-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathplotting.py
905 lines (835 loc) · 36.8 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import pdb
from time import time
from matplotlib.colors import hsv_to_rgb
from pandas import read_table, read_hdf
import paths
from data_utils import scale_data
def visualise_at_epoch(vis_sample, data, predict_labels, one_hot, epoch,
identifier, num_epochs, resample_rate_in_min, multivariate_mnist,
seq_length, labels):
# TODO: what's with all these arguments
if data == 'mnist':
if predict_labels:
n_labels = 1
if one_hot:
n_labels = 6
lab_votes = np.argmax(vis_sample[:, :, -n_labels:], axis=2)
else:
lab_votes = vis_sample[:, :, -n_labels:]
labs, _ = mode(lab_votes, axis=1)
samps = vis_sample[:, :, :-n_labels]
else:
labs = labels
samps = vis_sample
if multivariate_mnist:
save_mnist_plot_sample(samps.reshape(-1, seq_length**2, 1), epoch, identifier, n_samples=6, labels=labs)
else:
save_mnist_plot_sample(samps, epoch, identifier, n_samples=6, labels=labs)
elif 'eICU' in data:
vis_eICU_patients_downsampled(vis_sample[:6, :, :],
resample_rate_in_min,
identifier=identifier,
idx=epoch)
else:
save_plot_sample(vis_sample, epoch, identifier, n_samples=6,
num_epochs=num_epochs)
return True
def save_plot_sample(samples, idx, identifier, n_samples=6, num_epochs=None, ncol=2):
assert n_samples <= samples.shape[0]
assert n_samples % ncol == 0
sample_length = samples.shape[1]
if not num_epochs is None:
col = hsv_to_rgb((1, 1.0*(idx)/num_epochs, 0.8))
else:
col = 'grey'
x_points = np.arange(sample_length)
nrow = int(n_samples/ncol)
fig, axarr = plt.subplots(nrow, ncol, sharex=True, figsize=(6, 6))
for m in range(nrow):
for n in range(ncol):
# first column
sample = samples[n*nrow + m, :, 0]
axarr[m, n].plot(x_points, sample, color=col)
axarr[m, n].set_ylim(-1, 1)
for n in range(ncol):
axarr[-1, n].xaxis.set_ticks(range(0, sample_length, int(sample_length/4)))
fig.suptitle(idx)
fig.subplots_adjust(hspace = 0.15)
fig.savefig("./experiments/plots/" + identifier + "_epoch" + str(idx).zfill(4) + ".png")
plt.clf()
plt.close()
return
def save_plot_interpolate(input_samples, samples, idx, identifier, num_epochs=None, distances=None, sigma=1):
""" very boilerplate, unsure how to make nicer """
n_samples = samples.shape[0]
sample_length = samples.shape[1]
if not num_epochs is None:
col = hsv_to_rgb((1, 1.0*(idx)/num_epochs, 0.8))
else:
col = 'grey'
x_points = np.arange(sample_length)
if distances is None:
nrow = n_samples
else:
nrow = n_samples + 1
ncol = 1
fig, axarr = plt.subplots(nrow, ncol, figsize=(3, 9))
if distances is None:
startat = 0
else:
startat = 1
axarr[0].plot(distances.dA, color='green', label='distance from A', linestyle='--', marker='o', markersize=4)
axarr[0].plot(distances.dB, color='orange', label='distance from B', linestyle='dotted', marker='o', markersize=4)
axarr[0].get_xaxis().set_visible(False)
axarr[0].set_title('distance from endpoints')
for m in range(startat, nrow):
sample = samples[m-startat, :, 0]
axarr[m].plot(x_points, sample, color=col)
for m in range(startat, nrow):
axarr[m].set_ylim(-1.1, 1.1)
axarr[m].set_xlim(0, sample_length)
axarr[m].spines["top"].set_visible(False)
axarr[m].spines["bottom"].set_visible(False)
axarr[m].spines["right"].set_visible(False)
axarr[m].spines["left"].set_visible(False)
axarr[m].tick_params(bottom='off', left='off')
axarr[m].get_xaxis().set_visible(False)
axarr[m].get_yaxis().set_visible(False)
axarr[m].set_facecolor((0.96, 0.96, 0.96))
if not input_samples is None:
# now do the real samples
axarr[startat].plot(x_points, input_samples[0], color='green', linestyle='--')
axarr[-1].plot(x_points, input_samples[1], color='green', linestyle='--')
axarr[-1].xaxis.set_ticks(range(0, sample_length, int(sample_length/4)))
fig.suptitle(idx)
fig.subplots_adjust(hspace = 0.2)
fig.savefig("./experiments/plots/" + identifier + "_interpolate.png")
fig.savefig("./experiments/plots/" + identifier + "_interpolate.pdf")
plt.clf()
plt.close()
return
def reconstruction_errors(identifier, train_errors, vali_errors,
generated_errors, random_errors):
"""
Plot two histogram of the reconstruction errors.
