-
Notifications
You must be signed in to change notification settings - Fork 353
/
foreign_items.rs
483 lines (453 loc) · 19.9 KB
/
foreign_items.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
mod windows;
mod posix;
use std::{convert::TryInto, iter};
use rustc_hir::def_id::DefId;
use rustc::mir;
use rustc::ty;
use rustc::ty::layout::{Align, Size};
use rustc_apfloat::Float;
use rustc_span::symbol::sym;
use rustc_ast::attr;
use crate::*;
impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
/// Returns the minimum alignment for the target architecture for allocations of the given size.
fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
let this = self.eval_context_ref();
// List taken from `libstd/sys_common/alloc.rs`.
let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
"x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
"x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
arch => bug!("Unsupported target architecture: {}", arch),
};
// Windows always aligns, even small allocations.
// Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
// But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
if kind == MiriMemoryKind::WinHeap || size >= min_align {
return Align::from_bytes(min_align).unwrap();
}
// We have `size < min_align`. Round `size` *down* to the next power of two and use that.
fn prev_power_of_two(x: u64) -> u64 {
let next_pow2 = x.next_power_of_two();
if next_pow2 == x {
// x *is* a power of two, just use that.
x
} else {
// x is between two powers, so next = 2*prev.
next_pow2 / 2
}
}
Align::from_bytes(prev_power_of_two(size)).unwrap()
}
fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
let this = self.eval_context_mut();
if size == 0 {
Scalar::from_int(0, this.pointer_size())
} else {
let align = this.min_align(size, kind);
let ptr = this.memory.allocate(Size::from_bytes(size), align, kind.into());
if zero_init {
// We just allocated this, the access is definitely in-bounds.
this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
}
Scalar::Ptr(ptr)
}
}
fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
if !this.is_null(ptr)? {
let ptr = this.force_ptr(ptr)?;
this.memory.deallocate(ptr, None, kind.into())?;
}
Ok(())
}
fn realloc(
&mut self,
old_ptr: Scalar<Tag>,
new_size: u64,
kind: MiriMemoryKind,
) -> InterpResult<'tcx, Scalar<Tag>> {
let this = self.eval_context_mut();
let new_align = this.min_align(new_size, kind);
if this.is_null(old_ptr)? {
if new_size == 0 {
Ok(Scalar::from_int(0, this.pointer_size()))
} else {
let new_ptr =
this.memory.allocate(Size::from_bytes(new_size), new_align, kind.into());
Ok(Scalar::Ptr(new_ptr))
}
} else {
let old_ptr = this.force_ptr(old_ptr)?;
if new_size == 0 {
this.memory.deallocate(old_ptr, None, kind.into())?;
Ok(Scalar::from_int(0, this.pointer_size()))
} else {
let new_ptr = this.memory.reallocate(
old_ptr,
None,
Size::from_bytes(new_size),
new_align,
kind.into(),
)?;
Ok(Scalar::Ptr(new_ptr))
}
}
}
/// Emulates calling a foreign item, failing if the item is not supported.
/// This function will handle `goto_block` if needed.
/// Returns Ok(None) if the foreign item was completely handled
/// by this function.
/// Returns Ok(Some(body)) if processing the foreign item
/// is delegated to another function.
#[rustfmt::skip]
fn emulate_foreign_item(
&mut self,
def_id: DefId,
args: &[OpTy<'tcx, Tag>],
ret: Option<(PlaceTy<'tcx, Tag>, mir::BasicBlock)>,
_unwind: Option<mir::BasicBlock>,
) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
let this = self.eval_context_mut();
let attrs = this.tcx.get_attrs(def_id);
let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
Some(name) => name.as_str(),
None => this.tcx.item_name(def_id).as_str(),
};
// Strip linker suffixes (seen on 32-bit macOS).
let link_name = link_name.trim_end_matches("$UNIX2003");
let tcx = &{ this.tcx.tcx };
// First: functions that diverge.
let (dest, ret) = match link_name {
// Note that this matches calls to the *foreign* item `__rust_start_panic* -
// that is, calls to `extern "Rust" { fn __rust_start_panic(...) }`.
// We forward this to the underlying *implementation* in the panic runtime crate.
