-
Notifications
You must be signed in to change notification settings - Fork 213
/
div.rs
637 lines (577 loc) · 26.2 KB
/
div.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
//! Floating point division routines.
//!
//! This module documentation gives an overview of the method used. More documentation is inline.
//!
//! # Relevant notation
//!
//! - `m_a`: the mantissa of `a`, in base 2
//! - `p_a`: the exponent of `a`, in base 2. I.e. `a = m_a * 2^p_a`
//! - `uqN` (e.g. `uq1`): this refers to Q notation for fixed-point numbers. UQ1.31 is an unsigned
//! fixed-point number with 1 integral bit, and 31 decimal bits. A `uqN` variable of type `uM`
//! will have N bits of integer and M-N bits of fraction.
//! - `hw`: half width, i.e. for `f64` this will be a `u32`.
//! - `x` is the best estimate of `1/m_b`
//!
//! # Method Overview
//!
//! Division routines must solve for `a / b`, which is `res = m_a*2^p_a / m_b*2^p_b`. The basic
//! process is as follows:
//!
//! - Rearange the exponent and significand to simplify the operations:
//! `res = (m_a / m_b) * 2^{p_a - p_b}`.
//! - Check for early exits (infinity, zero, etc).
//! - If `a` or `b` are subnormal, normalize by shifting the mantissa and adjusting the exponent.
//! - Set the implicit bit so math is correct.
//! - Shift mantissa significant digits (with implicit bit) fully left such that fixed-point UQ1
//! or UQ0 numbers can be used for mantissa math. These will have greater precision than the
//! actual mantissa, which is important for correct rounding.
//! - Calculate the reciprocal of `m_b`, `x`.
//! - Use the reciprocal to multiply rather than divide: `res = m_a * x_b * 2^{p_a - p_b}`.
//! - Reapply rounding.
//!
//! # Reciprocal calculation
//!
//! Calculating the reciprocal is the most complicated part of this process. It uses the
//! [Newton-Raphson method], which picks an initial estimation (of the reciprocal) and performs
//! a number of iterations to increase its precision.
//!
//! In general, Newton's method takes the following form:
//!
//! ```text
//! `x_n` is a guess or the result of a previous iteration. Increasing `n` converges to the
//! desired result.
//!
//! The result approaches a zero of `f(x)` by applying a correction to the previous gues.
//!
//! x_{n+1} = x_n - f(x_n) / f'(x_n)
//! ```
//!
//! Applying this to find the reciprocal:
//!
//! ```text
//! 1 / x = b
//!
//! Rearrange so we can solve by finding a zero
//! 0 = (1 / x) - b = f(x)
//!
//! f'(x) = -x^{-2}
//!
//! x_{n+1} = 2*x_n - b*x_n^2
//! ```
//!
//! This is a process that can be repeated to calculate the reciprocal with enough precision to
//! achieve a correctly rounded result for the overall division operation. The maximum required
//! number of iterations is known since precision doubles with each iteration.
//!
//! # Half-width operations
//!
//! Calculating the reciprocal requires widening multiplication and performing arithmetic on the
//! results, meaning that emulated integer arithmetic on `u128` (for `f64`) and `u256` (for `f128`)
//! gets used instead of native math.
//!
//! To make this more efficient, all but the final operation can be computed using half-width
//! integers. For example, rather than computing four iterations using 128-bit integers for `f64`,
//! we can instead perform three iterations using native 64-bit integers and only one final
//! iteration using the full 128 bits.
//!
//! This works because of precision doubling. Some leeway is allowed here because the fixed-point
//! number has more bits than the final mantissa will.
//!