"""
print(identifier)
fig, axarr = plt.subplots(4, 1, sharex=True, figsize=(4, 8))
axarr[0].hist(train_errors, normed=1, color='green', bins=50)
axarr[0].set_title("train reconstruction errors")
axarr[1].hist(vali_errors, normed=1, color='blue', bins=50)
axarr[1].set_title('vali reconstruction errors')
axarr[2].hist(generated_errors, normed=1, color='pink', bins=50)
axarr[2].set_title('generated reconstruction errors')
axarr[3].hist(random_errors, normed=1, color='grey', bins=50)
axarr[3].set_title('random reconstruction errors')
for ax in axarr:
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.tick_params(bottom='off', left='off')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
axarr[3].set_xlim(0, 0.05)
plt.tight_layout()
plt.savefig('./experiments/plots/' + identifier + '_reconstruction_errors.png')
return True
def save_plot_reconstruct(real_samples, model_samples, identifier):
assert real_samples.shape == model_samples.shape
sample_length = real_samples.shape[1]
x_points = np.arange(sample_length)
nrow = real_samples.shape[0]
ncol = 2
fig, axarr = plt.subplots(nrow, ncol, sharex=True, figsize=(6, 6))
for m in range(nrow):
real_sample = real_samples[m, :, 0]
model_sample = model_samples[m, :, 0]
axarr[m, 0].plot(x_points, real_sample, color='green')
axarr[m, 1].plot(x_points, model_sample, color='red')
axarr[-1, 0].xaxis.set_ticks(range(0, sample_length, int(sample_length/4)))
axarr[-1, 1].xaxis.set_ticks(range(0, sample_length, int(sample_length/4)))
axarr[0, 0].set_title('real')
axarr[0, 1].set_title('reconstructed')
fig.subplots_adjust(hspace = 0.15)
fig.savefig("./experiments/plots/" + identifier + "_reconstruct.png")
plt.clf()
plt.close()
return
def save_plot_vary_dimension(samples_list, idx, identifier, n_dim):
"""
"""
assert len(samples_list) == n_dim
sample_length = samples_list[0].shape[1]
x_points = np.arange(sample_length)
nrow = samples_list[0].shape[0]
sidelength = n_dim*1.5
fig, axarr = plt.subplots(nrow, n_dim, sharex=True, sharey=True, figsize=(sidelength, sidelength))
for dim in range(n_dim):
sample_dim = samples_list[dim]
axarr[0, dim].set_title(dim)
h = dim*1.0/n_dim # hue
for n in range(nrow):
sample = sample_dim[n, :, 0]
axarr[n, dim].plot(x_points, sample, color='black')
axarr[n, dim].spines["top"].set_visible(False)
axarr[n, dim].spines["bottom"].set_visible(False)
axarr[n, dim].spines["right"].set_visible(False)
axarr[n, dim].spines["left"].set_visible(False)
axarr[n, dim].tick_params(bottom='off', left='off')
axarr[n, dim].get_xaxis().set_visible(False)
axarr[n, dim].set_facecolor(hsv_to_rgb((h, 0 + 0.25*n/nrow, 0.96)))
axarr[-1, dim].xaxis.set_ticks(range(0, sample_length, int(sample_length/4)))
fig.suptitle(idx)
fig.subplots_adjust(hspace = 0.11, wspace=0.11)
fig.savefig("./experiments/plots/" + identifier + "_epoch" + str(idx).zfill(4) + ".png")
plt.clf()
plt.close()
return True
def interpolate(sampleA, sampleB=None, n_steps=6):
"""
Plot the linear interpolation between two latent space points.
"""
weights = np.linspace(0, 1, n_steps)
if sampleB is None:
# do it "close by"
sampleB = sampleA + np.random.normal(size=sampleA.shape, scale=0.05)
samples = np.array([w*sampleB + (1-w)*sampleA for w in weights])
return samples
def vary_latent_dimension(sample, dimension, n_steps=6):
"""
"""
assert dimension <= sample.shape[1]
scale = np.mean(np.abs(sample[:, dimension]))
deviations = np.linspace(0, 2*scale, n_steps)
samples = np.array([sample[:, :]]*n_steps)
for n in range(n_steps):
samples[n, :, dimension] += deviations[n]
return samples
def plot_sine_evaluation(real_samples, fake_samples, idx, identifier):
"""
Create histogram of fake (generated) samples frequency, amplitude distribution.
Also for real samples.
