-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathui.js
216 lines (205 loc) · 10.4 KB
/
ui.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
$(window).on("load", function () {
$('[data-toggle="tooltip"]').tooltip({ delay: 500 });
function parseSamples(selector) {
let val = $(selector).val() || '';
if (val.trim().length === 0) return [];
return val.split(/[\s\n,]/).map(s => s.trim().length > 0 ? Number(s.trim()) : NaN).filter(n => n != NaN).filter(n => n >= 0);
}
function parseRisks(selector) {
const risks = [];
$(selector).find('tbody').find('.risk-row').each((_index, el) => {
const $el = $(el);
const risk = {
likelihood: $el.find("input[name='likelihood']").val(),
lowImpact: $el.find("input[name='lowImpact']").val(),
highImpact: $el.find("input[name='highImpact']").val(),
description: $el.find("input[name='description']").val(),
};
if (risk.likelihood && (risk.lowImpact || risk.highImpact)) {
if (!risk.lowImpact) risk.lowImpact = '1';
else if (!risk.highImpact) risk.highImpact = risk.lowImpact;
risk.likelihood = parseInt(risk.likelihood) || 0;
risk.lowImpact = parseInt(risk.lowImpact) || 0;
risk.highImpact = parseInt(risk.highImpact) || 0;
risks.push(risk);
}
});
return risks;
}
const $riskRowTemplate = $('#risk-row-template').clone();
function addRisk() {
const $row = $riskRowTemplate.clone();
$row.insertBefore($('#add-risk-row'));
return $row;
}
function fillRisk(risk, $row) {
$row.find("input[name='likelihood']").val(risk.likelihood);
$row.find("input[name='lowImpact']").val(risk.lowImpact);
$row.find("input[name='highImpact']").val(risk.highImpact);
$row.find("input[name='description']").val(risk.description);
}
const $probabilitiesRowTemplate = $('#probabilities').find('.probabilities-row').clone();
function addProbabilityRow() {
const $row = $probabilitiesRowTemplate.clone();
$row.insertBefore('#show-more-row');
return $row;
}
function clearProbabilities() {
$('.probabilities-row').remove();
}
function share() {
if (readSimulationData()) {
navigator.clipboard.writeText(location.href);
$('#share').popover('show');
setTimeout(() => $('#share').popover('dispose'), 5000);
}
}
let currentlyLoadedHash = null;
function readSimulationData() {
const simulationData = {
projectName: $('#projectName').val(),
numberOfSimulations: parseInt($('#numberOfSimulations').val()),
confidenceLevel: parseInt($('#confidenceLevel').val()) || 85,
tpSamples: parseSamples('#tpSamples'),
ltSamples: parseSamples('#ltSamples'),
splitRateSamples: parseSamples('#splitRateSamples'),
risks: parseRisks('#risks'),
numberOfTasks: parseInt($('#numberOfTasks').val()),
totalContributors: Number(Number($('#totalContributors').val()).toFixed(1)),
minContributors: Number(Number($('#minContributors').val()).toFixed(1)),
maxContributors: Number(Number($('#maxContributors').val()).toFixed(1)),
sCurveSize: parseInt($('#sCurveSize').val()),
startDate: $('#startDate').val() || undefined
};
if (!simulationData.tpSamples.some(n => n >= 1)) {
alert("Must have at least one weekly throughput sample greater than zero");
return false;
}
if (simulationData.splitRateSamples.length > 0 && simulationData.splitRateSamples.some(n => n > 10 || n < 0.2)) {
alert("Your split rates don't seem correct.\nFor a 10% split rate in a project, you should put '1.1', for example. Please correct before proceeding");
return false;
}
simulationData.minContributors = simulationData.minContributors || simulationData.totalContributors;
simulationData.maxContributors = simulationData.maxContributors || simulationData.totalContributors;
const hash = '#' + btoa(JSON.stringify(simulationData));
currentlyLoadedHash = hash;
location.hash = hash;
return simulationData;
}
function runSimulation() {
const simulationData = readSimulationData();
if (!simulationData) return;
loadDataFromUrl();
$('#results-main').show();
const $results = $('#results');
$results.val('');
const write = str => $results.val($results.val() + str);
$('#res-effort').val('Running...');
setTimeout(() => {
// Run the simulation
const startTime = Date.now();
const result = runMonteCarloSimulation(simulationData);
const elapsed = Date.now() - startTime;
$results.val('');
// Report the results
const confidenceLevel = simulationData.confidenceLevel;
const reportPercentile = confidenceLevel / 100;
