-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
collector.rs
1413 lines (1288 loc) · 55.6 KB
/
collector.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Mono Item Collection
//! ====================
//!
//! This module is responsible for discovering all items that will contribute
//! to code generation of the crate. The important part here is that it not only
//! needs to find syntax-level items (functions, structs, etc) but also all
//! their monomorphized instantiations. Every non-generic, non-const function
//! maps to one LLVM artifact. Every generic function can produce
//! from zero to N artifacts, depending on the sets of type arguments it
//! is instantiated with.
//! This also applies to generic items from other crates: A generic definition
//! in crate X might produce monomorphizations that are compiled into crate Y.
//! We also have to collect these here.
//!
//! The following kinds of "mono items" are handled here:
//!
//! - Functions
//! - Methods
//! - Closures
//! - Statics
//! - Drop glue
//!
//! The following things also result in LLVM artifacts, but are not collected
//! here, since we instantiate them locally on demand when needed in a given
//! codegen unit:
//!
//! - Constants
//! - Vtables
//! - Object Shims
//!
//!
//! General Algorithm
//! -----------------
//! Let's define some terms first:
//!
//! - A "mono item" is something that results in a function or global in
//! the LLVM IR of a codegen unit. Mono items do not stand on their
//! own, they can reference other mono items. For example, if function
//! `foo()` calls function `bar()` then the mono item for `foo()`
//! references the mono item for function `bar()`. In general, the
//! definition for mono item A referencing a mono item B is that
//! the LLVM artifact produced for A references the LLVM artifact produced
//! for B.
//!
//! - Mono items and the references between them form a directed graph,
//! where the mono items are the nodes and references form the edges.
//! Let's call this graph the "mono item graph".
//!
//! - The mono item graph for a program contains all mono items
//! that are needed in order to produce the complete LLVM IR of the program.
//!
//! The purpose of the algorithm implemented in this module is to build the
//! mono item graph for the current crate. It runs in two phases:
//!
//! 1. Discover the roots of the graph by traversing the HIR of the crate.
//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
//! representation of the item corresponding to a given node, until no more
//! new nodes are found.
//!
//! ### Discovering roots
//!
//! The roots of the mono item graph correspond to the public non-generic
//! syntactic items in the source code. We find them by walking the HIR of the
//! crate, and whenever we hit upon a public function, method, or static item,
//! we create a mono item consisting of the items DefId and, since we only
//! consider non-generic items, an empty type-substitution set. (In eager
//! collection mode, during incremental compilation, all non-generic functions
//! are considered as roots, as well as when the `-Clink-dead-code` option is
//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
//! functions also always act as roots.)
//!
//! ### Finding neighbor nodes
//! Given a mono item node, we can discover neighbors by inspecting its
//! MIR. We walk the MIR and any time we hit upon something that signifies a
//! reference to another mono item, we have found a neighbor. Since the
//! mono item we are currently at is always monomorphic, we also know the
//! concrete type arguments of its neighbors, and so all neighbors again will be
//! monomorphic. The specific forms a reference to a neighboring node can take
//! in MIR are quite diverse. Here is an overview:
//!
//! #### Calling Functions/Methods
//! The most obvious form of one mono item referencing another is a
//! function or method call (represented by a CALL terminator in MIR). But
//! calls are not the only thing that might introduce a reference between two
//! function mono items, and as we will see below, they are just a
//! specialization of the form described next, and consequently will not get any
//! special treatment in the algorithm.
//!
//! #### Taking a reference to a function or method
//! A function does not need to actually be called in order to be a neighbor of
//! another function. It suffices to just take a reference in order to introduce
//! an edge. Consider the following example:
//!
//! ```rust
//! fn print_val<T: Display>(x: T) {
//! println!("{}", x);
//! }
//!
//! fn call_fn(f: &Fn(i32), x: i32) {
//! f(x);
//! }
//!
//! fn main() {
//! let print_i32 = print_val::<i32>;
//! call_fn(&print_i32, 0);
//! }
//! ```
//! The MIR of none of these functions will contain an explicit call to
//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
//! an instance of this function. Thus, whenever we encounter a function or
//! method in operand position, we treat it as a neighbor of the current
//! mono item. Calls are just a special case of that.
//!
//! #### Closures
//! In a way, closures are a simple case. Since every closure object needs to be
//! constructed somewhere, we can reliably discover them by observing
//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
//! true for closures inlined from other crates.
//!
//! #### Drop glue
//! Drop glue mono items are introduced by MIR drop-statements. The
//! generated mono item will again have drop-glue item neighbors if the
//! type to be dropped contains nested values that also need to be dropped. It
//! might also have a function item neighbor for the explicit `Drop::drop`
//! implementation of its type.