// Normally, this will be either `libpanic_unwind` or `libpanic_abort`, but it could
// also be a custom user-provided implementation via `#![feature(panic_runtime)]`
"__rust_start_panic" => {
// FIXME we might want to cache this... but it's not really performance-critical.
let panic_runtime = tcx
.crates()
.iter()
.find(|cnum| tcx.is_panic_runtime(**cnum))
.expect("No panic runtime found!");
let panic_runtime = tcx.crate_name(*panic_runtime);
let start_panic_instance =
this.resolve_path(&[&*panic_runtime.as_str(), "__rust_start_panic"])?;
return Ok(Some(&*this.load_mir(start_panic_instance.def, None)?));
}
// Similarly, we forward calls to the `panic_impl` foreign item to its implementation.
// The implementation is provided by the function with the `#[panic_handler]` attribute.
"panic_impl" => {
let panic_impl_id = this.tcx.lang_items().panic_impl().unwrap();
let panic_impl_instance = ty::Instance::mono(*this.tcx, panic_impl_id);
return Ok(Some(&*this.load_mir(panic_impl_instance.def, None)?));
}
| "exit"
| "ExitProcess"
=> {
// it's really u32 for ExitProcess, but we have to put it into the `Exit` variant anyway
let code = this.read_scalar(args[0])?.to_i32()?;
throw_machine_stop!(TerminationInfo::Exit(code.into()));
}
_ => {
if let Some(p) = ret {
p
} else {
throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
}
}
};
// Next: functions that return.
if this.emulate_foreign_item_by_name(link_name, args, dest, ret)? {
this.dump_place(*dest);
this.go_to_block(ret);
}
Ok(None)
}
/// Emulates calling a foreign item using its name, failing if the item is not supported.
/// Returns `true` if the caller is expected to jump to the return block, and `false` if
/// jumping has already been taken care of.
fn emulate_foreign_item_by_name(
&mut self,
link_name: &str,
args: &[OpTy<'tcx, Tag>],
dest: PlaceTy<'tcx, Tag>,
ret: mir::BasicBlock,
) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
// Here we dispatch all the shims for foreign functions. If you have a platform specific
// shim, add it to the corresponding submodule.
match link_name {
"malloc" => {
let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
this.write_scalar(res, dest)?;
}
"calloc" => {
let items = this.read_scalar(args[0])?.to_machine_usize(this)?;
let len = this.read_scalar(args[1])?.to_machine_usize(this)?;
let size =
items.checked_mul(len).ok_or_else(|| err_ub_format!("overflow during calloc size computation"))?;
let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
this.write_scalar(res, dest)?;
}
"free" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
this.free(ptr, MiriMemoryKind::C)?;
}
"realloc" => {
let old_ptr = this.read_scalar(args[0])?.not_undef()?;
let new_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
this.write_scalar(res, dest)?;
}
"__rust_alloc" => {
let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
if size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let ptr = this.memory.allocate(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::Rust.into(),
);
this.write_scalar(ptr, dest)?;
}
"__rust_alloc_zeroed" => {
let size = this.read_scalar(args[0])?.to_machine_usize(this)?;
let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
if size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let ptr = this.memory.allocate(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::Rust.into(),
);
// We just allocated this, the access is definitely in-bounds.
this.memory.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize)).unwrap();
this.write_scalar(ptr, dest)?;
}
"__rust_dealloc" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
if old_size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let ptr = this.force_ptr(ptr)?;
this.memory.deallocate(
ptr,
Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
MiriMemoryKind::Rust.into(),
)?;
}
"__rust_realloc" => {
let old_size = this.read_scalar(args[1])?.to_machine_usize(this)?;
let align = this.read_scalar(args[2])?.to_machine_usize(this)?;
let new_size = this.read_scalar(args[3])?.to_machine_usize(this)?;
if old_size == 0 || new_size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let ptr = this.force_ptr(this.read_scalar(args[0])?.not_undef()?)?;
let align = Align::from_bytes(align).unwrap();
let new_ptr = this.memory.reallocate(
ptr,
Some((Size::from_bytes(old_size), align)),
Size::from_bytes(new_size),
align,
MiriMemoryKind::Rust.into(),
)?;
this.write_scalar(new_ptr, dest)?;
}
"__rust_maybe_catch_panic" => {
this.handle_catch_panic(args, dest, ret)?;
return Ok(false);
}
"memcmp" => {
let left = this.read_scalar(args[0])?.not_undef()?;
let right = this.read_scalar(args[1])?.not_undef()?;
let n = Size::from_bytes(this.read_scalar(args[2])?.to_machine_usize(this)?);
let result = {
let left_bytes = this.memory.read_bytes(left, n)?;
let right_bytes = this.memory.read_bytes(right, n)?;
use std::cmp::Ordering::*;
match left_bytes.cmp(right_bytes) {
Less => -1i32,
Equal => 0,
Greater => 1,
}
};
this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
}
"memrchr" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let val = this.read_scalar(args[1])?.to_i32()? as u8;
let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
if let Some(idx) = this
.memory
.read_bytes(ptr, Size::from_bytes(num))?
