py +++ b/diffsims/generators/rotation_list_generators.py @@ -21,6 +21,7 @@ """ import numpy as np +from scipy.spatial import cKDTree from itertools import product from orix.sampling.sample_generators import get_sample_fundamental, get_sample_local @@ -159,46 +160,50 @@ def get_grid_around_beam_direction(beam_rotation, resolution, angular_range=(0, return rotation_list -def get_beam_directions_grid(crystal_system, resolution, equal="angle"): +def _normalize_vectors(vectors): """ - Produces an array of beam directions, evenly (see equal argument) spaced that lie within the streographic - triangle of the relevant crystal system. + Helper function which returns a list of vectors normalized to length 1 from + a 2D array representing a list of 3D vectors + """ + return (vectors.T/np.linalg.norm(vectors, axis=1)).T + + +def get_uv_sphere_mesh_vertices(resolution): + """ + Return the vertices of a UV (spherical coordinate) mesh on a unit sphere. + The mesh vertices are defined by the parametrization: + + x = sin(u)cos(v) + y = sin(u)sin(v) + z = cos(u) Parameters ---------- - crystal_system : str - Allowed are: 'cubic','hexagonal','trigonal','tetragonal','orthorhombic','monoclinic','triclinic' - resolution : float - An angle in degrees. If the 'equal' option is set to 'angle' this is the misorientation between a - beam direction and its nearest neighbour(s). For 'equal'=='area' the density of points is as in - the equal angle case but each point covers an equal area - - equal : str - 'angle' (default) or 'area' + An angle in degrees. The maximum angle between nearest neighbor + grid points. In this mesh this occurs on the equator of the sphere. + All elevation grid lines are separated by at most resolution. The + step size of u and v are rounded up to get an integer number of + elevation and azimuthal grid lines with equal spacing. Returns ------- - points_in_cartesians : np.array (N,3) - Rows are x,y,z where z is the 001 pole direction. + points_in_cartesian : np.array (N,3) + Rows are x, y, z where z is the 001 pole direction + + References + ---------- + https://medium.com/game-dev-daily/four-ways-to-create-a-mesh-for-a-sphere-d7956b825db4 """ - steps_theta = int(np.ceil(180 / resolution)) # elevation - steps_psi = int(np.ceil(360 / resolution)) # azimuthal + steps_theta = int(np.ceil(180 / resolution))+1 # elevation + steps_psi = int(np.ceil(360 / resolution)) # azimuthal psi = np.linspace(0, 2 * np.pi, num=steps_psi, endpoint=False) - - if equal == "angle": - theta = np.linspace(0, np.pi, num=steps_theta, endpoint=True) - - elif equal == "area": - # http://mathworld.wolfram.com/SpherePointPicking.html - v_array = np.linspace(0, 1, num=steps_psi) - theta = np.arccos(2 * v_array - 1) # in radians + theta = np.linspace(0, np.pi, num=steps_theta, endpoint=True) psi_theta = np.asarray(list(product(psi, theta))) r = np.ones((psi_theta.shape[0], 1)) points_in_spherical_polars = np.hstack((r, psi_theta)) - # keep only one theta ==0 point, specifically the psi ==0 one points_in_spherical_polars = points_in_spherical_polars[ np.logical_or( @@ -206,7 +211,6 @@ def get_beam_directions_grid(crystal_system, resolution, equal="angle"): points_in_spherical_polars[:, 1] == 0, ) ] - # keep only one theta ==180 point, specifically the psi ==0 one points_in_spherical_polars = points_in_spherical_polars[ np.logical_or( @@ -214,28 +218,486 @@ def get_beam_directions_grid(crystal_system, resolution, equal="angle"): points_in_spherical_polars[:, 1] == 0, ) ] - points_in_cartesians = vectorised_spherical_polars_to_cartesians( points_in_spherical_polars ) + return points_in_cartesians + + +def get_cube_mesh_vertices(resolution, grid_type="spherified_corner"): + """ + Return the (x, y, z) coordinates of the vertices of a cube mesh + on a sphere. To generate the mesh, a cube is made to surround the sphere. + The