-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy path962_Maximum_Width_Ramp.py
46 lines (41 loc) · 1.35 KB
/
962_Maximum_Width_Ramp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution(object):
# def maxWidthRamp(self, A):
# """
# :type A: List[int]
# :rtype: int
# """
# # TLE
# if not A or len(A) == 0:
# return 0
# for ans in range(len(A) - 1, 0, -1):
# for i in range(len(A)):
# if i + ans > len(A) - 1:
# break
# if (A[i + ans] >= A[i]):
# return ans
# return 0
def maxWidthRamp(self, A):
ans = 0
m = float('inf')
# Sort index based on value
for i in sorted(range(len(A)), key=A.__getitem__):
ans = max(ans, i - m)
m = min(m, i)
return ans
# def maxWidthRamp(self, A):
# N = len(A)
# ans = 0
# candidates = [(A[N - 1], N - 1)]
# # candidates: i's decreasing, by increasing value of A[i]
# for i in xrange(N - 2, -1, -1):
# # Find largest j in candidates with A[j] >= A[i]
# jx = bisect.bisect(candidates, (A[i],))
# if jx < len(candidates):
# ans = max(ans, candidates[jx][1] - i)
# else:
# candidates.append((A[i], i))
# return ans
if __name__ == '__main__':
s = Solution()
print s.maxWidthRamp([6, 0, 8, 2, 1, 5])
print s.maxWidthRamp([9, 8, 1, 0, 1, 9, 4, 0, 4, 1])