"""
### frequency
seq_length = len(real_samples[0]) # assumes samples are all the same length
frate = seq_length
freqs_hz = np.fft.rfftfreq(seq_length)*frate # this is for labelling the plot
# TODO, just taking axis 0 for now...
w_real = np.mean(np.abs(np.fft.rfft(real_samples[:, :, 0])), axis=0)
w_fake = np.mean(np.abs(np.fft.rfft(fake_samples[:, :, 0])), axis=0)
### amplitude
A_real = np.max(np.abs(real_samples[:, :, 0]), axis=1)
A_fake = np.max(np.abs(fake_samples[:, :, 0]), axis=1)
### now plot
nrow = 2
ncol = 2
fig, axarr = plt.subplots(nrow, ncol, sharex='col', figsize=(6, 6))
# freq
axarr[0, 0].vlines(freqs_hz, ymin=np.minimum(np.zeros_like(w_real), w_real), ymax=np.maximum(np.zeros_like(w_real), w_real), color='#30ba50')
axarr[0, 0].set_title("frequency", fontsize=16)
axarr[0, 0].set_ylabel("real", fontsize=16)
axarr[1, 0].vlines(freqs_hz, ymin=np.minimum(np.zeros_like(w_fake), w_fake), ymax=np.maximum(np.zeros_like(w_fake), w_fake), color='#ba4730')
axarr[1, 0].set_ylabel("generated", fontsize=16)
# amplitude
axarr[0, 1].hist(A_real, normed=True, color='#30ba50', bins=30)
axarr[0, 1].set_title("amplitude", fontsize=16)
axarr[1, 1].hist(A_fake, normed=True, color='#ba4730', bins=30)
fig.savefig('./experiments/plots/' + identifier + '_eval' + str(idx).zfill(4) +'.png')
plt.clf()
plt.close()
return True
def plot_trace(identifier, xmax=250, final=False, dp=False):
"""
"""
trace_path = './experiments/traces/' + identifier + '.trace.txt'
da = read_table(trace_path, sep=' ')
nrow = 3
if dp:
trace_dp_path = './experiments/traces/' + identifier + '.dptrace.txt'
da_dp = read_table(trace_dp_path, sep=' ')
nrow += 1
ncol=1
fig, axarr = plt.subplots(nrow, ncol, sharex='col', figsize=(6, 6))
# D_loss
d_handle, = axarr[0].plot(da.epoch, da.D_loss, color='red', label='discriminator')
axarr[0].set_ylabel('D loss')
# axarr[0].set_ylim(0.9, 1.6)
if final:
#D_ticks = [1.0, 1.2, 1.5]
D_ticks = [0.5, 1.0, 1.5]
axarr[0].get_yaxis().set_ticks(D_ticks)
for tick in D_ticks:
axarr[0].plot((-10, xmax+10), (tick, tick), ls='dotted', lw=0.5, color='black', alpha=0.4, zorder=0)
# G loss
ax_G = axarr[0].twinx()
g_handle, = ax_G.plot(da.epoch, da.G_loss, color='green', ls='dashed', label='generator')
ax_G.set_ylabel('G loss')
if final:
G_ticks = [2.5, 5]
ax_G.get_yaxis().set_ticks(G_ticks)
# for tick in G_ticks:
# axarr[0].plot((-10, xmax+10), (tick, tick), ls='dotted', lw=0.5, color='green', alpha=1.0, zorder=0)
ax_G.spines["top"].set_visible(False)
ax_G.spines["bottom"].set_visible(False)
ax_G.spines["right"].set_visible(False)
ax_G.spines["left"].set_visible(False)
ax_G.tick_params(bottom='off', right='off')
axarr[0].legend(handles=[d_handle, g_handle], labels=['discriminator', 'generator'])
# mmd
da_mmd = da.loc[:, ['epoch', 'mmd2']].dropna()
axarr[1].plot(da_mmd.epoch, da_mmd.mmd2, color='purple')
axarr[1].set_ylabel('MMD$^2$')
#axarr[1].set_ylim(0.0, 0.04)
#ax_that = axarr[1].twinx()
#ax_that.plot(da.that)
#ax_that.set_ylabel('$\hat{t}$')
#ax_that.set_ylim(0, 50)
if final:
mmd_ticks = [0.01, 0.02, 0.03]
axarr[1].get_yaxis().set_ticks(mmd_ticks)
for tick in mmd_ticks:
axarr[1].plot((-10, xmax+10), (tick, tick), ls='dotted', lw=0.5, color='black', alpha=0.4, zorder=0)
# log likelihood
da_ll = da.loc[:, ['epoch', 'll', 'real_ll']].dropna()
axarr[2].plot(da_ll.epoch, da_ll.ll, color='orange')
axarr[2].plot(da_ll.epoch, da_ll.real_ll, color='orange', alpha=0.5)
axarr[2].set_ylabel('likelihood')
axarr[2].set_xlabel('epoch')