//! [Newton-Raphson method]: https://en.wikipedia.org/wiki/Newton%27s_method
use super::HalfRep;
use crate::float::Float;
use crate::int::{CastFrom, CastInto, DInt, HInt, Int, MinInt};
use core::mem::size_of;
use core::ops;
fn div<F: Float>(a: F, b: F) -> F
where
F::Int: CastInto<i32>,
F::Int: From<HalfRep<F>>,
F::Int: From<u8>,
F::Int: HInt + DInt,
<F::Int as HInt>::D: ops::Shr<u32, Output = <F::Int as HInt>::D>,
F::Int: From<u32>,
u16: CastInto<F::Int>,
i32: CastInto<F::Int>,
u32: CastInto<F::Int>,
u128: CastInto<HalfRep<F>>,
{
let one = F::Int::ONE;
let zero = F::Int::ZERO;
let one_hw = HalfRep::<F>::ONE;
let zero_hw = HalfRep::<F>::ZERO;
let hw = F::BITS / 2;
let lo_mask = F::Int::MAX >> hw;
let significand_bits = F::SIGNIFICAND_BITS;
// Saturated exponent, representing infinity
let exponent_sat: F::Int = F::EXPONENT_MAX.cast();
let exponent_bias = F::EXPONENT_BIAS;
let implicit_bit = F::IMPLICIT_BIT;
let significand_mask = F::SIGNIFICAND_MASK;
let sign_bit = F::SIGN_MASK;
let abs_mask = sign_bit - one;
let exponent_mask = F::EXPONENT_MASK;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
let (mut half_iterations, full_iterations) = get_iterations::<F>();
let recip_precision = reciprocal_precision::<F>();
if F::BITS == 128 {
// FIXME(tgross35): f128 seems to require one more half iteration than expected
half_iterations += 1;
}
let a_rep = a.repr();
let b_rep = b.repr();
// Exponent numeric representationm not accounting for bias
let a_exponent = (a_rep >> significand_bits) & exponent_sat;
let b_exponent = (b_rep >> significand_bits) & exponent_sat;
let quotient_sign = (a_rep ^ b_rep) & sign_bit;
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
// The exponent of our final result in its encoded form
let mut res_exponent: i32 =
i32::cast_from(a_exponent) - i32::cast_from(b_exponent) + (exponent_bias as i32);
// Detect if a or b is zero, denormal, infinity, or NaN.
if a_exponent.wrapping_sub(one) >= (exponent_sat - one)
|| b_exponent.wrapping_sub(one) >= (exponent_sat - one)
{
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// NaN / anything = qNaN
if a_abs > inf_rep {
return F::from_repr(a_rep | quiet_bit);
}
// anything / NaN = qNaN
if b_abs > inf_rep {
return F::from_repr(b_rep | quiet_bit);
}
if a_abs == inf_rep {
if b_abs == inf_rep {
// infinity / infinity = NaN
return F::from_repr(qnan_rep);
} else {
// infinity / anything else = +/- infinity
return F::from_repr(a_abs | quotient_sign);
}
}
// anything else / infinity = +/- 0
if b_abs == inf_rep {
return F::from_repr(quotient_sign);
}
if a_abs == zero {
if b_abs == zero {
// zero / zero = NaN
return F::from_repr(qnan_rep);
} else {
// zero / anything else = +/- zero
return F::from_repr(quotient_sign);
}
}
// anything else / zero = +/- infinity
if b_abs == zero {
return F::from_repr(inf_rep | quotient_sign);
}
// a is denormal. Renormalize it and set the scale to include the necessary exponent
// adjustment.
if a_abs < implicit_bit {
let (exponent, significand) = F::normalize(a_significand);
res_exponent += exponent;
a_significand = significand;
}
// b is denormal. Renormalize it and set the scale to include the necessary exponent
// adjustment.
if b_abs < implicit_bit {
let (exponent, significand) = F::normalize(b_significand);
res_exponent -= exponent;
b_significand = significand;
}
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
a_significand |= implicit_bit;
b_significand |= implicit_bit;
// Transform to a fixed-point representation by shifting the significand to the high bits. We
// know this is in the range [1.0, 2.0] since the implicit bit is set to 1 above.
let b_uq1 = b_significand << (F::BITS - significand_bits - 1);
// Align the significand of b as a UQ1.(n-1) fixed-point number in the range
// [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
// polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
// The max error for this approximation is achieved at endpoints, so
// abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
// which is about 4.5 bits.
// The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
//
// Then, refine the reciprocal estimate using a quadratically converging
// Newton-Raphson iteration:
// x_{n+1} = x_n * (2 - x_n * b)
//
// Let b be the original divisor considered "in infinite precision" and
// obtained from IEEE754 representation of function argument (with the
// implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
// UQ1.(W-1).
//
// Let b_hw be an infinitely precise number obtained from the highest (HW-1)
// bits of divisor significand (with the implicit bit set). Corresponds to
// half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
// version of b_UQ1.
//
// Let e_n := x_n - 1/b_hw
// E_n := x_n - 1/b
// abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
// = abs(e_n) + (b - b_hw) / (b*b_hw)
// <= abs(e_n) + 2 * 2^-HW
//
// rep_t-sized iterations may be slower than the corresponding half-width
// variant depending on the handware and whether single/double/quad precision
// is selected.
//
// NB: Using half-width iterations increases computation errors due to
// rounding, so error estimations have to be computed taking the selected
// mode into account!
let mut x_uq0 = if half_iterations > 0 {
// Starting with (n-1) half-width iterations
let b_uq1_hw: HalfRep<F> = b_uq1.hi();
// C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
// with W0 being either 16 or 32 and W0 <= HW.
