-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgap_LS07.py
291 lines (230 loc) · 11.7 KB
/
gap_LS07.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import torch
import argparse
import numpy as np
import random
import time
from tqdm import tqdm
from reader import Reader_lexical
from metrics.evaluation import evaluation
from bart_score import BARTScorer
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from bert_score.scorer import BERTScorer
from fairseq.models.transformer import TransformerModel
bart_scorer=BARTScorer(device="cuda",checkpoint="/home/yz/liukang/liukang/huggingface/facebook/bart-large-cnn")
bart_scorer.load(path="/home/yz/liukang/liukang/huggingface/facebook/bart-large-cnn/bart.pth")
# bart_scorer=None
bleurt_tokenizer = AutoTokenizer.from_pretrained("bleurt-large-512")
bleurt_model = AutoModelForSequenceClassification.from_pretrained("bleurt-large-512").cuda()
bleurt_model.eval()
# bleurt_model=None
bertscorer = BERTScorer(lang="en", rescale_with_baseline=True)
# bertscorer=None
import re
def process_string(string):
string = re.sub("( )(\'[(m)(d)(t)(ll)(re)(ve)(s)])", r"\2", string)
string = re.sub("(\d+)( )([,\.])( )(\d+)", r"\1\3\5", string)
# U . S . -> U.S.
string = re.sub("(\w)( )(\.)( )(\w)( )(\.)", r"\1\3\5\7", string)
# reduce left space
string = re.sub("( )([,\.!?:;)])", r"\2", string)
# reduce right space
string = re.sub("([(])( )", r"\1", string)
string = re.sub("s '", "s'", string)
# reduce both space
string = re.sub("(')( )(\S+)( )(')", r"\1\3\5", string)
string = re.sub("(\")( )(\S+)( )(\")", r"\1\3\5", string)
string = re.sub("(\w+) (-+) (\w+)", r"\1\2\3", string)
string = re.sub("(\w+) (/+) (\w+)", r"\1\2\3", string)
# string = re.sub(" ' ", "'", string)
return string
def substitutes_scores(original_sentence, substitutes, index_of_word):
sss = []
ccs = []
words = original_sentence.split(' ')
for sub in substitutes:
sss.append(original_sentence)
new_sent = ""
for i in range(len(words)):
if i == index_of_word:
new_sent += sub + " "
else:
new_sent += words[i] + " "
ccs.append(new_sent.strip())
P, R, F1 = bertscorer.score(ccs, sss)
score_bart = bart_scorer.score(sss, ccs, batch_size=64)
with torch.no_grad():
scores_bleurt = bleurt_model(**bleurt_tokenizer(sss, ccs, return_tensors='pt', padding=True))[0].squeeze()
return score_bart,scores_bleurt.tolist(),F1
def lookahead_scores(model,original_sentence,substitutes,word_index):
sentence_words=original_sentence.split()
prefix=" ".join(original_sentence.strip().split()[:word_index]).strip()
complex_word=sentence_words[word_index]
sentence=original_sentence
beam=1
index_complex = word_index
ori_words=sentence_words
prefix = prefix
suffix1 = ""
if(index_complex != -1):
prefix = prefix
if len(ori_words)>index_complex+1:
suffix1=" ".join(ori_words[index_complex+1:]).strip()
suffix1=suffix1.replace("''","\"").strip()
suffix1=suffix1.replace("``","\"").strip()
suffix1=process_string(suffix1)
#stored_suffix1=suffix1
if suffix1.endswith("\""):
suffix1=suffix1[:-1]
suffix1=suffix1.strip()
if suffix1.endswith("'"):
suffix1=suffix1[:-1]
suffix1=suffix1.strip()
suffix1=" ".join(suffix1.split(" ")[:2])
# if "," in suffix1:
# if suffix1.index(",")!=0:
# suffix1=suffix1[:suffix1.index(",")]
#suffix1 = sentence[index_complex+:index_complex+1].strip()
# suffix1 = " ".join(ori_words[ori_words.index(complex_word)+1:ori_words.index(complex_word)+7])
# suffix1=process_string(suffix1)
# medium_qutos=[",",".","!","?","\"","``",""]
# for char1 in suffix1:
else:
pass
#print(prefix)
else:
print("finding a error I should do something")
import pdb
pdb.set_trace()
prefix_tokens = model.encode(prefix)
prefix_tokens = prefix_tokens[:-1].view(1,-1)
complex_tokens = model.encode(complex_word)
#1.make some change to the original sentence
#=prefix.strip()+" "+process_string(complex_word.strip()+" "+stored_suffix1.strip())
#sentence=new_sentence
sentence_tokens = model.encode(sentence)
suffix_tokens=model.encode(suffix1)[:-1]
suffix_tokens=torch.tensor(suffix_tokens)
suffix_tokens=suffix_tokens.tolist()
final_gap_score=[]
for i in range(len(substitutes)):
#make some change to the suffix tokens
candi_tokens=model.encode(substitutes[i])
tmp_suffix_tokens=candi_tokens[:-1].tolist()+suffix_tokens
attn_len = len(prefix_tokens[0])+len(candi_tokens)-1
outputs,combined_sss,prev_masks,prev_masks2,scores_with_suffix,scores_with_suffix_masks,scores_with_dynamic = model.generate2(sentence_tokens.cuda(),