axarr[2].set_ylim(-750, 100)
#axarr[2].set_ylim(-10000000, 500)
if final:
# ll_ticks = [-1.0*1e7, -0.5*1e7, 0]
ll_ticks = [-500 ,-250, 0]
axarr[2].get_yaxis().set_ticks(ll_ticks)
for tick in ll_ticks:
axarr[2].plot((-10, xmax+10), (tick, tick), ls='dotted', lw=0.5, color='black', alpha=0.4, zorder=0)
if dp:
assert da_dp.columns[0] == 'epoch'
epochs = da_dp['epoch']
eps_values = da_dp.columns[1:]
for eps_string in eps_values:
if 'eps' in eps_string:
eps = eps_string[3:]
else:
eps = eps_string
deltas = da_dp[eps_string]
axarr[3].plot(epochs, deltas, label=eps)
axarr[3].set_ylabel('delta')
axarr[3].set_xlabel('epoch')
axarr[3].legend()
# beautify
for ax in axarr:
#ax.spines["top"].set_visible(True)
ax.spines["top"].set_color((0, 0, 0, 0.3))
#ax.spines["bottom"].set_visible(False)
ax.spines["bottom"].set_color((0, 0, 0, 0.3))
#ax.spines["right"].set_visible(False)
ax.spines["right"].set_color((0, 0, 0, 0.3))
#ax.spines["left"].set_visible(False)
ax.spines["left"].set_color((0, 0, 0, 0.3))
ax.tick_params(bottom='off', left='off')
# make background grey
# ax.set_facecolor((0.96, 0.96, 0.96))
ymin, ymax = ax.get_ylim()
for x in np.arange(0, xmax+10, 10):
ax.plot((x, x), (ymin, ymax), ls='dotted', lw=0.5, color='black', alpha=0.40, zorder=0)
ax.set_xlim(-5, xmax)
ax.get_yaxis().set_label_coords(-0.11,0.5)
# bottom one
fig.savefig('./experiments/traces/' + identifier + '_trace.png')
fig.savefig('./experiments/traces/' + identifier + '_trace.pdf')
plt.clf()
plt.close()
return True
### scripts for eICU
def vis_eICU_patients(patients, upto=None, identifier=None):
"""
Given a list of patientIDs, visualise the chosen variables.
(if only one patient given, only vis one patient)
"""
patients = list(set(patients))
print('Plotting traces of', len(patients), 'patients.')
eICU_dir = 'REDACTED'
variables = ['temperature', 'heartrate', 'respiration', 'systemicmean']
# set up the plot
fig, axarr = plt.subplots(len(variables), 1, sharex=True, figsize=(6.5, 9))
for patient in patients:
pat_df = read_hdf(eICU_dir + '/vitalPeriodic.h5', where='patientunitstayid = ' + str(patient), columns=['observationoffset'] + variables, mode='r')
pat_df.set_index('observationoffset', inplace=True)
pat_df.sort_index(inplace=True)
if not upto is None:
# restrict to first "upto" minutes
pat_df = pat_df.loc[0:upto*60]
for variable, ax in zip(variables, axarr):
ax.plot(pat_df.index/60, pat_df[variable], alpha=0.5)
# aesthetics
xmin, xmax = axarr[0].get_xlim()
for variable, ax in zip(variables, axarr):
ax.set_ylabel(variable)
ax.get_yaxis().set_label_coords(-0.15,0.5)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.tick_params(bottom='off')
#ax.set_facecolor((0.96, 0.96, 0.96))
ymin, ymax = ax.get_ylim()
# expand the ylim ever so slightly
yrange = np.abs(ymax - ymin)
ybuffer = yrange*0.08
ymin_new = ymin - ybuffer
ymax_new = ymax + ybuffer
for x in np.linspace(xmin, xmax - (xmax - xmin)*0.005, num=10):
ax.plot((x, x), (ymin_new, ymax_new), ls='dotted', lw=0.5, color='black', alpha=0.25, zorder=0)
ax.set_ylim(ymin_new, ymax_new)
axarr[-1].set_xlabel("time since admision (hours)")
axarr[-1].get_xaxis().tick_bottom()
if not identifier is None:
plt.suptitle(identifier)
fig.savefig('./plots/' + identifier + '.png', bbox_inches='tight')
else:
fig.savefig('./plots/eICU_patients.png', bbox_inches='tight')
plt.clf()
plt.close()
return True
def save_mnist_plot_sample(samples, idx, identifier, n_samples, labels=None):
"""
Generates a grid showing mnist digits.