// That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
// b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
let c_hw = c_hw::<F>();
// Check that the top bit is set, i.e. value is within `[1, 2)`.
debug_assert!(b_uq1_hw & one_hw << (HalfRep::<F>::BITS - 1) > zero_hw);
// b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
// so x0 fits to UQ0.HW without wrapping.
let mut x_uq0_hw: HalfRep<F> =
c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
// An e_0 error is comprised of errors due to
// * x0 being an inherently imprecise first approximation of 1/b_hw
// * C_hw being some (irrational) number **truncated** to W0 bits
// Please note that e_0 is calculated against the infinitely precise
// reciprocal of b_hw (that is, **truncated** version of b).
//
// e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
//
// By construction, 1 <= b < 2
// f(x) = x * (2 - b*x) = 2*x - b*x^2
// f'(x) = 2 * (1 - b*x)
//
// On the [0, 1] interval, f(0) = 0,
// then it increses until f(1/b) = 1 / b, maximum on (0, 1),
// then it decreses to f(1) = 2 - b
//
// Let g(x) = x - f(x) = b*x^2 - x.
// On (0, 1/b), g(x) < 0 <=> f(x) > x
// On (1/b, 1], g(x) > 0 <=> f(x) < x
//
// For half-width iterations, b_hw is used instead of b.
for _ in 0..half_iterations {
// corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
// of corr_UQ1_hw.
// "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
// On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
// no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
// expected to be strictly positive because b_UQ1_hw has its highest bit set
// and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
//
// Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
// obtaining an UQ1.(HW-1) number and proving its highest bit could be
// considered to be 0 to be able to represent it in UQ0.HW.
// From the above analysis of f(x), if corr_UQ1_hw would be represented
// without any intermediate loss of precision (that is, in twice_rep_t)
// x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
// less otherwise. On the other hand, to obtain [1.]000..., one have to pass
// 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
// to 1.0 being not representable as UQ0.HW).
// The fact corr_UQ1_hw was virtually round up (due to result of
// multiplication being **first** truncated, then negated - to improve
// error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
//
// Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
// representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
// any number of iterations, so just subtract 2 from the reciprocal
// approximation after last iteration.
//
// In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
// corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
// = 1 - e_n * b_hw + 2*eps1
// x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
// = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
// = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
// e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
// = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
// \------ >0 -------/ \-- >0 ---/
// abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
x_uq0_hw = next_guess(x_uq0_hw, b_uq1_hw);
}
// For initial half-width iterations, U = 2^-HW
// Let abs(e_n) <= u_n * U,
// then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
// u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
//
// Account for possible overflow (see above). For an overflow to occur for the
// first time, for "ideal" corr_UQ1_hw (that is, without intermediate
// truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
// value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
// be not below that value (see g(x) above), so it is safe to decrement just
// once after the final iteration. On the other hand, an effective value of
// divisor changes after this point (from b_hw to b), so adjust here.
x_uq0_hw = x_uq0_hw.wrapping_sub(one_hw);
// Error estimations for full-precision iterations are calculated just
// as above, but with U := 2^-W and taking extra decrementing into account.
// We need at least one such iteration.
//
// Simulating operations on a twice_rep_t to perform a single final full-width
// iteration. Using ad-hoc multiplication implementations to take advantage
// of particular structure of operands.
let blo: F::Int = b_uq1 & lo_mask;
// x_UQ0 = x_UQ0_hw * 2^HW - 1
// x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
//
// <--- higher half ---><--- lower half --->
// [x_UQ0_hw * b_UQ1_hw]
// + [ x_UQ0_hw * blo ]
// - [ b_UQ1 ]
// = [ result ][.... discarded ...]
let corr_uq1: F::Int = (F::Int::from(x_uq0_hw) * F::Int::from(b_uq1_hw)
+ ((F::Int::from(x_uq0_hw) * blo) >> hw))
.wrapping_sub(one)
.wrapping_neg(); // account for *possible* carry
let lo_corr: F::Int = corr_uq1 & lo_mask;
let hi_corr: F::Int = corr_uq1 >> hw;
// x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
let mut x_uq0: F::Int = ((F::Int::from(x_uq0_hw) * hi_corr) << 1)
.wrapping_add((F::Int::from(x_uq0_hw) * lo_corr) >> (hw - 1))
// 1 to account for the highest bit of corr_UQ1 can be 1
// 1 to account for possible carry
// Just like the case of half-width iterations but with possibility
// of overflowing by one extra Ulp of x_UQ0.
