forked from jocicmarko/kaggle-dsb2-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
147 lines (112 loc) · 5.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from __future__ import print_function
import sys
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from model import get_model
from utils import crps, real_to_cdf, preprocess, rotation_augmentation, shift_augmentation
def load_train_data():
"""
Load training data from .npy files.
"""
X = np.load('data/X_train.npy')
y = np.load('data/y_train.npy')
X = X.astype(np.float32)
X /= 255
seed = np.random.randint(1, 10e6)
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(y)
return X, y
def split_data(X, y, split_ratio=0.2):
"""
Split data into training and testing.
:param X: X
:param y: y
:param split_ratio: split ratio for train and test data
"""
split = X.shape[0] * split_ratio
X_test = X[:split, :, :, :]
y_test = y[:split, :]
X_train = X[split:, :, :, :]
y_train = y[split:, :]
return X_train, y_train, X_test, y_test
def train():
"""
Training systole and diastole models.
"""
print('Loading and compiling models...')
model_systole = get_model()
model_diastole = get_model()
print('Loading training data...')
X, y = load_train_data()
print('Pre-processing images...')
X = preprocess(X)
# split to training and test
X_train, y_train, X_test, y_test = split_data(X, y, split_ratio=0.2)
nb_iter = 200
epochs_per_iter = 1
batch_size = 32
calc_crps = 1 # calculate CRPS every n-th iteration (set to 0 if CRPS estimation is not needed)
# remember min val. losses (best iterations), used as sigmas for submission
min_val_loss_systole = sys.float_info.max
min_val_loss_diastole = sys.float_info.max
print('-'*50)
print('Training...')
print('-'*50)
for i in range(nb_iter):
print('-'*50)
print('Iteration {0}/{1}'.format(i + 1, nb_iter))
print('-'*50)
print('Augmenting images - rotations')
X_train_aug = rotation_augmentation(X_train, 15)
print('Augmenting images - shifts')
X_train_aug = shift_augmentation(X_train_aug, 0.1, 0.1)
print('Fitting systole model...')
hist_systole = model_systole.fit(X_train_aug, y_train[:, 0], shuffle=True, nb_epoch=epochs_per_iter,
batch_size=batch_size, validation_data=(X_test, y_test[:, 0]))
print('Fitting diastole model...')
hist_diastole = model_diastole.fit(X_train_aug, y_train[:, 1], shuffle=True, nb_epoch=epochs_per_iter,
batch_size=batch_size, validation_data=(X_test, y_test[:, 1]))
# sigmas for predicted data, actually loss function values (RMSE)
loss_systole = hist_systole.history['loss'][-1]
loss_diastole = hist_diastole.history['loss'][-1]
val_loss_systole = hist_systole.history['val_loss'][-1]
val_loss_diastole = hist_diastole.history['val_loss'][-1]
if calc_crps > 0 and i % calc_crps == 0:
print('Evaluating CRPS...')
pred_systole = model_systole.predict(X_train, batch_size=batch_size, verbose=1)
pred_diastole = model_diastole.predict(X_train, batch_size=batch_size, verbose=1)
val_pred_systole = model_systole.predict(X_test, batch_size=batch_size, verbose=1)
val_pred_diastole = model_diastole.predict(X_test, batch_size=batch_size, verbose=1)
# CDF for train and test data (actually a step function)
cdf_train = real_to_cdf(np.concatenate((y_train[:, 0], y_train[:, 1])))
cdf_test = real_to_cdf(np.concatenate((y_test[:, 0], y_test[:, 1])))
# CDF for predicted data
cdf_pred_systole = real_to_cdf(pred_systole, loss_systole)
cdf_pred_diastole = real_to_cdf(pred_diastole, loss_diastole)
cdf_val_pred_systole = real_to_cdf(val_pred_systole, val_loss_systole)
cdf_val_pred_diastole = real_to_cdf(val_pred_diastole, val_loss_diastole)
# evaluate CRPS on training data
crps_train = crps(cdf_train, np.concatenate((cdf_pred_systole, cdf_pred_diastole)))
print('CRPS(train) = {0}'.format(crps_train))
# evaluate CRPS on test data
crps_test = crps(cdf_test, np.concatenate((cdf_val_pred_systole, cdf_val_pred_diastole)))
print('CRPS(test) = {0}'.format(crps_test))
print('Saving weights...')
# save weights so they can be loaded later
model_systole.save_weights('weights_systole.hdf5', overwrite=True)
model_diastole.save_weights('weights_diastole.hdf5', overwrite=True)
# for best (lowest) val losses, save weights
if val_loss_systole < min_val_loss_systole:
min_val_loss_systole = val_loss_systole
model_systole.save_weights('weights_systole_best.hdf5', overwrite=True)
if val_loss_diastole < min_val_loss_diastole:
min_val_loss_diastole = val_loss_diastole
model_diastole.save_weights('weights_diastole_best.hdf5', overwrite=True)
# save best (lowest) val losses in file (to be later used for generating submission)
with open('val_loss.txt', mode='w+') as f:
f.write(str(min_val_loss_systole))
f.write('\n')
f.write(str(min_val_loss_diastole))
train()