"""
assert n_samples <= samples.shape[0]
if not labels is None:
assert n_samples <= len(labels)
if len(labels.shape) > 1 and not labels.shape[1] == 1:
# one-hot
label_titles = np.argmax(labels, axis=1)
else:
label_titles = labels
else:
label_titles = ['NA']*n_samples
assert n_samples % 2 == 0
img_size = int(np.sqrt(samples.shape[1]))
nrow = int(n_samples/2)
ncol = 2
fig, axarr = plt.subplots(nrow, ncol, sharex=True, figsize=(8, 8))
for m in range(nrow):
# first column
sample = samples[m, :, 0]
axarr[m, 0].imshow(sample.reshape([img_size,img_size]), cmap='gray')
axarr[m, 0].set_title(str(label_titles[m]))
# second column
sample = samples[nrow + m, :, 0]
axarr[m, 1].imshow(sample.reshape([img_size,img_size]), cmap='gray')
axarr[m, 1].set_title(str(label_titles[m + nrow]))
fig.suptitle(idx)
fig.suptitle(idx)
fig.subplots_adjust(hspace = 0.15)
fig.savefig("./experiments/plots/" + identifier + "_epoch" + str(idx).zfill(4) + ".png")
plt.clf()
plt.close()
return
def visualise_latent(Z, identifier):
"""
visualise a SINGLE point in the latent space
"""
seq_length = Z.shape[0]
latent_dim = Z.shape[1]
if latent_dim > 2:
print('WARNING: Only visualising first two dimensions of latent space.')
h = np.random.random()
colours = np.array([hsv_to_rgb((h, i/seq_length, 0.96)) for i in range(seq_length)])
# plt.plot(Z[:, 0], Z[:, 1], c='grey', alpha=0.5)
for i in range(seq_length):
plt.scatter(Z[i, 0], Z[i, 1], marker='o', c=colours[i])
plt.savefig('./experiments/plots/' + identifier + '_Z.png')
plt.clf()
plt.close()
return True
# --- to do with the model --- #
def plot_parameters(parameters, identifier):
"""
visualise the parameters of a GAN
"""
generator_out = parameters['generator/W_out_G:0']
generator_weights = parameters['generator/rnn/lstm_cell/weights:0'] # split this into four
generator_matrices = np.split(generator_weights, 4, 1)
fig, axarr = plt.subplots(5, 1, sharex=True,
gridspec_kw = {'height_ratios':[0.2, 1, 1, 1, 1]}, figsize=(3,13))
axarr[0].matshow(generator_out.T, extent=[0,100,0,100])
axarr[0].set_title('W_out_G')
axarr[1].matshow(generator_matrices[0])
axarr[1].set_title('LSTM weights (1)')
axarr[2].matshow(generator_matrices[1])
axarr[2].set_title('LSTM weights (2)')
axarr[3].matshow(generator_matrices[2])
axarr[3].set_title('LSTM weights (3)')
axarr[4].matshow(generator_matrices[3])
axarr[4].set_title('LSTM weights (4)')
for a in axarr:
a.set_xlim(0, 100)
a.set_ylim(0, 100)
a.spines["top"].set_visible(False)
a.spines["bottom"].set_visible(False)
a.spines["right"].set_visible(False)
a.spines["left"].set_visible(False)
a.get_xaxis().set_visible(False)
a.get_yaxis().set_visible(False)
# a.tick_params(bottom='off', left='off', top='off')
plt.tight_layout()
plt.savefig('./experiments/plots/' + identifier + '_weights.png')
return True
def vis_eICU_patients_downsampled(pat_arrs, time_step, time_steps_to_plot=None,
variable_names=['sao2', 'heartrate', 'respiration', 'systemicmean'],
identifier=None, idx=0):
"""
Given a list of patient dataframes, visualise the chosen variables.
(if only one patient given, only vis one patient)
"""
# set up the plot
fig, axarr = plt.subplots(len(variable_names), 1, sharex=True, figsize=(6.5, 9))
# fix the same colour for each patient for each axis
n_patients = pat_arrs.shape[0]
colours = [hsv_to_rgb((i/n_patients, 0.8, 0.8)) for i in range(n_patients)]
for (i, pat_arr) in enumerate(pat_arrs):
if not time_steps_to_plot is None:
pat_arr = pat_arr[0:time_steps_to_plot]
for col, ax in zip(range(pat_arr.shape[1]), axarr):
ax.plot(range(0, len(pat_arr)*time_step, time_step), pat_arr[:,col], alpha=0.5, color=colours[i])
# aesthetics
xmin, xmax = axarr[0].get_xlim()
for variable, ax in zip(variable_names, axarr):
ax.set_ylabel(variable)
ax.get_yaxis().set_label_coords(-0.15,0.5)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.tick_params(bottom='off')
#ax.set_facecolor((0.96, 0.96, 0.96))
ymin, ymax = ax.get_ylim()
# expand the ylim ever so slightly
yrange = np.abs(ymax - ymin)
ybuffer = yrange*0.08
ymin_new = ymin - ybuffer
ymax_new = ymax + ybuffer
for x in np.linspace(xmin, xmax - (xmax - xmin)*0.005, num=10):
ax.plot((x, x), (ymin_new, ymax_new), ls='dotted', lw=0.5, color='black', alpha=0.25, zorder=0)
