-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathtrain_auxab.py
177 lines (147 loc) · 6.92 KB
/
train_auxab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os, sys, time
import shutil
import yaml
import argparse
import chainer
from chainer import training
from chainer import Variable
from chainer.training import extension
from chainer.training import extensions
import chainer.functions as F
sys.path.append(os.path.dirname(__file__))
from evaluation import sample_reconstruction_auxab
import source.yaml_utils as yaml_utils
def reconstruction_loss(dis, recon, gt):
with chainer.using_config('train', False):
v1 = dis.feature_vector(recon)
v2 = dis.feature_vector(gt)
denom = F.sqrt(F.batch_l2_norm_squared(v1) * F.batch_l2_norm_squared(v2))
xp = dis.xp
sum = Variable(xp.array(0.0, dtype=xp.float32))
for i in range(gt.shape[0]):
sum += F.matmul(v1[i], v2[i], transb=True) / denom[i]
cos_dist2 = - sum
return cos_dist2
def pixel_loss(recon, gt):
return F.mean_squared_error(recon, gt)
def create_result_dir(result_dir, config_path, config):
if not os.path.exists(result_dir):
os.makedirs(result_dir)
def copy_to_result_dir(fn, result_dir):
bfn = os.path.basename(fn)
shutil.copy(fn, '{}/{}'.format(result_dir, bfn))
copy_to_result_dir(config_path, result_dir)
copy_to_result_dir(
config.models['generator']['fn'], result_dir)
copy_to_result_dir(
config.models['discriminator']['fn'], result_dir)
copy_to_result_dir(
config.models['encoder']['fn'], result_dir)
copy_to_result_dir(
config.dataset['dataset_fn'], result_dir)
copy_to_result_dir(
config.updater['fn'], result_dir)
copy_to_result_dir(
__file__, result_dir)
def load_models(config):
gen_conf = config.models['generator']
gen = yaml_utils.load_model(gen_conf['fn'], gen_conf['name'], gen_conf['args'])
dis_conf = config.models['discriminator']
dis = yaml_utils.load_model(dis_conf['fn'], dis_conf['name'], dis_conf['args'])
enc_conf = config.models['encoder']
enc = yaml_utils.load_model(enc_conf['fn'], enc_conf['name'], enc_conf['args'])
return gen, dis, enc
def make_optimizer(model, alpha=0.0002, beta1=0., beta2=0.9):
optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1, beta2=beta2)
optimizer.setup(model)
return optimizer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, default='configs/base.yml', help='path to config file')
parser.add_argument('--gpu', type=int, default=0, help='index of gpu to be used')
parser.add_argument('--input_dir', type=str, default='./data/imagenet')
parser.add_argument('--truth_dir', type=str, default='./data/imagenet')
parser.add_argument('--results_dir', type=str, default='./results/gans',
help='directory to save the results to')
parser.add_argument('--snapshot', type=str, default='',
help='path to the snapshot file to use')
parser.add_argument('--enc_model', type=str, default='',
help='path to the generator .npz file')
parser.add_argument('--gen_model', type=str, default='',
help='path to the generator .npz file')
parser.add_argument('--dis_model', type=str, default='',
help='path to the discriminator .npz file')
parser.add_argument('--loaderjob', type=int,
help='number of parallel data loading processes')
args = parser.parse_args()
config = yaml_utils.Config(yaml.load(open(args.config_path)))
chainer.cuda.get_device_from_id(args.gpu).use()
gen, dis, enc = load_models(config)
chainer.serializers.load_npz(args.gen_model, gen, strict=False)
chainer.serializers.load_npz(args.dis_model, dis)
chainer.serializers.load_npz(args.enc_model, enc)
gen.to_gpu(device=args.gpu)
dis.to_gpu(device=args.gpu)
enc.to_gpu(device=args.gpu)
models = {"gen": gen, "dis": dis, "enc": enc}
opt_gen = make_optimizer(
gen, alpha=config.adam['alpha'], beta1=config.adam['beta1'], beta2=config.adam['beta2'])
opt_gen.add_hook(chainer.optimizer.WeightDecay(config.weight_decay))
opt_gen.add_hook(chainer.optimizer.GradientClipping(config.grad_clip))
# disable update of pre-trained weights
layers_to_train = ['lA1', 'lA2', 'lB1', 'lB2', 'preluW', 'preluMiddleW']
for layer in gen.children():
if not layer.name in layers_to_train:
layer.disable_update()
lmd_pixel = 0.05
def fast_loss(out, gt):
l1 = reconstruction_loss(dis, out, gt)
l2 = lmd_pixel * pixel_loss(out, gt)
loss = l1 + l2
return loss
gen.set_fast_loss(fast_loss)
opts = {"opt_gen": opt_gen}
# Dataset
config['dataset']['args']['root_input'] = args.input_dir
config['dataset']['args']['root_truth'] = args.truth_dir
dataset = yaml_utils.load_dataset(config)
# Iterator
iterator = chainer.iterators.MultiprocessIterator(
dataset, config.batchsize, n_processes=args.loaderjob)
kwargs = config.updater['args'] if 'args' in config.updater else {}
kwargs.update({
'models': models,
'iterator': iterator,
'optimizer': opts,
})
updater = yaml_utils.load_updater_class(config)
updater = updater(**kwargs)
out = args.results_dir
create_result_dir(out, args.config_path, config)
trainer = training.Trainer(updater, (config.iteration, 'iteration'), out=out)
report_keys = ["loss_noab", "loss1", "loss2", "loss3", "fast_alpha", "loss_ae",
"fast_benefit", "min_slope", "max_slope", "min_slope_middle", "max_slope_middle"]
# Set up logging
trainer.extend(extensions.snapshot(), trigger=(config.snapshot_interval, 'iteration'))
for m in models.values():
trainer.extend(extensions.snapshot_object(
m, m.__class__.__name__ + '_{.updater.iteration}.npz'), trigger=(config.snapshot_interval, 'iteration'))
trainer.extend(extensions.LogReport(keys=report_keys,
trigger=(config.display_interval, 'iteration')))
trainer.extend(extensions.ParameterStatistics(gen), trigger=(config.display_interval, 'iteration'))
trainer.extend(extensions.PrintReport(report_keys), trigger=(config.display_interval, 'iteration'))
trainer.extend(sample_reconstruction_auxab(enc, gen, out, n_classes=gen.n_classes),
trigger=(config.evaluation_interval, 'iteration'),
priority=extension.PRIORITY_WRITER)
trainer.extend(extensions.ProgressBar(update_interval=config.progressbar_interval))
ext_opt_gen = extensions.LinearShift('alpha', (config.adam['alpha'], 0.),
(config.iteration_decay_start, config.iteration), opt_gen)
trainer.extend(ext_opt_gen)
if args.snapshot:
print("Resume training with snapshot:{}".format(args.snapshot))
chainer.serializers.load_npz(args.snapshot, trainer)
# Run the training
print("start training")
trainer.run()
if __name__ == '__main__':
main()