-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_data.r
274 lines (207 loc) · 8 KB
/
prepare_data.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# rmbranto 2021/08
# Demonstrate R programming lanquage 'spocc', 'scrubr' and 'ggplot2' packages to retrieve and combine
# selected invasive species occurrence data from multiple source, see also:
# https://ocean.si.edu/ocean-life/5-invasive-species-you-should-know
# https://docs.ropensci.org/spocc/
fName<-'invasives.rda'
limit<-9999
options(stringsAsFactors = FALSE)
library(spocc)
library(rinat)
library(sparsesvd)
library(scrubr)
library(stringr)
library(plyr)
library(sf)
extract<-FALSE
pNames<-c('ala','bison','gbif','eBird','idigbio','obis','VertNet')
qNames<-c('Carcinus maenas','Caulerpa taxifolia','Codium fragile','Dreissena polymorpha','Mnemiopsis leidyi','Pterois volitans','Rapana venosa')
cNames<-c('European Green Crab','Killer Algae','Dead Mans Fingers','Zebra Mussel','Sea Walnut','Lion Fish','Veined Rapa Whelk') # invasive
wikidata<-c('Q27779','Q310961','Q2712208','Q752130','Q133630','Q824672','Q139053')
sColors<-c('green','cyan','magenta','red','orange','yellow','dodgerblue')
fImages<-c('https://upload.wikimedia.org/wikipedia/commons/1/17/Carcinus_maenas.jpg',
'https://upload.wikimedia.org/wikipedia/commons/e/e7/CaulerpaTaxifolia.jpg',
'https://upload.wikimedia.org/wikipedia/commons/e/ed/Codiumfragile.jpg',
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Dreissena_polymorpha3.jpg/220px-Dreissena_polymorpha3.jpg',
'https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Sea_walnut%2C_Boston_Aquarium.jpg/220px-Sea_walnut%2C_Boston_Aquarium.jpg',
'https://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Pterois_volitans_Manado-e_edit.jpg/220px-Pterois_volitans_Manado-e_edit.jpg',
'https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Rapana_Black_Sea_2008_G1.jpg/220px-Rapana_Black_Sea_2008_G1.jpg')
species.style<-data.frame(Names=qNames,cNames=cNames,sColors=sColors,fImages=fImages,stringsAsFactors = FALSE)
write.csv(species.style,'invasives_list.csv')
qNames=species.style$Names
prov.style<-data.frame(
prov = c("UNIQUE","DUPS","ala","bison","bold","gbif","idigbio","inat","obis"),
id=c('UNI','DUP','ala','bis','bol','gbi','idi','ina','obi'),
color = c("grey", "white", "red", "orange", "yellow", "green", "cyan", "dodgerblue", "magenta"),
order=c(8,9,1:7))
if(extract){
do.extract<-function(qName=qNames[1],limit=9999){
df1<-data.frame(qName=qName,
occ2df(occ(query = qName, from=pNames, limit=limit, has_coords = TRUE)))
df2<-get_inat_obs(
query=qName,quality="research",
geo=TRUE,
maxresults=limit)
df2<-data.frame(qName=qName,
name=df2$scientific_name,
longitude=df2$longitude,
latitude=df2$latitude,
prov='inat',
date=df2$datetime,
key=df2$id)
return(rbind(df1,df2))
}
df<-NULL
for(qName in qNames){
cat(qName,'...\n')
df<-rbind(df,do.extract(qName,limit))
}
nrow(df)
table(df$qName,df$prov)
df.raw<-df
}
#load(fName) ; nrow(df.raw); names(df.raw)
#table(df.raw$prov,df.raw$qName)
# data scrubbing
df<-df.raw
names(df)[1]<-'species'
# add prov='bold'
df$prov[substr(df$name,1,4)=='BOLD']<-'bold'
# fix coordinates
df$latitude<-round(as.numeric(df$latitude),12)
df$longitude<-round(as.numeric(df$longitude),12)
df<-dframe(df) %>%
coord_impossible() %>%
coord_incomplete() %>%
coord_unlikely()
# fix dates ...
df<-df[!is.na(df$date),]
df<-df[as.character(df$date)>'1111-11-11',]
df<-df[df$date<=Sys.Date(),]
df.clean<-df
nrow(df.clean)
range(df.clean$date)
