forked from sun123zhengjun/deep-learning-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK-means.py
36 lines (34 loc) · 999 Bytes
/
K-means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#coding:utf-8
"""
python 3
sklearn 0.18
"""
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
from sklearn.datasets import load_iris
import input_data
import numpy as np
import pickle
iris = load_iris()
x = iris.data
y = iris.target
#mnist = input_data.read_data_sets('mnist/',one_hot=False)
#x = mnist.train.images
#y = mnist.train.labels
#训练一个Kmeans分类器
clf = KMeans(n_clusters=3)
clf.fit(x)
predictions = clf.predict(x)
"""
predictions = []
for i in range(1000):
if i % 100 ==0:
print('= = = = = = > > > > > >','epoch:',int(i/100))
output = clf.predict([mnist.test.images[i]])
predictions.append(output)
"""
print(confusion_matrix(y,predictions))
print(classification_report(y,np.array(predictions)))
print('test accuracy is:',accuracy_score(y,predictions))