#ax.set_ylim(ymin_new, ymax_new)
ax.set_ylim(-1.5, 1.5)
axarr[-1].set_xlabel("time since admision (minutes)")
axarr[-1].get_xaxis().tick_bottom()
if not identifier is None:
plt.suptitle(idx)
fig.savefig("./experiments/plots/" + identifier + "_epoch" + str(idx).zfill(4) + ".png", bbox_inches='tight')
else:
fig.savefig('./experiments/plots/eICU_patients.png', bbox_inches='tight')
plt.clf()
plt.close()
return True
### TSTR ###
def view_mnist_eval(identifier, train_X, train_Y, synth_X, synth_Y, test_X, test_Y, synth_predY, real_predY):
"""
Basically just
http://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
"""
# resize everything
side_length = int(np.sqrt(train_X.shape[1]))
train_X = train_X.reshape(-1, side_length, side_length)
synth_X = synth_X.reshape(-1, side_length, side_length)
test_X = test_X.reshape(-1, side_length, side_length)
# remember, they're wrecked in the outer function thanks to python
synth_images_and_labels = list(zip(synth_X, synth_Y))
for index, (image, label) in enumerate(synth_images_and_labels[:4]):
plt.subplot(4, 4, index + 1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
if index == 0:
plt.title('synth train: %i' % label)
else:
plt.title('%i' % label)
train_images_and_labels = list(zip(train_X, train_Y))
for index, (image, label) in enumerate(train_images_and_labels[:4]):
plt.subplot(4, 4, index + 5)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
if index == 0:
plt.title('real train: %i' % label)
else:
plt.title('%i' % label)
images_and_synthpreds = list(zip(test_X, synth_predY))
for index, (image, prediction) in enumerate(images_and_synthpreds[:4]):
plt.subplot(4, 4, index + 9)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
if index == 0:
plt.title('synth pred: %i' % prediction)
else:
plt.title('%i' % prediction)
images_and_realpreds = list(zip(test_X, real_predY))
for index, (image, prediction) in enumerate(images_and_realpreds[:4]):
plt.subplot(4, 4, index + 13)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
if index == 0:
plt.title('real pred: %i' % prediction)
else:
plt.title('%i' % prediction)
plt.tight_layout()
plt.title(identifier)
plt.savefig('./experiments/tstr/' + identifier + '_preds.png')
return True
def view_marginals_raw(data, label=''):
"""
Sort of a duplication with 'view_marginals_cristobal', this doesn't attempt to compare distributions or anything.
"""
variables = ['sao2', 'heartrate', 'respiration', 'systemicmean']
num_gradations = 25
# for cutoff in the gradations, what fraction of samples (at a given time point) fall into that cutoff bracket?
grid = np.zeros(shape=(16, num_gradations, 4))
grid = np.zeros(shape=(16, num_gradations, 4))
assert data.shape[-1] == 4
ranges = []
for var in range(4):
# allow for a different range per variable (if zoom)
low = np.min(data[:, :, var])
high = np.max(data[:, :, var])
ranges.append([low, high])
gradations = np.linspace(low, high, num_gradations)
for (i, cutoff) in enumerate(gradations):
# take the mean over samples
frac = ((data[:, :, var] > low) & (data[:, :, var] <= cutoff)).mean(axis=0)
low = cutoff
grid[:, i, var] = frac
fig, axarr = plt.subplots(nrows=4, ncols=1, sharex=True)
axarr[0].imshow(grid[:, :, 0].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[1].imshow(grid[:, :, 1].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[2].imshow(grid[:, :, 2].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[3].imshow(grid[:, :, 3].T, origin='lower', aspect=0.5, cmap='magma_r')
for (var, ax) in enumerate(axarr):
labels = np.round(np.linspace(ranges[var][0], ranges[var][1], num_gradations)[1::4], 0)
ax.set_yticks(np.arange(num_gradations)[1::4])
ax.set_yticklabels(labels)
ax.set_ylabel(variables[var])
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
ax.set_adjustable('box-forced')
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.grid(b=True, color='black', alpha=0.2, linestyle='--')
axarr[-1].set_xticks(np.arange(16)[::2])
plt.tight_layout(pad=0.0, w_pad=-5.0, h_pad=0.1)
plt.savefig("./experiments/eval/eICU_marginals_" + label + ".png")
return True
def view_marginals_cristobal(rep=0, epoch=300, zoom=False):
"""
View marginals of the synthetic data (compare to real data), from the data Cristobal generated.