surfaces of the cube are subdivided into a grid. The vectors from the + origin to these grid points are normalized to unit length. The grid + on the cube can be generated in three ways, see grid_type and reference [1]. + + Parameters + ---------- + resolution : float + The maximum angle in degrees between first nearest neighbor grid + points. + grid_type : str + The type of cube grid, can be either `normalized` or `spherified_edge` + or `spherified_corner` (default). For details see notes. + + Returns + ------- + points_in_cartesian : np.array (N,3) + Rows are x, y, z where z is the 001 pole direction + + Notes + ----- + The resolution determines the maximum angle between first nearest + neighbor grid points, but to get an integer number of points between the + cube face center and the edges, the number of grid points is rounded up. + In practice this means that resolution is always an upper limit. + Additionally, where on the grid this maximum angle will be will depend + on the type of grid chosen. Resolution says something about the maximum + angle but nothing about the distribution of nearest neighbor angles or + the minimum angle - also this is fixed by the chosen grid. + + In the normalized grid, the grid on the surface of the cube is linear. + The maximum angle between nearest neighbors is found between the <001> + directions and the first grid point towards the <011> directions. Points + approaching the edges and corners of the cube will have a smaller angular + deviation, so orientation space will be oversampled there compared to the + cube faces <001>. + + In the spherified_edge grid, the grid is constructed so that there + are still two sets of perpendicular grid lines parallel to the {100} + directions on each cube face, but the spacing of the grid lines is + chosen so that the angles between the grid points on the line + connecting the face centers (<001>) to the edges (<011>) are equal. + The maximum angle is also between the <001> directions and the first + grid point towards the <011> edges. This grid slightly oversamples the + directions between <011> and <111> + + The spherified_corner case is similar to the spherified_edge case, but + the spacing of the grid lines is chosen so that the angles between + the grid points on the line connecting the face centers to the cube + corners (<111>) is equal. The maximum angle in this grid is from the + corners to the first grid point towards the cube face centers. + + References + ---------- + [1] https://medium.com/game-dev-daily/four-ways-to-create-a-mesh-for-a-sphere-d7956b825db4 + """ + # the angle between 001 and 011 + max_angle = np.deg2rad(45) + # the distance on the cube face from 001 to 011 grid point + max_dist = 1 + if grid_type == "normalized": + grid_len = np.tan(np.deg2rad(resolution)) + steps = np.ceil(max_dist/grid_len) + i = np.arange(-steps, steps)/steps + elif grid_type == "spherified_edge": + steps = np.ceil(np.rad2deg(max_angle)/resolution) + k = np.arange(-steps, steps) + theta = np.arctan(max_dist)/steps + i = np.tan(k*theta) + elif grid_type == "spherified_corner": + # the angle from 001 to 111 + max_angle_111 = np.arccos(1/np.sqrt(3)) + res_111 = np.deg2rad(resolution) + steps = np.ceil(max_angle_111/res_111) + k = np.arange(-steps, steps) + theta = np.arctan(np.sqrt(2))/steps + i = np.tan(k*theta)/np.sqrt(2) + else: + raise ValueError(f"grid type {grid_type} not a valid grid type. " + f"Valid options: normalized, spherified_edge, " + f"spherified_corner.") + x, y = np.meshgrid(i, i) + x, y = x.ravel(), y.ravel() + z = np.ones(x.shape[0]) + # the grid on all faces of the cube, avoiding overlap of points on edges + bottom = np.vstack([-x, -y, -z]).T + top = np.vstack([x, y, z]).T + east = np.vstack([z, x, -y]).T + west = np.vstack([-z, -x, y]).T + south = np.vstack([x, -z, y]).T + north = np.vstack([-x, z, -y]).T + # two corners are missing with this procedure + m_c = np.array([[-1, 1, 1], + [1, -1, -1]]) + # combine + all_vecs = np.vstack([bottom, top, east, west, south, north, m_c]) + return _normalize_vectors(all_vecs) + + +def _compose_from_faces(corners, faces, n): + """ + Helper function to refine a grid starting from a platonic solid, + adapted from meshzoo + + Parameters + ---------- + corners: numpy.array (N, 3) + Coordinates of vertices for starting shape + faces : list of 3-tuples of int elements + Each tuple in the list corresponds to the vertex indices making + up the face of the mesh + n : int + number of times the mesh is refined + + Returns + ------- + vertices: numpy.array (N, 3) + The coordinates of the refined mesh vertices. + + See also + -------- + :func:`get_icosahedral_mesh_vertices` + """ + # create corner nodes + vertices = [corners] + vertex_count = len(corners) + corner_nodes = np.arange(len(corners)) + # create edges + edges = set() + for face in faces: + edges.add(tuple(sorted([face[0], face[1]]))) + edges.add(tuple(sorted([face[1], face[2]]))) + edges.add(tuple(sorted([face[2], face[0]]))) + edges = list(edges) + # create edge nodes: + edge_nodes = {} + t = np.linspace(1 / n, 1.0, n - 1, endpoint=False) + corners = vertices[0] + k = corners.shape[0] + for edge in edges: + i0, i1 = edge + new_vertices = np.outer(1 - t, corners[i0]) + np.outer(t, corners[i1]) + vertices.append(new_vertices) + vertex_count += len(vertices[-1]) + edge_nodes[edge] = np.arange(k, k + len(t)) + k += len(t) + triangle_cells = [] + k = 0 + for i in range(n): + j = np.arange(n - i) + triangle_cells.append(np.column_stack([k + j, k + j + 1, k + n - i + j + 1])) + j = j[:-1] + triangle_cells.append( + np.column_stack([k + j + 1, k + n - i + j + 2, k + n - i + j + 1]) + ) + k += n - i + 1 + triangle_cells = np.vstack(triangle_cells) + for face in faces: + corners = face + edges = [(face[0], face[1]), (face[1], face[2]), (face[2], face[0])] + is_edge_reverted = [False, False, False] + for k, edge in enumerate(edges): + if edge[0] > edge[1]: + edges[k] = (edge[1], edge[0]) + is_edge_reverted[k] = True + # First create the interior points in barycentric coordinates + if n == 1: + num_new_vertices = 0 + else: + bary = ( + np.hstack( + [ + [np.full(n - i - 1, i), np.arange(1, n - i)] + for i in range(1, n) + ] + ) + / n + ) + bary = np.array([1.0 - bary[0] - bary[1], bary[1], bary[0]]) + corner_verts = np.array([vertices[0][i] for i in corners]) + vertices_cart = np.dot(corner_verts.T, bary).T + + vertices.append(vertices_cart) + num_new_vertices = len(vertices[-1]) + # translation table + num_nodes_per_triangle = (n + 1) * (n + 2) // 2 + tt = np.empty(num_nodes_per_triangle, dtype=int) + # first the corners + tt[0] = corner_nodes[corners[0]] + tt[n] = corner_nodes[corners[1]] + tt[num_nodes_per_triangle - 1] = corner_nodes[corners[2]] + # then the edges. + # edge 0 + tt[1:n] = edge_nodes[edges[0]] + if is_edge_reverted[0]: + tt[1:n] = tt[1:n][::-1] + # + # edge 1 + idx = 2 * n + for k in range(n - 1): + if is_edge_reverted[1]: + tt[idx] = edge_nodes[edges[1]][n - 2 - k] + else: + tt[idx] = edge_nodes[edges[1]][k] + idx += n - k - 1 + # + # edge 2 + idx = n + 1 + for k in range(n - 1): + if is_edge_reverted[2]: + tt[idx] = edge_nodes[edges[2]][k] + else: + tt[idx] = edge_nodes[edges[2]][n - 2 - k] + idx += n - k + # now the remaining interior nodes + idx = n + 2 + j = vertex_count + for k in range(n - 2): + for _ in range(n - k - 2): + tt[idx] = j + j += 1 + idx += 1 + idx += 2 + vertex_count += num_new_vertices + vertices = np.concatenate(vertices) + return vertices + + +def _get_first_nearest_neighbors(points, leaf_size=50): + """ + Helper function to get an array of first nearest neighbor points + for all points in a point cloud + + Parameters + ---------- + points : numpy.array (N, D) + Point