forked from sun123zhengjun/deep-learning-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_network.py
47 lines (45 loc) · 1.58 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#coding:utf-8
"""
构造神经网络拟合数据
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#构造神经网络(正向构造)
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random.normal([in_size,out_size],mean=0,stddev=1))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
out1 = tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs = out1
else:
outputs = activation_function(out1)
#构造数据
x_data = np.linspace(-1,1,300)[:,np.newaxis] #列向量
noise = np.random.normal(0.1,0.05,x_data.shape)
y_data = np.power(x_data,3)+noise
xs = tf.placeholder(tf.float32,[None,1]) #列向量
ys = tf.placeholder(tf.float32,[None,1])
#构建模型
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
fg = plt.gigure()
ax = fg.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion() #打开交互模式
plt.show()
for i in range(5000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50:
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(0.1)