-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
f32.rs
1296 lines (1218 loc) · 48.4 KB
/
f32.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Constants specific to the `f32` single-precision floating point type.
//!
//! *[See also the `f32` primitive type][f32].*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f32` type.
#![stable(feature = "rust1", since = "1.0.0")]
use crate::convert::FloatToInt;
#[cfg(not(test))]
use crate::intrinsics;
use crate::mem;
use crate::num::FpCategory;
/// The radix or base of the internal representation of `f32`.
/// Use [`f32::RADIX`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let r = std::f32::RADIX;
///
/// // intended way
/// let r = f32::RADIX;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f32`")]
pub const RADIX: u32 = f32::RADIX;
/// Number of significant digits in base 2.
/// Use [`f32::MANTISSA_DIGITS`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let d = std::f32::MANTISSA_DIGITS;
///
/// // intended way
/// let d = f32::MANTISSA_DIGITS;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(
since = "TBD",
note = "replaced by the `MANTISSA_DIGITS` associated constant on `f32`"
)]
pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS;
/// Approximate number of significant digits in base 10.
/// Use [`f32::DIGITS`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let d = std::f32::DIGITS;
///
/// // intended way
/// let d = f32::DIGITS;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f32`")]
pub const DIGITS: u32 = f32::DIGITS;
/// [Machine epsilon] value for `f32`.
/// Use [`f32::EPSILON`] instead.
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let e = std::f32::EPSILON;
///
/// // intended way
/// let e = f32::EPSILON;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f32`")]
pub const EPSILON: f32 = f32::EPSILON;
/// Smallest finite `f32` value.
/// Use [`f32::MIN`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN;
///
/// // intended way
/// let min = f32::MIN;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f32`")]
pub const MIN: f32 = f32::MIN;
/// Smallest positive normal `f32` value.
/// Use [`f32::MIN_POSITIVE`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_POSITIVE;
///
/// // intended way
/// let min = f32::MIN_POSITIVE;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f32`")]
pub const MIN_POSITIVE: f32 = f32::MIN_POSITIVE;
/// Largest finite `f32` value.
/// Use [`f32::MAX`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX;
///
/// // intended way
/// let max = f32::MAX;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f32`")]
pub const MAX: f32 = f32::MAX;
/// One greater than the minimum possible normal power of 2 exponent.
/// Use [`f32::MIN_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_EXP;
///
/// // intended way
/// let min = f32::MIN_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f32`")]
pub const MIN_EXP: i32 = f32::MIN_EXP;
/// Maximum possible power of 2 exponent.
/// Use [`f32::MAX_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX_EXP;
///
/// // intended way
/// let max = f32::MAX_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f32`")]
pub const MAX_EXP: i32 = f32::MAX_EXP;
/// Minimum possible normal power of 10 exponent.
/// Use [`f32::MIN_10_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_10_EXP;
///
/// // intended way
/// let min = f32::MIN_10_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f32`")]
pub const MIN_10_EXP: i32 = f32::MIN_10_EXP;
/// Maximum possible power of 10 exponent.
/// Use [`f32::MAX_10_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX_10_EXP;
///
/// // intended way
/// let max = f32::MAX_10_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f32`")]
pub const MAX_10_EXP: i32 = f32::MAX_10_EXP;
/// Not a Number (NaN).
/// Use [`f32::NAN`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let nan = std::f32::NAN;
///
/// // intended way
/// let nan = f32::NAN;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f32`")]
pub const NAN: f32 = f32::NAN;
/// Infinity (∞).
/// Use [`f32::INFINITY`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let inf = std::f32::INFINITY;
///
/// // intended way
/// let inf = f32::INFINITY;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f32`")]
pub const INFINITY: f32 = f32::INFINITY;
/// Negative infinity (−∞).
/// Use [`f32::NEG_INFINITY`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let ninf = std::f32::NEG_INFINITY;
///
/// // intended way
/// let ninf = f32::NEG_INFINITY;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f32`")]
pub const NEG_INFINITY: f32 = f32::NEG_INFINITY;
/// Basic mathematical constants.
#[stable(feature = "rust1", since = "1.0.0")]
pub mod consts {
// FIXME: replace with mathematical constants from cmath.