# dedup ???
if(FALSE){
dedup
smalldf<-df.clean[df.clean$species=='Pterois volitans',]
smalldf<-smalldf[1:1000,]
NROW(smalldf)
dp <- dframe(smalldf) %>% dedup()
NROW(dp)
attr(dp, "dups")
}
# find UNIQUEs and DUPS
df.agg<-aggregate(OCCS~species+longitude+latitude+prov+date,data=data.frame(df.clean,OCCS=1),sum)
df.unique<-count(df.agg,c('species','longitude','latitude','date','OCCS'))
names(df.unique)[dim(df.unique)[2]]<-'DUPS'
# save UNIQUE into df.prov
df.agg$DUPS<-1
df.unique$prov<-'UNIQUE'
df.unique<-df.unique[,c(1:3,7,4:6)]
df.prov<-rbind(df.agg,df.unique)
df.prov$year<-as.integer(substr(as.character(df.prov$date),1,4))
df.prov<-df.prov[,c(4,1,8,5,2:3,6:7)]
# save DUPS into df.prov
df.dups<-df.prov[df.prov$prov=='UNIQUE' & df.prov$DUPS>1,]
df.dups$prov<-'DUPS'
df.dups$DUPS<-df.dups$DUPS-1
df.dups$OCCS<-df.dups$DUPS*df.dups$OCCS
df.prov<-rbind(df.prov,df.dups)
xtab<-table(df.prov$species,df.prov$prov)
rbind(xtab,apply(xtab,2,sum))[,c(1:3,5:8,9,4)]
range(df.prov$date)
names(df.prov)
nrow(df.prov)
# eez and fao indexing
prov.pts<-count(df.prov,c('latitude','longitude'))[,1:2]
#eez.shp<-st_read("/home/bobbranton/geoserver/data_dir/eez/EEZ_Land_v3_202030.shp",quiet=TRUE)
eez.pts<-st_as_sf(prov.pts,coords = c('longitude','latitude'), crs = st_crs(eez.shp))
eez.intersect<-data.frame(st_intersects(eez.pts, eez.shp))
nrow(eez.intersect)
prov.pts$eez='UNK'
for(i in 1:nrow(eez.intersect)){
prov.pts$eez[eez.intersect$row.id[i]]<-eez.shp$ISO_SOV1[eez.intersect$col.id[i]]
}
#fao.shp<-st_read("/home/bobbranton/geoserver/data_dir/fao/World_Fao_Zones.shp",quiet=TRUE)
fao.pts<-st_as_sf(prov.pts,coords = c('longitude','latitude'), crs = st_crs(fao.shp))
fao.nearest<-data.frame(st_nearest_feature(fao.pts, fao.shp))
nrow(fao.nearest)
prov.pts$fao='99'
for(i in 1:nrow(fao.nearest)){
prov.pts$fao[i]<-fao.shp$zone[fao.nearest[i,1]]
}
df.prov<-merge(df.prov,prov.pts,by=c('longitude','latitude'))[,c(3:8,1:2,9:10)]
nrow(df.prov)
head(df.prov,5)
# get taxon.ids for each provider and species
prov.keys<-data.frame(species=species.style$Names)
for(my.prov in c('ala','bison','gbif','idigbio','inat','obis')){
spec.keys<-NULL
for (my.species in species.style$Names){
an.error.occured <- FALSE
tryCatch(
{
if(my.prov=='ala'){
result=as.character(
as.ala(occ(query=my.species,from='ala',limit=1))[[1]]$processed$classification$left
)
}
if(my.prov=='bison'){
result=as.character(
as.bison(occ(query=my.species,from='bison',limit=1))[[1]]$points$ITIStsn
)
}
if(my.prov=='gbif'){
result=as.character(
as.gbif(occ(query=my.species,from='gbif',limit=1, has_coords = TRUE))[[1]][[1]]$hierarchy$key[7]
)
}
if(my.prov=='idigbio'){
result=as.character(
as.idigbio(occ(query=my.species,from='idigbio',limit=1, has_coords = TRUE))[[1]]$indexTerms$taxonid
)
}
if(my.prov=='inat'){
result=as.character(
as.inat(occ(query=my.species,from='inat',limit=1, has_coords = TRUE))[[1]]$results$taxon$id
)
}
if(my.prov=='obis'){
result=as.character(
as.obis(occ(query=my.species,from='obis',limit=1))[[1]]$results$aphiaID
)
}
}
,error = function(e) {an.error.occured <<- TRUE}
)
if(an.error.occured){result<-NA}
spec.keys<<-c(spec.keys,ifelse(is.null(result),NA,result))
}
prov.keys<-cbind(prov.keys,spec.keys)
colnames(prov.keys)[ncol(prov.keys)]<-my.prov
prov.keys<<-prov.keys
}
prov.keys
library(dplyr)
# prepare expanded data
df<-df.prov%>%
transform(area=str_pad(paste(round(latitude,1),round(longitude,1)),13,'right','.'))%>%
group_by(species, prov ,year, eez, fao ,area) %>%
summarize(OCCS = sum(OCCS, na.rm = TRUE))%>%
transform(data=paste(species,prov,year,eez,fao,area,sep=';'))%>%
.[,c('data','OCCS')]
fn=tempfile("df.exp")
write(unlist(rep(df$data,df$OCCS)),fn)
df.exp<-data.frame(read.csv(fn,header=FALSE,sep=';'))
names(df.exp)<-c('species','prov','year','eez','fao','area')
# summary of expanded data ...
names(df.exp)
nrow(df.exp)
table(df.exp$species,df.exp$prov)%>%
rbind(.,total=apply(.,2,sum,na.rm=TRUE))%>%
cbind(.,total=apply(.,1,sum,na.rm=TRUE))%>%
.[,c(1:3,5:8,9,4,10)]
objects()
save(list=objects(),file=fName )
save(list=c('df.prov','species.style','fao.shp','eez.shp','prov.style','prov.keys','df.exp'),file=paste('short-',fName,sep=''))