beam=beam,
prefix_tokens=prefix_tokens.cuda(),
attn_len=attn_len,
#tgt_token=complex_tokens[:-1].tolist(),
tgt_token=-1,
suffix_ids=tmp_suffix_tokens,
max_aheads=0)
outputs=outputs.cpu()
for i in range(len(combined_sss)):
if combined_sss[i]!=[]:
if type(combined_sss[i])==list:
combined_sss[i][0]=combined_sss[i][0].to("cpu")
combined_sss[i][1]=combined_sss[i][1].to("cpu")
else:
combined_sss[i]=combined_sss[i].to("cpu")
prev_masks=prev_masks.cpu()
prev_masks2=prev_masks2.cpu()
scores_with_suffix=scores_with_suffix.cpu()
scores_with_suffix_masks=scores_with_suffix_masks.cpu()
if len(prefix_tokens[0])!=0:
if len(prefix_tokens[0])>1:
tmp_final_gap_score=scores_with_suffix[0,len(prefix_tokens[0])-1].tolist()-scores_with_suffix[0,len(prefix_tokens[0])-2].tolist()
else:
tmp_final_gap_score=scores_with_suffix[0,len(prefix_tokens[0])-1].tolist()
else:
tmp_final_gap_score=scores_with_dynamic[0,0].tolist()
final_gap_score.append(tmp_final_gap_score)
return final_gap_score
if __name__ == "__main__":
parser = argparse.ArgumentParser()
#
# --------------- test dataset
parser.add_argument("-tt", "--test_file", type=str, help="path of the test file dataset",
default='data/LS07/test/lst_test.preprocessed')
parser.add_argument("-tgf", "--test_golden_file", type=str, help="path of the golden file dataset",
default='data/LS07/test/lst_test.gold')
# --------------- output results
parser.add_argument("-outp", "--output_results", type=str, help="path of the output file with results",
default='results/ls07.gap/lst_result_bart_bert')
parser.add_argument("-eval", "--results_file", type=str, help="path of the output file with gap metric",
default='results/ls07.gap/lst_score_bart_bert')
parser.add_argument("-bart", "--bartscore", type=bool, help="whether we use bartscore",
default=True)
parser.add_argument("--weight_bart",
default=1,
type=float,
help="The weight of bartscore.")
parser.add_argument("--weight_bert",
default=1,
type=float,
help="The weight of bartscore.")
parser.add_argument("--weight_bleurt",
default=0,
type=float,
help="The weight of bartscore.")
# ----------gap flags
parser.add_argument("-g", "--gap", type=bool, help="whether we use the gap ranking (candidate ranking)",
default=True)
parser.add_argument("-gfc", "--golden_file_cadidates", type=str, help="path of the golden file dataset for gap",
default='data/LS07/lst.gold.candidates')
args = parser.parse_args()
"""
reader of features/labels and candidates if gap
"""
reader = Reader_lexical()
reader.create_feature(args.test_file)
reader.create_candidates(args.golden_file_cadidates)
evaluation_metric = evaluation()
paraphraser_path="checkpoints/para/transformer/"
paraphraser_model="checkpoint_best.pt"
bpe="subword_nmt"
bpe_codes="checkpoints/para/transformer/codes.40000.bpe.en"
en2en = TransformerModel.from_pretrained(paraphraser_path, checkpoint_file=paraphraser_model,bpe=bpe,
bpe_codes=bpe_codes).cuda().eval()
for main_word in tqdm(reader.words_candidate):
for instance in reader.words_candidate[main_word]:
for context in reader.words_candidate[main_word][instance]:
change_word = context[0]
text = context[1]
original_text = text
index_word = context[2]
change_word = text.split(' ')[int(index_word)]
synonyms = []
#print(text)
#print(change_word)
if args.gap:
try:
proposed_words_list = reader.candidates[main_word]
except:
# for ..N in LS14
proposed_words_list = ["..", ".", ",", "!"]
proposed_words = reader.created_dict_proposed(proposed_words_list)
#bart_scores,bleurt_scores,bert_scores = substitutes_scores(original_text, proposed_words_list, int(index_word))
ahead_scores=lookahead_scores(en2en,original_text, proposed_words_list, int(index_word))
final_scores = []
#print(len(proposed_words_list),len(bart_scores))
for i in range(len(proposed_words_list)):
#score = args.weight_bart*float(bart_scores[i])+ args.weight_bleurt*float(bleurt_scores[i]) +args.weight_bert*float(bert_scores[i])
#score = args.weight_bart*float(1)+ args.weight_bleurt*float(1) +args.weight_bert*float(1)
score=ahead_scores[i]
final_scores.append(score)
for substitute_str, score in zip(proposed_words_list, final_scores):
proposed_words[substitute_str] = score
#print(proposed_words)
if args.gap:
evaluation_metric.write_results(args.output_results + "_gap.txt",
main_word, instance,
proposed_words)
#break
if args.gap:
evaluation_metric.gap_calculation(args.test_golden_file,
args.output_results + "_gap.txt",
args.results_file + "_gap.txt")