/// Archimedes' constant (π)
#[stable(feature = "rust1", since = "1.0.0")]
pub const PI: f32 = 3.14159265358979323846264338327950288_f32;
/// The full circle constant (τ)
///
/// Equal to 2π.
#[stable(feature = "tau_constant", since = "1.47.0")]
pub const TAU: f32 = 6.28318530717958647692528676655900577_f32;
/// π/2
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;
/// π/3
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;
/// π/4
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;
/// π/6
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;
/// π/8
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;
/// 1/π
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;
/// 2/π
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;
/// 2/sqrt(π)
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32;
/// sqrt(2)
#[stable(feature = "rust1", since = "1.0.0")]
pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32;
/// 1/sqrt(2)
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32;
/// Euler's number (e)
#[stable(feature = "rust1", since = "1.0.0")]
pub const E: f32 = 2.71828182845904523536028747135266250_f32;
/// log<sub>2</sub>(e)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;
/// log<sub>2</sub>(10)
#[stable(feature = "extra_log_consts", since = "1.43.0")]
pub const LOG2_10: f32 = 3.32192809488736234787031942948939018_f32;
/// log<sub>10</sub>(e)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;
/// log<sub>10</sub>(2)
#[stable(feature = "extra_log_consts", since = "1.43.0")]
pub const LOG10_2: f32 = 0.301029995663981195213738894724493027_f32;
/// ln(2)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32;
/// ln(10)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32;
}
#[cfg(not(test))]
impl f32 {
/// The radix or base of the internal representation of `f32`.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const RADIX: u32 = 2;
/// Number of significant digits in base 2.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MANTISSA_DIGITS: u32 = 24;
/// Approximate number of significant digits in base 10.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const DIGITS: u32 = 6;
/// [Machine epsilon] value for `f32`.
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const EPSILON: f32 = 1.19209290e-07_f32;
/// Smallest finite `f32` value.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN: f32 = -3.40282347e+38_f32;
/// Smallest positive normal `f32` value.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
/// Largest finite `f32` value.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX: f32 = 3.40282347e+38_f32;
/// One greater than the minimum possible normal power of 2 exponent.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_EXP: i32 = -125;
/// Maximum possible power of 2 exponent.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_EXP: i32 = 128;
/// Minimum possible normal power of 10 exponent.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_10_EXP: i32 = -37;
/// Maximum possible power of 10 exponent.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_10_EXP: i32 = 38;
/// Not a Number (NaN).
///
/// Note that IEEE-745 doesn't define just a single NaN value;
/// a plethora of bit patterns are considered to be NaN.
/// Furthermore, the standard makes a difference
/// between a "signaling" and a "quiet" NaN,
/// and allows inspecting its "payload" (the unspecified bits in the bit pattern).
/// This constant isn't guaranteed to equal to any specific NaN bitpattern,
/// and the stability of its representation over Rust versions
/// and target platforms isn't guaranteed.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const NAN: f32 = 0.0_f32 / 0.0_f32;
/// Infinity (∞).
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const INFINITY: f32 = 1.0_f32 / 0.0_f32;
/// Negative infinity (−∞).
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32;
/// Returns `true` if this value is NaN.
///
/// ```
/// let nan = f32::NAN;
/// let f = 7.0_f32;
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_nan(self) -> bool {
self != self
}
// FIXME(#50145): `abs` is publicly unavailable in libcore due to
// concerns about portability, so this implementation is for
// private use internally.
#[inline]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
pub(crate) const fn abs_private(self) -> f32 {
// SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
unsafe { mem::transmute::<u32, f32>(mem::transmute::<f32, u32>(self) & 0x7fff_ffff) }
}
/// Returns `true` if this value is positive infinity or negative infinity, and
/// `false` otherwise.
///
/// ```
/// let f = 7.0f32;
/// let inf = f32::INFINITY;
/// let neg_inf = f32::NEG_INFINITY;
/// let nan = f32::NAN;
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_infinite(self) -> bool {
// Getting clever with transmutation can result in incorrect answers on some FPUs
// FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
// See https://github.com/rust-lang/rust/issues/72327
(self == f32::INFINITY) | (self == f32::NEG_INFINITY)
}
/// Returns `true` if this number is neither infinite nor NaN.