const effort = Math.round(percentile(result.simulations.map(s => s.effortWeeks), reportPercentile, true));
const duration = Math.round(percentile(result.simulations.map(s => s.durationInCalendarWeeks), reportPercentile, true));
$('#res-summary-header').text(`Project forecast summary (with ${confidenceLevel}% of confidence):`);
$('#res-effort').val(effort);
$('#res-duration').val(duration);
let endDate = '(No start date set)';
if (simulationData.startDate) {
endDate = moment(simulationData.startDate).add(duration, 'weeks').format("MMM Do YYYY");
}
$('#res-endDate').val(endDate);
// Probabilities
clearProbabilities();
$('#show-more-row').show();
$('#show-more').show();
const addProbability = (res) => {
const comment = res.Likelihood > 80 ? 'Almost certain' : res.Likelihood > 45 ? 'Somewhat certain' : 'Less than coin-toss odds';
const style = res.Likelihood > 80 ? 'almost-certain' : res.Likelihood > 45 ? 'somewhat-certain' : 'not-certain';
const $row = addProbabilityRow();
const $cells = $row.find('td');
$cells.addClass(style);
$cells.eq(0).text(res.Likelihood + '%');
$cells.eq(1).text(res.Effort.toString());
$cells.eq(2).text(res.Duration.toString());
$cells.eq(3).text(res.TotalTasks.toString());
if (simulationData.startDate) {
$cells.eq(4).text(moment(simulationData.startDate).add(res.Duration, 'weeks').format("MMM Do YYYY"));
}
$cells.eq(5).text(comment);
}
result.resultsTable.slice(0, 9).forEach(addProbability);
$('#show-more').off('click').on('click', () => {
result.resultsTable.slice(9).forEach(addProbability);
$('#show-more').off('click').hide();
$('#show-more-row').hide();
});
drawHistogram('res-duration-histogram', result.simulations.map(s => s.durationInCalendarWeeks), confidenceLevel);
drawBurnDowns('res-burn-downs', result.burnDowns);
drawScatterPlot('res-effort-scatter-plot', result.simulations.map(s => s.effortWeeks), confidenceLevel);
write(`Project forecast summary (with ${confidenceLevel}% of confidence):\n`);
write(` - Up to ${effort} person-weeks of effort\n`);
write(` - Can be delivered in up to ${duration} calendar weeks\n`);
if (simulationData.startDate) {
write(` - Can be delivered by ${endDate}\n`);
}
write(`\n\n`);
write(`-----------------------------------------------------\n`);
write(` DETAILS\n`);
write(`-----------------------------------------------------\n`);
write(`Elapsed time: ${elapsed} ms (${Math.round(simulationData.numberOfSimulations / elapsed * 1000)} simulations per second)\n`);
write('All probabilities:\n')
write(` Likelihood\tDuration\tTasks\tEffort \tComment\n`);
for (const res of result.resultsTable) {
const comment = res.Likelihood > 80 ? 'Almost certain' : res.Likelihood > 45 ? 'Somewhat certain' : 'Less than coin-toss odds';
write(` ${res.Likelihood}% \t${res.Duration} weeks \t${res.TotalTasks}\t${res.Effort} person-weeks \t(${comment})\n`);
}
write(`\n`);
write(`Error rates:\n - Weekly throughput: ${result.tpErrorRate}%\n - Task lead-times: ${result.ltErrorRate}%\n`);
write(` (Aim to keep these below 25% by adding more sample data. (< 10% Great, < 25% Good)\n`);
write(` This is the measure of how two random groups of your sample data would align when forecasting.\n`);
write(` Anything below 25% is good, but lower is better. It grows if there is too little data\n`);
write(` and ALSO if the process changes over time and you use too much data.)\n`);
}, 100);
}
function loadDataFromUrl() {
try {
currentlyLoadedHash = location.hash;
const simulationData = JSON.parse(atob(location.hash.trim().substring(1)));
for (const name of Object.getOwnPropertyNames(simulationData)) {
const $el = $('#' + name);
if ($el.is('input,textarea')) {
$el.val(typeof (simulationData[name]) == 'Array' ? simulationData[name].join(',') : simulationData[name]);
}
}
$('#risks').find('.risk-row').remove();
if (simulationData.risks && simulationData.risks.length > 0) {
for (const risk of simulationData.risks) {
fillRisk(risk, addRisk());
}
}
return true;
} catch (error) {
console.error(error);
return false;
}
}
if (location.hash && location.hash.trim().length > 1) {
if (loadDataFromUrl()) {
runSimulation();
}
}
window.onhashchange = function () {
if (currentlyLoadedHash != location.hash) {
location.reload();
}
}
$('#addRisk').on('click', addRisk);
$('#share').on('click', share);
$('#run').on('click', runSimulation);
});