cloud with N points in D dimensions + leaf_size : int + The NN search is performed using a cKDTree object. The way + this tree is constructed depends on leaf_size, so this parameter + will influence speed of tree construction and search. + + Returns + ------- + nn1_vec : numpy.array (N,D) + Point cloud with N points in D dimensions, representing the nearest + neighbor point of each point in "points" + """ + tree = cKDTree(points, leaf_size) + # get the indexes of the first nearest neighbor of each vertex + nn1 = tree.query(points, k=2)[1][:, 1] + nn1_vec = points[nn1] + return nn1_vec + + +def _get_angles_between_nn_gridpoints(vertices, leaf_size=50): + """ + Helper function to get the angles between all nearest neighbor grid + points on a grid of a sphere. + """ + # normalize the vertex vectors + vertices = _normalize_vectors(vertices) + nn1_vec = _get_first_nearest_neighbors(vertices, leaf_size) + # the dot product between each point and its nearest neighbor + nn_dot = np.sum(vertices*nn1_vec, axis=1) + # angles + angles = np.rad2deg(np.arccos(nn_dot)) + return angles + + +def _get_max_grid_angle(vertices, leaf_size=50): + """ + Helper function to get the maximum angle between nearest neighbor grid + points on a grid. + """ + return np.max(_get_angles_between_nn_gridpoints(vertices, leaf_size)) + + +def get_icosahedral_mesh_vertices(resolution): + """ + Return the (x, y, z) coordinates of the vertices of an icosahedral + mesh of a cube, see reference [1]. Method was adapted from meshzoo [2]. + + Parameters + ---------- + resolution : float + The maximum angle in degrees between neighboring grid points. Since + the mesh is generated iteratively, the actual maximum angle in the + mesh can be slightly smaller. + + Returns + ------- + points_in_cartesian : np.array (N,3) + Rows are x, y, z where z is the 001 pole direction + + References + ---------- + [1] https://medium.com/game-dev-daily/four-ways-to-create-a-mesh-for-a-sphere-d7956b825db4 + [2] https://github.com/nschloe/meshzoo/blob/master/meshzoo/sphere.py + """ + t = (1.0 + np.sqrt(5.0)) / 2.0 + corners = np.array( + [ + [-1, +t, +0], + [+1, +t, +0], + [-1, -t, +0], + [+1, -t, +0], + # + [+0, -1, +t], + [+0, +1, +t], + [+0, -1, -t], + [+0, +1, -t], + # + [+t, +0, -1], + [+t, +0, +1], + [-t, +0, -1], + [-t, +0, +1], + ] + ) + faces = [ + (0, 11, 5), + (0, 5, 1), + (0, 1, 7), + (0, 7, 10), + (0, 10, 11), + (1, 5, 9), + (5, 11, 4), + (11, 10, 2), + (10, 7, 6), + (7, 1, 8), + (3, 9, 4), + (3, 4, 2), + (3, 2, 6), + (3, 6, 8), + (3, 8, 9), + (4, 9, 5), + (2, 4, 11), + (6, 2, 10), + (8, 6, 7), + (9, 8, 1), + ] + n = 1 + angle = _get_max_grid_angle(corners) + # maybe not the most efficient approach, but the least work + while(angle > resolution): + vertices = _compose_from_faces(corners, faces, n) + angle = _get_max_grid_angle(vertices) + n = n+1 + # push all nodes to the sphere + norms = np.sqrt(np.einsum("ij,ij->i", vertices, vertices)) + vertices = (vertices.T / norms.T).T + return vertices + + +def beam_directions_grid_to_euler(vectors): + """ + Convert list of vectors representing zones to a list of Euler angles + in the bunge convention with the constraint that phi1=0. + + Parameters + ---------- + vectors: numpy.array (N, 3) + N 3-dimensional vectors to convert to Euler angles + + Returns + ------- + grid: numpy.array (N, 3) + Euler angles in bunge convention corresponding to each vector in + degrees. + + Notes + ----- + The Euler angles represent the orientation of the crystal if that + particular vector were parallel to the beam direction [001]. The + additional constraint of phi1=0 means that this orientation is uniquely + defined for most vectors. phi1 represents the rotation of the crystal + around the beam direction and can be interpreted as the rotation of + a particular diffraction pattern. + """ + norm = np.linalg.norm(vectors, axis=1) + z_comp = vectors[:, 2] + # second euler angle: around x' = angle between z and z'' + Phi = np.arccos(z_comp/norm) + # first euler angle: around z = angle between x and x' + x_comp = vectors[:, 0] + y_comp = vectors[:, 1] + norm_proj = np.linalg.norm(vectors[:, :2], axis=1) + sign = np.sign(y_comp) + # correct for where we have y=0 + sign[y_comp == 0] = np.sign(x_comp[y_comp == 0]) + phi2 = sign*np.nan_to_num(np.arccos(x_comp/norm_proj)) + # phi1 is just 0, rotation around z'' + phi1 = np.zeros(phi2.shape[0]) + grid = np.rad2deg(np.vstack([phi1, Phi, phi2]).T) + return grid + + +def get_beam_directions_grid(crystal_system, resolution, + mesh="spherified_cube_corner"): + """ + Produces an array of beam directions, within the stereographic + triangle of the relevant crystal system. The way the array is constructed + is based on different methods of meshing the sphere [1] and can be + specified through the `mesh` argument. + + Parameters + ---------- + crystal_system : str + Allowed are: 'cubic','hexagonal','trigonal','tetragonal', + 'orthorhombic','monoclinic','triclinic' + + resolution : float + An angle in degrees representing the worst-case angular + distance to a first nearest neighbor grid point. + + mesh : str + Type of meshing of the sphere that defines how the grid is created. + Options are: uv_sphere, normalized_cube, spherified_cube_corner + (default), spherified_cube_edge, and icosahedral. + + Returns + ------- + points_in_cartesians : np.array (N,3) + Rows are x,y,z where z is the 001 pole direction. + """ + if mesh == "uv_sphere": + points_in_cartesians = get_uv_sphere_mesh_vertices(resolution) + elif mesh == "normalized_cube" or mesh == "spherified_cube_edge": + # special case: hexagon is a very small slice and 001 point can + # be isolated. Hence we increase resolution to ensure minimum angle. + if crystal_system == "hexagonal": + resolution = np.rad2deg( + np.arctan(np.tan(np.deg2rad(resolution))/np.sqrt(2))) + if mesh == "normalized_cube": + points_in_cartesians = get_cube_mesh_vertices( + resolution, grid_type="normalized") + else: + points_in_cartesians = get_cube_mesh_vertices( + resolution, grid_type="spherified_edge") + elif mesh == "spherified_cube_corner": + points_in_cartesians = get_cube_mesh_vertices( + resolution, grid_type="spherified_corner") + elif mesh == "icosahedral": + points_in_cartesians = get_icosahedral_mesh_vertices(resolution) + else: + raise NotImplementedError(f"The mesh {mesh} is not recognized. " + f"Please use: uv_sphere, normalized_cube, " + f"spherified_cube_edge, " + f"spherified_cube_corner, icosahedral") if crystal_system == "triclinic": return points_in_cartesians - + # crop to stereographic triangle which depends on crystal system corners = crystal_system_dictionary[crystal_system] a, b, c = corners[0], corners[1], corners[2] if len(a) == 4: a, b, c = uvtw_to_uvw(a), uvtw_to_uvw(b), uvtw_to_uvw(c) - # eliminates those points that lie outside of the streographic triangle + # eliminates those points that lie outside of the stereographic triangle + epsilon = -1e-13 points_in_cartesians = points_in_cartesians[ - np.dot(np.cross(a, b), c) * np.dot(np.cross(a, b), points_in_cartesians.T) >= 0 + np.dot(np.cross(a, b), c) * + np.dot(np.cross(a, b), points_in_cartesians.T) >= epsilon ] points_in_cartesians = points_in_cartesians[ - np.dot(np.cross(b, c), a) * np.dot(np.cross(b, c), points_in_cartesians.T) >= 0 + np.dot(np.cross(b, c), a) * + np.dot(np.cross(b, c), points_in_cartesians.T) >= epsilon ] points_in_cartesians = points_in_cartesians[ - np.dot(np.cross(c, a), b) * np.dot(np.cross(c, a), points_in_cartesians.T) >= 0 + np.dot(np.cross(c, a), b) * + np.dot(np.cross(c, a), points_in_cartesians.T) >= epsilon ] return points_in_cartesians diff --git a/diffsims/tests/test_generators/test_rotation_list_generator.py