///
/// ```
/// let f = 7.0f32;
/// let inf = f32::INFINITY;
/// let neg_inf = f32::NEG_INFINITY;
/// let nan = f32::NAN;
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_finite(self) -> bool {
// There's no need to handle NaN separately: if self is NaN,
// the comparison is not true, exactly as desired.
self.abs_private() < Self::INFINITY
}
/// Returns `true` if the number is [subnormal].
///
/// ```
/// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
/// let max = f32::MAX;
/// let lower_than_min = 1.0e-40_f32;
/// let zero = 0.0_f32;
///
/// assert!(!min.is_subnormal());
/// assert!(!max.is_subnormal());
///
/// assert!(!zero.is_subnormal());
/// assert!(!f32::NAN.is_subnormal());
/// assert!(!f32::INFINITY.is_subnormal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(lower_than_min.is_subnormal());
/// ```
/// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
#[must_use]
#[stable(feature = "is_subnormal", since = "1.53.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_subnormal(self) -> bool {
matches!(self.classify(), FpCategory::Subnormal)
}
/// Returns `true` if the number is neither zero, infinite,
/// [subnormal], or NaN.
///
/// ```
/// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
/// let max = f32::MAX;
/// let lower_than_min = 1.0e-40_f32;
/// let zero = 0.0_f32;
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!f32::NAN.is_normal());
/// assert!(!f32::INFINITY.is_normal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(!lower_than_min.is_normal());
/// ```
/// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_normal(self) -> bool {
matches!(self.classify(), FpCategory::Normal)
}
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// ```
/// use std::num::FpCategory;
///
/// let num = 12.4_f32;
/// let inf = f32::INFINITY;
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
pub const fn classify(self) -> FpCategory {
// A previous implementation tried to only use bitmask-based checks,
// using f32::to_bits to transmute the float to its bit repr and match on that.
// Unfortunately, floating point numbers can be much worse than that.
// This also needs to not result in recursive evaluations of f64::to_bits.
//
// On some processors, in some cases, LLVM will "helpfully" lower floating point ops,
// in spite of a request for them using f32 and f64, to things like x87 operations.
// These have an f64's mantissa, but can have a larger than normal exponent.
// FIXME(jubilee): Using x87 operations is never necessary in order to function
// on x86 processors for Rust-to-Rust calls, so this issue should not happen.
// Code generation should be adjusted to use non-C calling conventions, avoiding this.
//
if self.is_infinite() {
// Thus, a value may compare unequal to infinity, despite having a "full" exponent mask.
FpCategory::Infinite
} else if self.is_nan() {
// And it may not be NaN, as it can simply be an "overextended" finite value.
FpCategory::Nan
} else {
// However, std can't simply compare to zero to check for zero, either,
// as correctness requires avoiding equality tests that may be Subnormal == -0.0
// because it may be wrong under "denormals are zero" and "flush to zero" modes.
// Most of std's targets don't use those, but they are used for thumbv7neon.
// So, this does use bitpattern matching for the rest.
// SAFETY: f32 to u32 is fine. Usually.
// If classify has gotten this far, the value is definitely in one of these categories.
unsafe { f32::partial_classify(self) }
}
}
// This doesn't actually return a right answer for NaN on purpose,
// seeing as how it cannot correctly discern between a floating point NaN,
// and some normal floating point numbers truncated from an x87 FPU.
// FIXME(jubilee): This probably could at least answer things correctly for Infinity,
// like the f64 version does, but I need to run more checks on how things go on x86.
// I fear losing mantissa data that would have answered that differently.
//
// # Safety
// This requires making sure you call this function for values it answers correctly on,
// otherwise it returns a wrong answer. This is not important for memory safety per se,
// but getting floats correct is important for not accidentally leaking const eval
// runtime-deviating logic which may or may not be acceptable.
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
const unsafe fn partial_classify(self) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;
// SAFETY: The caller is not asking questions for which this will tell lies.
let b = unsafe { mem::transmute::<f32, u32>(self) };
match (b & MAN_MASK, b & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
_ => FpCategory::Normal,
}
}
// This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
// FIXME(jubilee): In a just world, this would be the entire impl for classify,
// plus a transmute. We do not live in a just world, but we can make it more so.
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
const fn classify_bits(b: u32) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;
match (b & MAN_MASK, b & EXP_MASK) {
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
_ => FpCategory::Normal,
}
}
/// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
/// positive sign bit and positive infinity. Note that IEEE-745 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
/// See [explanation of NaN as a special value](f32) for more info.