"""
samples_path = paths.eICU_synthetic_dir + 'samples_eICU_cdgan_synthetic_dataset_r' + str(rep) + '_' + str(epoch) + '.pk'
samples = np.load(samples_path)
labels_path = paths.eICU_synthetic_dir + 'labels_eICU_cdgan_synthetic_dataset_r' + str(rep) + '_' + str(epoch) + '.pk'
labels = np.load(labels_path)
real_path = paths.eICU_task_data
raw_real_train = np.load(real_path).item()['X_train'].reshape(-1, 16, 4)
real_test = np.load(real_path).item()['X_test'].reshape(-1, 16, 4)
real_vali = np.load(real_path).item()['X_vali'].reshape(-1, 16, 4)
# discard vali, test
real, scaled_vali, scaled_test = scale_data(raw_real_train, real_vali, real_test)
real = raw_real_train
view_marginals_raw(raw_real_train, label='raw_real_train')
view_marginals_raw(real, label='real_train')
view_marginals_raw(samples, label='synthetic')
variables = ['sao2', 'heartrate', 'respiration', 'systemicmean']
# get the scaling factors
scaling_factors = {'a': np.zeros(shape=(16, 4)), 'b': np.zeros(shape=(16, 4))}
ranges = []
for var in range(4):
var_min = 100
var_max = 0
for timestep in range(16):
min_val = np.min([np.min(raw_real_train[:, timestep, var]), np.min(real_vali[:, timestep, var])])
max_val = np.max([np.max(raw_real_train[:, timestep, var]), np.max(real_vali[:, timestep, var])])
if min_val < var_min:
var_min = min_val
if max_val > var_max:
var_max = max_val
a = (max_val - min_val)/2
b = (max_val + min_val)/2
scaling_factors['a'][timestep, var] = a
scaling_factors['b'][timestep, var] = b
ranges.append([var_min, var_max])
# now, scale the synthetic data manually
samples_scaled = np.zeros_like(samples)
for var in range(4):
for timestep in range(16):
samples_scaled[:, timestep, var] = samples[:, timestep, var]*scaling_factors['a'][timestep, var] + scaling_factors['b'][timestep, var]
if zoom:
# use modes, skip for now
modes = False
if modes:
# get rough region of interest, then zoom in on it afterwards!
num_gradations = 5
gradations = np.linspace(-1, 1, num_gradations)
# for cutoff in the gradations, what fraction of samples (at a given time point) fall into that cutoff bracket?
lower = 0
real_grid = np.zeros(shape=(16, num_gradations, 4))
for (i, cutoff) in enumerate(gradations):
# take the mean over samples
real_frac = ((real > lower) & (real <= cutoff)).mean(axis=0)
lower = cutoff
real_grid[:, i, :] = real_frac
time_averaged_grid = np.mean(real_grid, axis=0)
# get the most populated part of the grid for each variable
grid_modes = np.argmax(time_averaged_grid, axis=0)
lower = 0
ranges = []
for i in grid_modes:
lower = gradations[i-1]
upper = gradations[i]
ranges.append([lower, upper])
else:
# hand-crafted ranges
ranges = [[88, 100], [30, 130], [7, 60], [35, 135]]
num_gradations = 25
# for cutoff in the gradations, what fraction of samples (at a given time point) fall into that cutoff bracket?
grid = np.zeros(shape=(16, num_gradations, 4))
real_grid = np.zeros(shape=(16, num_gradations, 4))
assert samples.shape[-1] == 4
for var in range(4):
# allow for a different range per variable (if zoom)
low = ranges[var][0]
high = ranges[var][1]
gradations = np.linspace(low, high, num_gradations)
for (i, cutoff) in enumerate(gradations):
# take the mean over samples
frac = ((samples_scaled[:, :, var] > low) & (samples_scaled[:, :, var] <= cutoff)).mean(axis=0)
real_frac = ((real[:, :, var] > low) & (real[:, :, var] <= cutoff)).mean(axis=0)
low = cutoff
grid[:, i, var] = frac
real_grid[:, i, var] = real_frac
# now plot this as an image
fig, axarr = plt.subplots(nrows=4, ncols=2, sharey='row', sharex=True)
axarr[0, 0].imshow(grid[:, :, 0].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[1, 0].imshow(grid[:, :, 1].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[2, 0].imshow(grid[:, :, 2].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[3, 0].imshow(grid[:, :, 3].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[0, 1].imshow(real_grid[:, :, 0].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[1, 1].imshow(real_grid[:, :, 1].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[2, 1].imshow(real_grid[:, :, 2].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[3, 1].imshow(real_grid[:, :, 3].T, origin='lower', aspect=0.5, cmap='magma_r')
axarr[0, 0].set_title("synthetic")
