-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem_12.go
78 lines (61 loc) · 1.38 KB
/
problem_12.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
package projecteuler
/*
http://projecteuler.net/problem=12
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
*/
const PROB12_TARGET = 500
func TriangleNumbers() chan int64 {
c := make(chan int64)
go func() {
t := int64(1)
i := int64(1)
for {
c <- t
i++
t += i
}
}()
return c
}
func NumDivisors(n int64) int {
// Short-circuit special case '1'.
if n == 1 {
return 1
}
upper := n
divisors := 2
for lower := int64(2); lower < upper; lower++ {
if n%lower == 0 {
upper = n / lower
if upper == lower { // Perfect square
divisors += 1
} else {
divisors += 2
}
}
}
return divisors
}
func FirstToHaveNumDivisors(target int) (int64, bool) {
for t := range TriangleNumbers() {
divisors := NumDivisors(t)
if divisors > target {
return t, true
}
}
return 0, false
}
func Problem12() (int64, bool) {
return FirstToHaveNumDivisors(PROB12_TARGET)
}