///
/// ```
/// let f = 7.0_f32;
/// let g = -7.0_f32;
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_sign_positive(self) -> bool {
!self.is_sign_negative()
}
/// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
/// negative sign bit and negative infinity. Note that IEEE-745 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
/// See [explanation of NaN as a special value](f32) for more info.
///
/// ```
/// let f = 7.0f32;
/// let g = -7.0f32;
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_sign_negative(self) -> bool {
// IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
// applies to zeros and NaNs as well.
// SAFETY: This is just transmuting to get the sign bit, it's fine.
unsafe { mem::transmute::<f32, u32>(self) & 0x8000_0000 != 0 }
}
/// Takes the reciprocal (inverse) of a number, `1/x`.
///
/// ```
/// let x = 2.0_f32;
/// let abs_difference = (x.recip() - (1.0 / x)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[must_use = "this returns the result of the operation, without modifying the original"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn recip(self) -> f32 {
1.0 / self
}
/// Converts radians to degrees.
///
/// ```
/// let angle = std::f32::consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
#[inline]
pub fn to_degrees(self) -> f32 {
// Use a constant for better precision.
const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
self * PIS_IN_180
}
/// Converts degrees to radians.
///
/// ```
/// let angle = 180.0f32;
///
/// let abs_difference = (angle.to_radians() - std::f32::consts::PI).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
#[inline]
pub fn to_radians(self) -> f32 {
let value: f32 = consts::PI;
self * (value / 180.0f32)
}
/// Returns the maximum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
/// This follows the IEEE-754 2008 semantics for maxNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
/// This also matches the behavior of libm’s fmax.
///
/// ```
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.max(y), y);
/// ```
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn max(self, other: f32) -> f32 {
intrinsics::maxnumf32(self, other)
}
/// Returns the minimum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
/// This follows the IEEE-754 2008 semantics for minNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids minNum's problems with associativity.
/// This also matches the behavior of libm’s fmin.
///
/// ```
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.min(y), x);
/// ```
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn min(self, other: f32) -> f32 {
intrinsics::minnumf32(self, other)
}
/// Returns the maximum of the two numbers, propagating NaN.
///
/// This returns NaN when *either* argument is NaN, as opposed to
/// [`f32::max`] which only returns NaN when *both* arguments are NaN.
///
/// ```
/// #![feature(float_minimum_maximum)]
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.maximum(y), y);
/// assert!(x.maximum(f32::NAN).is_nan());
/// ```
///
/// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
/// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
/// Note that this follows the semantics specified in IEEE 754-2019.
///
/// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
/// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[unstable(feature = "float_minimum_maximum", issue = "91079")]
#[inline]
pub fn maximum(self, other: f32) -> f32 {
if self > other {
self
} else if other > self {
other
} else if self == other {
if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
} else {
self + other
}
}
/// Returns the minimum of the two numbers, propagating NaN.
///
/// This returns NaN when *either* argument is NaN, as opposed to
/// [`f32::min`] which only returns NaN when *both* arguments are NaN.
///
/// ```
/// #![feature(float_minimum_maximum)]
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.minimum(y), x);
/// assert!(x.minimum(f32::NAN).is_nan());
/// ```
///
/// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
/// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
/// Note that this follows the semantics specified in IEEE 754-2019.
///
/// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
/// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[unstable(feature = "float_minimum_maximum", issue = "91079")]
#[inline]
pub fn minimum(self, other: f32) -> f32 {
if self < other {
self
} else if other < self {
other
} else if self == other {
if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
} else {
self + other
}
}
/// Rounds toward zero and converts to any primitive integer type,
/// assuming that the value is finite and fits in that type.
///
/// ```
/// let value = 4.6_f32;
/// let rounded = unsafe { value.to_int_unchecked::<u16>() };
/// assert_eq!(rounded, 4);
///
/// let value = -128.9_f32;
/// let rounded = unsafe { value.to_int_unchecked::<i8>() };
/// assert_eq!(rounded, i8::MIN);
/// ```
///
/// # Safety
///
/// The value must:
///
/// * Not be `NaN`
/// * Not be infinite
/// * Be representable in the return type `Int`, after truncating off its fractional part
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
#[inline]
pub unsafe fn to_int_unchecked<Int>(self) -> Int
where
Self: FloatToInt<Int>,
{
// SAFETY: the caller must uphold the safety contract for
// `FloatToInt::to_int_unchecked`.
unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
}
/// Raw transmutation to `u32`.