.wrapping_sub(F::Int::from(2u8));
x_uq0 -= one;
// ... and then traditional fixup by 2 should work
// On error estimation:
// abs(E_{N-1}) <= (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
// + (2^-HW + 2^-W))
// abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
//
// Then like for the half-width iterations:
// With 0 <= eps1, eps2 < 2^-W
// E_N = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
// abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
// abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
x_uq0
} else {
// C is (3/4 + 1/sqrt(2)) - 1 truncated to 64 fractional bits as UQ0.n
let c: F::Int = F::Int::from(0x7504F333u32) << (F::BITS - 32);
let mut x_uq0: F::Int = c.wrapping_sub(b_uq1);
// E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-64
// x_uq0
for _ in 0..full_iterations {
x_uq0 = next_guess(x_uq0, b_uq1);
}
x_uq0
};
// Finally, account for possible overflow, as explained above.
x_uq0 = x_uq0.wrapping_sub(2.cast());
// Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
x_uq0 -= recip_precision.cast();
// Now 1/b - (2*P) * 2^-W < x < 1/b
// FIXME Is x_UQ0 still >= 0.5?
let mut quotient_uq1: F::Int = x_uq0.widen_mul(a_significand << 1).hi();
// Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
// quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
// adjust it to be in [1.0, 2.0) as UQ1.SB.
let mut residual_lo = if quotient_uq1 < (implicit_bit << 1) {
// Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
// effectively doubling its value as well as its error estimation.
let residual_lo = (a_significand << (significand_bits + 1))
.wrapping_sub(quotient_uq1.wrapping_mul(b_significand));
res_exponent -= 1;
a_significand <<= 1;
residual_lo
} else {
// Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
// to UQ1.SB by right shifting by 1. Least significant bit is omitted.
quotient_uq1 >>= 1;
(a_significand << significand_bits).wrapping_sub(quotient_uq1.wrapping_mul(b_significand))
};
// drop mutability
let quotient = quotient_uq1;
// NB: residualLo is calculated above for the normal result case.
// It is re-computed on denormal path that is expected to be not so
// performance-sensitive.
//
// Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
// Each NextAfter() increments the floating point value by at least 2^-SB
// (more, if exponent was incremented).
// Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
// q
// | | * | | | | |
// <---> 2^t
// | | | | | * | |
// q
// To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
// (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
// (8*P) * 2^-W < 0.5 * 2^-SB
// P < 2^(W-4-SB)
// Generally, for at most R NextAfter() to be enough,
// P < (2*R - 1) * 2^(W-4-SB)
// For f32 (0+3): 10 < 32 (OK)
// For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
// For f64: 220 < 256 (OK)
// For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
//
// If we have overflowed the exponent, return infinity
if res_exponent >= i32::cast_from(exponent_sat) {
return F::from_repr(inf_rep | quotient_sign);
}
// Now, quotient <= the correctly-rounded result
// and may need taking NextAfter() up to 3 times (see error estimates above)
// r = a - b * q
let mut abs_result = if res_exponent > 0 {
let mut ret = quotient & significand_mask;
ret |= F::Int::from(res_exponent as u32) << significand_bits;
residual_lo <<= 1;
ret
} else {
if ((significand_bits as i32) + res_exponent) < 0 {
return F::from_repr(quotient_sign);
}
let ret = quotient.wrapping_shr(u32::cast_from(res_exponent.wrapping_neg()) + 1);
residual_lo = a_significand
.wrapping_shl(significand_bits.wrapping_add(CastInto::<u32>::cast(res_exponent)))
.wrapping_sub(ret.wrapping_mul(b_significand) << 1);
ret
};
residual_lo += abs_result & one; // tie to even
// conditionally turns the below LT comparison into LTE
abs_result += u8::from(residual_lo > b_significand).into();
if F::BITS == 128 || (F::BITS == 32 && half_iterations > 0) {
// Do not round Infinity to NaN
abs_result +=
u8::from(abs_result < inf_rep && residual_lo > (2 + 1).cast() * b_significand).into();
}
if F::BITS == 128 {
abs_result +=
u8::from(abs_result < inf_rep && residual_lo > (4 + 1).cast() * b_significand).into();
}
F::from_repr(abs_result | quotient_sign)
}
/// Calculate the number of iterations required for a float type's precision.
///
/// This returns `(h, f)` where `h` is the number of iterations to be done using integers at half
/// the float's bit width, and `f` is the number of iterations done using integers of the float's
/// full width. This is further explained in the module documentation.