axarr[0, 1].set_title("real")
for var in range(4):
low, high = ranges[var]
labels = np.linspace(low, high, num_gradations)[1::4]
labels = np.round(labels, 0)
axarr[var, 0].set_yticklabels(labels)
axarr[var, 0].set_yticks(np.arange(num_gradations)[1::4])
axarr[var, 0].set_ylabel(variables[var])
for ax in axarr[var, :]:
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
ax.set_adjustable('box-forced')
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.grid(b=True, color='black', alpha=0.2, linestyle='--')
axarr[-1, 0].set_xticks(np.arange(16)[::2])
axarr[-1, 1].set_xticks(np.arange(16)[::2])
if zoom:
plt.suptitle('(zoomed)')
plt.tight_layout(pad=0.0, w_pad=-5.0, h_pad=0.1)
plt.savefig("./experiments/eval/eICU_cristobal_marginals_r" + str(rep) + "_epoch" + str(epoch) + ".png")
# now make the histograms
fig, axarr = plt.subplots(nrows=1, ncols=4)
axarr[0].set_ylabel("density")
axarr[0].hist(real[:, :, 0].flatten(), normed=True, color='black', alpha=0.8, range=ranges[0], bins=min(50, (ranges[0][1] - ranges[0][0])), label='real')
axarr[1].hist(real[:, :, 1].flatten(), normed=True, color='black', alpha=0.8, range=ranges[1], bins=50)
axarr[2].hist(real[:, :, 2].flatten(), normed=True, color='black', alpha=0.8, range=ranges[2], bins=50)
axarr[3].hist(real[:, :, 3].flatten(), normed=True, color='black', alpha=0.8, range=ranges[3], bins=50)
axarr[0].hist(samples_scaled[:, :, 0].flatten(), normed=True, alpha=0.6, range=ranges[0], bins=min(50, (ranges[0][1] - ranges[0][0])), label='synthetic')
axarr[0].legend()
axarr[1].hist(samples_scaled[:, :, 1].flatten(), normed=True, alpha=0.6, range=ranges[1], bins=50)
axarr[2].hist(samples_scaled[:, :, 2].flatten(), normed=True, alpha=0.6, range=ranges[2], bins=50)
axarr[3].hist(samples_scaled[:, :, 3].flatten(), normed=True, alpha=0.6, range=ranges[3], bins=50)
for (var, ax) in enumerate(axarr):
ax.set_xlabel(variables[var])
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.grid(b=True, color='black', alpha=0.2, linestyle='--')
plt.gcf().subplots_adjust(bottom=0.2)
fig.set_size_inches(10, 3)
plt.savefig("./experiments/eval/eICU_cristobal_hist_r" + str(rep) + "_epoch" + str(epoch) + ".png")
return True
# --- nips !!! --- #
def nips_plot_rbf(sample, index, which='train'):
if which == 'train':
# col = '#167ea0'
col = '#13af5f'
else:
col = 'black'
sample_length = len(sample)
sample = sample.reshape(sample_length)
x_points = np.arange(sample_length)
fig, axarr = plt.subplots(1, 1, figsize=(2, 2))
axarr.set_facecolor((0.95, 0.96, 0.96))
axarr.plot(x_points, sample, color=col)
axarr.set_ylim(-1.5, 1.5)
axarr.get_xaxis().set_visible(False)
axarr.get_yaxis().set_visible(False)
axarr.spines["top"].set_visible(False)
axarr.spines["bottom"].set_visible(False)
axarr.spines["right"].set_visible(False)
axarr.spines["left"].set_visible(False)
axarr.tick_params(bottom='off', left='off')
plt.savefig('./plots/NIPS_rbf_' + which + '_' + str(index) + '.png')
plt.savefig('./plots/NIPS_rbf_' + which + '_' + str(index) + '.pdf')
plt.clf()
plt.close()
return True
def nips_plot_sine(sample, index, which='train'):
if which == 'train':
#col = '#167ea0'
#col = '#13af5f'
col = '#1188ad'
else:
col = 'black'
sample_length = len(sample)
sample = sample.reshape(sample_length)
sample_length = len(sample)
sample = sample.reshape(sample_length)
x_points = np.arange(sample_length)
fig, axarr = plt.subplots(1, 1, figsize=(2, 2))
axarr.set_facecolor((0.95, 0.96, 0.96))
axarr.plot(x_points, sample, color=col)
axarr.set_ylim(-1.1, 1.1)
axarr.get_xaxis().set_visible(False)
axarr.get_yaxis().set_visible(False)
axarr.spines["top"].set_visible(False)
axarr.spines["bottom"].set_visible(False)
axarr.spines["right"].set_visible(False)
axarr.spines["left"].set_visible(False)
axarr.tick_params(bottom='off', left='off')
plt.savefig('./plots/NIPS_sine_' + which + '_' + str(index) + '.png')
plt.savefig('./plots/NIPS_sine_' + which + '_' + str(index) + '.pdf')
plt.clf()
plt.close()
return True
def nips_plot_mnist(sample, index, which='train'):
plt.axis('off')
plt.imshow(sample, cmap=plt.cm.gray, interpolation='nearest')
plt.savefig('./plots/NIPS_mnist_' + which + '_' + str(index) + '.png')
plt.savefig('./plots/NIPS_mnist_' + which + '_' + str(index) + '.pdf')
plt.clf()
plt.close()
return True