///
/// This is currently identical to `transmute::<f32, u32>(self)` on all platforms.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
///
/// # Examples
///
/// ```
/// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting!
/// assert_eq!((12.5f32).to_bits(), 0x41480000);
///
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "float_bits_conv", since = "1.20.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[inline]
pub const fn to_bits(self) -> u32 {
// SAFETY: `u32` is a plain old datatype so we can always transmute to it.
// ...sorta.
//
// It turns out that at runtime, it is possible for a floating point number
// to be subject to a floating point mode that alters nonzero subnormal numbers
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
// This is not a problem per se, but at least one tier2 platform for Rust
// actually exhibits this behavior by default.
//
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
// i.e. not soft-float, the way Rust does parameter passing can actually alter
// a number that is "not infinity" to have the same exponent as infinity,
// in a slightly unpredictable manner.
//
// And, of course evaluating to a NaN value is fairly nondeterministic.
// More precisely: when NaN should be returned is knowable, but which NaN?
// So far that's defined by a combination of LLVM and the CPU, not Rust.
// This function, however, allows observing the bitstring of a NaN,
// thus introspection on CTFE.
//
// In order to preserve, at least for the moment, const-to-runtime equivalence,
// we reject any of these possible situations from happening.
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
const fn ct_f32_to_u32(ct: f32) -> u32 {
match ct.classify() {
FpCategory::Nan => {
panic!("const-eval error: cannot use f32::to_bits on a NaN")
}
FpCategory::Subnormal => {
panic!("const-eval error: cannot use f32::to_bits on a subnormal number")
}
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
// SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy.
unsafe { mem::transmute::<f32, u32>(ct) }
}
}
}
// SAFETY: `u32` is a plain old datatype so we can always... uh...
// ...look, just pretend you forgot what you just read.
// Stability concerns.
let rt_f32_to_u32 = |rt| unsafe { mem::transmute::<f32, u32>(rt) };
// SAFETY: We use internal implementations that either always work or fail at compile time.
unsafe { intrinsics::const_eval_select((self,), ct_f32_to_u32, rt_f32_to_u32) }
}
/// Raw transmutation from `u32`.
///
/// This is currently identical to `transmute::<u32, f32>(v)` on all platforms.
/// It turns out this is incredibly portable, for two reasons:
///
/// * Floats and Ints have the same endianness on all supported platforms.
/// * IEEE-754 very precisely specifies the bit layout of floats.
///
/// However there is one caveat: prior to the 2008 version of IEEE-754, how
/// to interpret the NaN signaling bit wasn't actually specified. Most platforms
/// (notably x86 and ARM) picked the interpretation that was ultimately
/// standardized in 2008, but some didn't (notably MIPS). As a result, all
/// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
///
/// Rather than trying to preserve signaling-ness cross-platform, this
/// implementation favors preserving the exact bits. This means that
/// any payloads encoded in NaNs will be preserved even if the result of
/// this method is sent over the network from an x86 machine to a MIPS one.
///
/// If the results of this method are only manipulated by the same
/// architecture that produced them, then there is no portability concern.
///
/// If the input isn't NaN, then there is no portability concern.
///
/// If you don't care about signalingness (very likely), then there is no
/// portability concern.
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
///
/// # Examples
///
/// ```
/// let v = f32::from_bits(0x41480000);
/// assert_eq!(v, 12.5);
/// ```
#[stable(feature = "float_bits_conv", since = "1.20.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[must_use]
#[inline]
pub const fn from_bits(v: u32) -> Self {
// It turns out the safety issues with sNaN were overblown! Hooray!
// SAFETY: `u32` is a plain old datatype so we can always transmute from it
// ...sorta.
//
// It turns out that at runtime, it is possible for a floating point number
// to be subject to floating point modes that alter nonzero subnormal numbers
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
// This is not a problem usually, but at least one tier2 platform for Rust
// actually exhibits this behavior by default: thumbv7neon
// aka "the Neon FPU in AArch32 state"
//
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
// i.e. not soft-float, the way Rust does parameter passing can actually alter
// a number that is "not infinity" to have the same exponent as infinity,
// in a slightly unpredictable manner.
//