-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathtrain_enc.py
132 lines (111 loc) · 5.29 KB
/
train_enc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os, sys, time
import shutil
import yaml
import argparse
import chainer
from chainer import training
from chainer.training import extension
from chainer.training import extensions
sys.path.append(os.path.dirname(__file__))
from evaluation import sample_reconstruction
import source.yaml_utils as yaml_utils
def create_result_dir(result_dir, config_path, config):
if not os.path.exists(result_dir):
os.makedirs(result_dir)
def copy_to_result_dir(fn, result_dir):
bfn = os.path.basename(fn)
shutil.copy(fn, '{}/{}'.format(result_dir, bfn))
copy_to_result_dir(config_path, result_dir)
copy_to_result_dir(
config.models['generator']['fn'], result_dir)
copy_to_result_dir(
config.models['discriminator']['fn'], result_dir)
copy_to_result_dir(
config.models['encoder']['fn'], result_dir)
copy_to_result_dir(
config.dataset['dataset_fn'], result_dir)
copy_to_result_dir(
config.updater['fn'], result_dir)
def load_models(config):
gen_conf = config.models['generator']
gen = yaml_utils.load_model(gen_conf['fn'], gen_conf['name'], gen_conf['args'])
dis_conf = config.models['discriminator']
dis = yaml_utils.load_model(dis_conf['fn'], dis_conf['name'], dis_conf['args'])
enc_conf = config.models['encoder']
enc = yaml_utils.load_model(enc_conf['fn'], enc_conf['name'], enc_conf['args'])
return gen, dis, enc
def make_optimizer(model, alpha=0.0002, beta1=0., beta2=0.9):
optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1, beta2=beta2)
optimizer.setup(model)
return optimizer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, default='configs/base.yml', help='path to config file')
parser.add_argument('--gpu', type=int, default=0, help='index of gpu to be used')
parser.add_argument('--input_dir', type=str, default='./data/imagenet')
parser.add_argument('--truth_dir', type=str, default='./data/imagenet')
parser.add_argument('--results_dir', type=str, default='./results/gans',
help='directory to save the results to')
parser.add_argument('--snapshot', type=str, default='',
help='path to the snapshot')
parser.add_argument('--gen_model', type=str, default='',
help='path to the generator .npz file')
parser.add_argument('--dis_model', type=str, default='',
help='path to the discriminator .npz file')
parser.add_argument('--loaderjob', type=int,
help='number of parallel data loading processes')
args = parser.parse_args()
config = yaml_utils.Config(yaml.load(open(args.config_path)))
chainer.cuda.get_device_from_id(args.gpu).use()
gen, dis, enc = load_models(config)
chainer.serializers.load_npz(args.gen_model, gen)
chainer.serializers.load_npz(args.dis_model, dis)
gen.to_gpu(device=args.gpu)
dis.to_gpu(device=args.gpu)
enc.to_gpu(device=args.gpu)
models = {"gen": gen, "dis": dis, "enc": enc}
opt_enc = make_optimizer(
enc, alpha=config.adam['alpha'], beta1=config.adam['beta1'], beta2=config.adam['beta2'])
opts = {"opt_enc": opt_enc}
# Dataset
config['dataset']['args']['root_input'] = args.input_dir
config['dataset']['args']['root_truth'] = args.truth_dir
dataset = yaml_utils.load_dataset(config)
# Iterator
iterator = chainer.iterators.MultiprocessIterator(
dataset, config.batchsize, n_processes=args.loaderjob)
kwargs = config.updater['args'] if 'args' in config.updater else {}
kwargs.update({
'models': models,
'iterator': iterator,
'optimizer': opts,
})
updater = yaml_utils.load_updater_class(config)
updater = updater(**kwargs)
out = args.results_dir
create_result_dir(out, args.config_path, config)
trainer = training.Trainer(updater, (config.iteration, 'iteration'), out=out)
report_keys = ["loss", "min_slope", "max_slope", "min_z", "max_z"]
# Set up logging
trainer.extend(extensions.snapshot(), trigger=(config.snapshot_interval, 'iteration'))
for m in models.values():
trainer.extend(extensions.snapshot_object(
m, m.__class__.__name__ + '_{.updater.iteration}.npz'), trigger=(config.snapshot_interval, 'iteration'))
trainer.extend(extensions.LogReport(keys=report_keys,
trigger=(config.display_interval, 'iteration')))
trainer.extend(extensions.PrintReport(report_keys), trigger=(config.display_interval, 'iteration'))
trainer.extend(sample_reconstruction(enc, gen, out, n_classes=gen.n_classes),
trigger=(config.evaluation_interval, 'iteration'),
priority=extension.PRIORITY_WRITER)
trainer.extend(extensions.ProgressBar(update_interval=config.progressbar_interval))
ext_opt_enc = extensions.LinearShift('alpha', (config.adam['alpha'], 0.),
(config.iteration_decay_start, config.iteration), opt_enc)
trainer.extend(ext_opt_enc)
if args.snapshot:
print("Resume training with snapshot:{}".format(args.snapshot))
chainer.serializers.load_npz(args.snapshot, trainer)
# Run the training
print("start training")
trainer.run()
if __name__ == '__main__':
main()