.iter()
.rev()
.position(|&c| c == val)
{
let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
this.write_scalar(new_ptr, dest)?;
} else {
this.write_null(dest)?;
}
}
"memchr" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let val = this.read_scalar(args[1])?.to_i32()? as u8;
let num = this.read_scalar(args[2])?.to_machine_usize(this)?;
let idx = this
.memory
.read_bytes(ptr, Size::from_bytes(num))?
.iter()
.position(|&c| c == val);
if let Some(idx) = idx {
let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
this.write_scalar(new_ptr, dest)?;
} else {
this.write_null(dest)?;
}
}
"strlen" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let n = this.memory.read_c_str(ptr)?.len();
this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
}
// math functions
| "cbrtf"
| "coshf"
| "sinhf"
| "tanf"
| "acosf"
| "asinf"
| "atanf"
=> {
// FIXME: Using host floats.
let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
let f = match link_name {
"cbrtf" => f.cbrt(),
"coshf" => f.cosh(),
"sinhf" => f.sinh(),
"tanf" => f.tan(),
"acosf" => f.acos(),
"asinf" => f.asin(),
"atanf" => f.atan(),
_ => bug!(),
};
this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
}
// underscore case for windows
| "_hypotf"
| "hypotf"
| "atan2f"
=> {
// FIXME: Using host floats.
let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
let n = match link_name {
"_hypotf" | "hypotf" => f1.hypot(f2),
"atan2f" => f1.atan2(f2),
_ => bug!(),
};
this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
}
| "cbrt"
| "cosh"
| "sinh"
| "tan"
| "acos"
| "asin"
| "atan"
=> {
// FIXME: Using host floats.
let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
let f = match link_name {
"cbrt" => f.cbrt(),
"cosh" => f.cosh(),
"sinh" => f.sinh(),
"tan" => f.tan(),
"acos" => f.acos(),
"asin" => f.asin(),
"atan" => f.atan(),
_ => bug!(),
};
this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
}
// underscore case for windows, here and below
// (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
| "_hypot"
| "hypot"
| "atan2"
=> {
// FIXME: Using host floats.
let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
let n = match link_name {
"_hypot" | "hypot" => f1.hypot(f2),
"atan2" => f1.atan2(f2),
_ => bug!(),
};
this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
}
// For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
| "_ldexp"
| "ldexp"
| "scalbn"
=> {
let x = this.read_scalar(args[0])?.to_f64()?;
let exp = this.read_scalar(args[1])?.to_i32()?;
// Saturating cast to i16. Even those are outside the valid exponent range to
// `scalbn` below will do its over/underflow handling.
let exp = if exp > i16::MAX as i32 {
i16::MAX
} else if exp < i16::MIN as i32 {
i16::MIN
} else {
exp.try_into().unwrap()
};
let res = x.scalbn(exp);
this.write_scalar(Scalar::from_f64(res), dest)?;
}
_ => match this.tcx.sess.target.target.target_os.as_str() {
"linux" | "macos" => return posix::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
"windows" => return windows::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
target => throw_unsup_format!("The {} target platform is not supported", target),
}
};
Ok(true)
}
/// Evaluates the scalar at the specified path. Returns Some(val)
/// if the path could be resolved, and None otherwise
fn eval_path_scalar(
&mut self,
path: &[&str],
) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
let this = self.eval_context_mut();
if let Ok(instance) = this.resolve_path(path) {
let cid = GlobalId { instance, promoted: None };
let const_val = this.const_eval_raw(cid)?;
let const_val = this.read_scalar(const_val.into())?;
return Ok(Some(const_val));
}
return Ok(None);
}
}