///
/// # Requirements
///
/// The initial estimate should have at least 8 bits of precision. If this is not true, results
/// will be inaccurate.
const fn get_iterations<F: Float>() -> (usize, usize) {
// Precision doubles with each iteration. Assume we start with 8 bits of precision.
let total_iterations = F::BITS.ilog2() as usize - 2;
if 2 * size_of::<F>() <= size_of::<*const ()>() {
// If widening multiplication will be efficient (uses word-sized integers), there is no
// reason to use half-sized iterations.
(0, total_iterations)
} else {
// Otherwise, do as many iterations as possible at half width.
(total_iterations - 1, 1)
}
}
/// `u_n` for different precisions (with N-1 half-width iterations).
///
/// W0 is the precision of C
/// u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
///
/// Estimated with bc:
///
/// ```text
/// define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
/// define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
/// define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
/// define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
///
/// | f32 (0 + 3) | f32 (2 + 1) | f64 (3 + 1) | f128 (4 + 1)
/// u_0 | < 184224974 | < 2812.1 | < 184224974 | < 791240234244348797
/// u_1 | < 15804007 | < 242.7 | < 15804007 | < 67877681371350440
/// u_2 | < 116308 | < 2.81 | < 116308 | < 499533100252317
/// u_3 | < 7.31 | | < 7.31 | < 27054456580
/// u_4 | | | | < 80.4
/// Final (U_N) | same as u_3 | < 72 | < 218 | < 13920
/// ````
///
/// Add 2 to `U_N` due to final decrement.
const fn reciprocal_precision<F: Float>() -> u16 {
let (half_iterations, full_iterations) = get_iterations::<F>();
if full_iterations < 1 {
panic!("Must have at least one full iteration");
}
// FIXME(tgross35): calculate this programmatically
if F::BITS == 32 && half_iterations == 2 && full_iterations == 1 {
74u16
} else if F::BITS == 32 && half_iterations == 0 && full_iterations == 3 {
10
} else if F::BITS == 64 && half_iterations == 3 && full_iterations == 1 {
220
} else if F::BITS == 128 && half_iterations == 4 && full_iterations == 1 {
13922
} else {
panic!("Invalid number of iterations")
}
}
/// The value of `C` adjusted to half width.
///
/// C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW with W0 being either
/// 16 or 32 and W0 <= HW. That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from
/// which b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
fn c_hw<F: Float>() -> HalfRep<F>
where
F::Int: DInt,
u128: CastInto<HalfRep<F>>,
{
const C_U128: u128 = 0x7504f333f9de6108b2fb1366eaa6a542;
const { C_U128 >> (u128::BITS - <HalfRep<F>>::BITS) }.cast()
}
/// Perform one iteration at any width to approach `1/b`, given previous guess `x`. Returns
/// the next `x` as a UQ0 number.
///
/// This is the `x_{n+1} = 2*x_n - b*x_n^2` algorithm, implemented as `x_n * (2 - b*x_n)`. It
/// uses widening multiplication to calculate the result with necessary precision.
fn next_guess<I>(x_uq0: I, b_uq1: I) -> I
where
I: Int + HInt,
<I as HInt>::D: ops::Shr<u32, Output = <I as HInt>::D>,
{
// `corr = 2 - b*x_n`
//
// This looks like `0 - b*x_n`. However, this works - in `UQ1`, `0.0 - x = 2.0 - x`.
let corr_uq1: I = I::ZERO.wrapping_sub(x_uq0.widen_mul(b_uq1).hi());
// `x_n * corr = x_n * (2 - b*x_n)`
(x_uq0.widen_mul(corr_uq1) >> (I::BITS - 1)).lo()
}
intrinsics! {
#[avr_skip]
#[arm_aeabi_alias = __aeabi_fdiv]
pub extern "C" fn __divsf3(a: f32, b: f32) -> f32 {
div(a, b)
}
#[avr_skip]
#[arm_aeabi_alias = __aeabi_ddiv]
pub extern "C" fn __divdf3(a: f64, b: f64) -> f64 {
div(a, b)
}
#[avr_skip]
#[ppc_alias = __divkf3]
#[cfg(f128_enabled)]
pub extern "C" fn __divtf3(a: f128, b: f128) -> f128 {
div(a, b)
}
#[cfg(target_arch = "arm")]
pub extern "C" fn __divsf3vfp(a: f32, b: f32) -> f32 {
a / b
}
#[cfg(target_arch = "arm")]
pub extern "C" fn __divdf3vfp(a: f64, b: f64) -> f64 {
a / b
}
}