b/diffsims/tests/test_generators/test_rotation_list_generator.py index 0e8a0dea..239eb850 100644 --- a/diffsims/tests/test_generators/test_rotation_list_generator.py +++ b/diffsims/tests/test_generators/test_rotation_list_generator.py @@ -23,6 +23,14 @@ get_grid_around_beam_direction, get_fundamental_zone_grid, get_beam_directions_grid, + get_uv_sphere_mesh_vertices, + get_cube_mesh_vertices, + get_icosahedral_mesh_vertices, + beam_directions_grid_to_euler, + _normalize_vectors, + _get_first_nearest_neighbors, + _get_angles_between_nn_gridpoints, + _get_max_grid_angle, ) @@ -30,7 +38,7 @@ "grid", [ pytest.param( - get_local_grid(resolution=30, center=(0,1,0), grid_width=35) + get_local_grid(resolution=30, center=(0, 1, 0), grid_width=35) ), get_fundamental_zone_grid(space_group=20, resolution=20), ], @@ -51,6 +59,98 @@ def test_get_grid_around_beam_direction(): assert np.allclose([x[1] for x in grid], 90) # taking z to y +def test_get_uv_sphere_mesh_vertices(): + grid = get_uv_sphere_mesh_vertices(10) + np.testing.assert_almost_equal(np.sum(grid), 0) + assert grid.shape[0] == 614 + assert grid.shape[1] == 3 + np.testing.assert_almost_equal(np.sum(grid), 0) + grid_unique = np.unique(grid, axis=0) + assert grid.shape[0] == grid_unique.shape[0] + + +@pytest.mark.parametrize( + "grid_type,expected_len", + [ + ("normalized", 866), + ("spherified_edge", 602), + ("spherified_corner", 866), + ] +) +def test_get_cube_mesh_vertices(grid_type, expected_len): + grid = get_cube_mesh_vertices(10, grid_type=grid_type) + assert grid.shape[0] == expected_len + assert grid.shape[1] == 3 + np.testing.assert_almost_equal(np.sum(grid), 0) + grid_unique = np.unique(grid, axis=0) + assert grid.shape[0] == grid_unique.shape[0] + test_vectors = np.round(_normalize_vectors(np.array( + [[1, 1, 1], + [1, 0, 0], + [1, 1, 0], + [-1, 1, -1]])), 13).tolist() + grid = np.round(grid, 13) + for i in test_vectors: + assert i in grid.tolist() + + +def test_get_cube_mesh_vertices_exception(): + with pytest.raises(Exception): + get_cube_mesh_vertices(10, "non_existant") + + +def test_first_nearest_neighbors(): + grid = _normalize_vectors(np.array([[1, 0, 0], + [0, 1, 0], + [0, 1, 1], + [1, 0, 1], + ])) + fnn = _normalize_vectors(np.array([[1, 0, 1], + [0, 1, 1], + [0, 1, 0], + [1, 0, 0], + ])) + angles = np.array([45, 45, 45, 45]) + fnn_test = _get_first_nearest_neighbors(grid) + angles_test = _get_angles_between_nn_gridpoints(grid) + assert np.allclose(fnn, fnn_test) + assert np.allclose(angles, angles_test) + assert _get_max_grid_angle(grid) == 45. + + +def test_icosahedral_grid(): + grid = get_icosahedral_mesh_vertices(10) + assert grid.shape[0] == 642 + assert grid.shape[1] == 3 + np.testing.assert_almost_equal(np.sum(grid), 0) + grid_unique = np.unique(grid, axis=0) + assert grid.shape[0] == grid_unique.shape[0] + + +def test_vectors_to_euler(): + grid = _normalize_vectors(np.array([[1, 0, 0], + [0, 1, 0], + [0, 1, 1], + [1, 0, 1], + ])) + ang = np.array([[0, 90, 0], + [0, 90, 90], + [0, 45, 90], + [0, 45, 0], + ]) + assert np.allclose(ang, beam_directions_grid_to_euler(grid)) + + +@pytest.mark.parametrize( + "mesh", + [ + "uv_sphere", + "normalized_cube", + "spherified_cube_edge", + "spherified_cube_corner", + "icosahedral", + ] +) @pytest.mark.parametrize( "crystal_system", [ @@ -63,6 +163,12 @@ def test_get_grid_around_beam_direction(): "triclinic", ], ) -def test_get_beam_directions_grid(crystal_system): - for equal in ["angle", "area"]: - _ = get_beam_directions_grid(crystal_system, 5, equal=equal) +def test_get_beam_directions_grid(crystal_system, mesh): + grid = get_beam_directions_grid(crystal_system, 5, mesh=mesh) + max_angle = _get_max_grid_angle(grid) + assert max_angle <= 5 + + +def test_invalid_mesh_beam_directions(): + with pytest.raises(Exception): + _ = get_beam_directions_grid("cubic", 10, mesh="non_existant")