//!
//! #### Unsizing Casts
//! A subtle way of introducing neighbor edges is by casting to a trait object.
//! Since the resulting fat-pointer contains a reference to a vtable, we need to
//! instantiate all object-save methods of the trait, as we need to store
//! pointers to these functions even if they never get called anywhere. This can
//! be seen as a special case of taking a function reference.
//!
//! #### Boxes
//! Since `Box` expression have special compiler support, no explicit calls to
//! `exchange_malloc()` and `box_free()` may show up in MIR, even if the
//! compiler will generate them. We have to observe `Rvalue::Box` expressions
//! and Box-typed drop-statements for that purpose.
//!
//!
//! Interaction with Cross-Crate Inlining
//! -------------------------------------
//! The binary of a crate will not only contain machine code for the items
//! defined in the source code of that crate. It will also contain monomorphic
//! instantiations of any extern generic functions and of functions marked with
//! `#[inline]`.
//! The collection algorithm handles this more or less mono. If it is
//! about to create a mono item for something with an external `DefId`,
//! it will take a look if the MIR for that item is available, and if so just
//! proceed normally. If the MIR is not available, it assumes that the item is
//! just linked to and no node is created; which is exactly what we want, since
//! no machine code should be generated in the current crate for such an item.
//!
//! Eager and Lazy Collection Mode
//! ------------------------------
//! Mono item collection can be performed in one of two modes:
//!
//! - Lazy mode means that items will only be instantiated when actually
//! referenced. The goal is to produce the least amount of machine code
//! possible.
//!
//! - Eager mode is meant to be used in conjunction with incremental compilation
//! where a stable set of mono items is more important than a minimal
//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
//! in the crate, even if no drop call for that type exists (yet). It will
//! also instantiate default implementations of trait methods, something that
//! otherwise is only done on demand.
//!
//!
//! Open Issues
//! -----------
//! Some things are not yet fully implemented in the current version of this
//! module.
//!
//! ### Const Fns
//! Ideally, no mono item should be generated for const fns unless there
//! is a call to them that cannot be evaluated at compile time. At the moment
//! this is not implemented however: a mono item will be produced
//! regardless of whether it is actually needed or not.
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::{par_iter, MTLock, MTRef, ParallelIterator};
use rustc_errors::{ErrorReported, FatalError};
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId, LOCAL_CRATE};
use rustc_hir::itemlikevisit::ItemLikeVisitor;
use rustc_hir::lang_items::LangItem;
use rustc_index::bit_set::GrowableBitSet;
use rustc_middle::mir::interpret::{AllocId, ConstValue};
use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar};
use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
use rustc_middle::mir::visit::Visitor as MirVisitor;
use rustc_middle::mir::{self, Local, Location};
use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
use rustc_middle::ty::{self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, VtblEntry};
use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext};
use rustc_session::config::EntryFnType;
use rustc_session::lint::builtin::LARGE_ASSIGNMENTS;
use rustc_session::Limit;
use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
use rustc_target::abi::Size;
use smallvec::SmallVec;
use std::iter;
use std::ops::Range;
use std::path::PathBuf;
#[derive(PartialEq)]
pub enum MonoItemCollectionMode {
Eager,
Lazy,
}
/// Maps every mono item to all mono items it references in its
/// body.
pub struct InliningMap<'tcx> {
// Maps a source mono item to the range of mono items
// accessed by it.
// The range selects elements within the `targets` vecs.
index: FxHashMap<MonoItem<'tcx>, Range<usize>>,
targets: Vec<MonoItem<'tcx>>,
// Contains one bit per mono item in the `targets` field. That bit
// is true if that mono item needs to be inlined into every CGU.
inlines: GrowableBitSet<usize>,
}
impl<'tcx> InliningMap<'tcx> {
fn new() -> InliningMap<'tcx> {
InliningMap {
index: FxHashMap::default(),
targets: Vec::new(),
inlines: GrowableBitSet::with_capacity(1024),
}
}
fn record_accesses(&mut self, source: MonoItem<'tcx>, new_targets: &[(MonoItem<'tcx>, bool)]) {
let start_index = self.targets.len();
let new_items_count = new_targets.len();
let new_items_count_total = new_items_count + self.targets.len();
self.targets.reserve(new_items_count);
self.inlines.ensure(new_items_count_total);
for (i, (target, inline)) in new_targets.iter().enumerate() {
self.targets.push(*target);
if *inline {
self.inlines.insert(i + start_index);
}
}
let end_index = self.targets.len();
assert!(self.index.insert(source, start_index..end_index).is_none());
}
// Internally iterate over all items referenced by `source` which will be
// made available for inlining.
pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
where
F: FnMut(MonoItem<'tcx>),
{
if let Some(range) = self.index.get(&source) {
for (i, candidate) in self.targets[range.clone()].iter().enumerate() {
if self.inlines.contains(range.start + i) {
f(*candidate);
}
}
}
}
// Internally iterate over all items and the things each accesses.
pub fn iter_accesses<F>(&self, mut f: F)
where
F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
{
for (&accessor, range) in &self.index {
f(accessor, &self.targets[range.clone()])
}
}
}
pub fn collect_crate_mono_items(
tcx: TyCtxt<'_>,
mode: MonoItemCollectionMode,
) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
let roots =
tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
debug!("building mono item graph, beginning at roots");
let mut visited = MTLock::new(FxHashSet::default());
let mut inlining_map = MTLock::new(InliningMap::new());
let recursion_limit = tcx.recursion_limit();
{
let visited: MTRef<'_, _> = &mut visited;
let inlining_map: MTRef<'_, _> = &mut inlining_map;
tcx.sess.time("monomorphization_collector_graph_walk", || {
par_iter(roots).for_each(|root| {
let mut recursion_depths = DefIdMap::default();
collect_items_rec(
tcx,
dummy_spanned(root),
visited,
&mut recursion_depths,
recursion_limit,
inlining_map,
);
});
});
}
(visited.into_inner(), inlining_map.into_inner())
}
// Find all non-generic items by walking the HIR. These items serve as roots to
// start monomorphizing from.
fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
debug!("collecting roots");
let mut roots = Vec::new();
{
let entry_fn = tcx.entry_fn(());
debug!("collect_roots: entry_fn = {:?}", entry_fn);
let mut visitor = RootCollector { tcx, mode, entry_fn, output: &mut roots };
tcx.hir().visit_all_item_likes(&mut visitor);
visitor.push_extra_entry_roots();
}
// We can only codegen items that are instantiable - items all of
// whose predicates hold. Luckily, items that aren't instantiable
// can't actually be used, so we can just skip codegenning them.
roots
.into_iter()
.filter_map(|root| root.node.is_instantiable(tcx).then_some(root.node))
.collect()
}
/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
/// post-monorphization error is encountered during a collection step.
fn collect_items_rec<'tcx>(
tcx: TyCtxt<'tcx>,
starting_point: Spanned<MonoItem<'tcx>>,
visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
recursion_depths: &mut DefIdMap<usize>,
recursion_limit: Limit,
inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
) {
if !visited.lock_mut().insert(starting_point.node) {
// We've been here already, no need to search again.
return;
}
debug!("BEGIN collect_items_rec({})", starting_point.node);
let mut neighbors = Vec::new();
let recursion_depth_reset;
//
// Post-monomorphization errors MVP
//
// We can encounter errors while monomorphizing an item, but we don't have a good way of
// showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
// (It's also currently unclear exactly which diagnostics and information would be interesting
// to report in such cases)
//
// This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
// shown with just a spanned piece of code causing the error, without information on where
// it was called from. This is especially obscure if the erroneous mono item is in a
// dependency. See for example issue #85155, where, before minimization, a PME happened two
// crates downstream from libcore's stdarch, without a way to know which dependency was the
// cause.
//
// If such an error occurs in the current crate, its span will be enough to locate the
// source. If the cause is in another crate, the goal here is to quickly locate which mono
// item in the current crate is ultimately responsible for causing the error.
//
// To give at least _some_ context to the user: while collecting mono items, we check the
// error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
// current step of mono items collection.
//
let error_count = tcx.sess.diagnostic().err_count();
match starting_point.node {
MonoItem::Static(def_id) => {
let instance = Instance::mono(tcx, def_id);
// Sanity check whether this ended up being collected accidentally
debug_assert!(should_codegen_locally(tcx, &instance));
let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
recursion_depth_reset = None;
if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
for &id in alloc.relocations().values() {
collect_miri(tcx, id, &mut neighbors);
}
}
}
MonoItem::Fn(instance) => {
// Sanity check whether this ended up being collected accidentally
debug_assert!(should_codegen_locally(tcx, &instance));
// Keep track of the monomorphization recursion depth
recursion_depth_reset = Some(check_recursion_limit(
tcx,
instance,
starting_point.span,
recursion_depths,
recursion_limit,
));
check_type_length_limit(tcx, instance);
rustc_data_structures::stack::ensure_sufficient_stack(|| {
collect_neighbours(tcx, instance, &mut neighbors);
});
}
MonoItem::GlobalAsm(item_id) => {
recursion_depth_reset = None;
let item = tcx.hir().item(item_id);
if let hir::ItemKind::GlobalAsm(asm) = item.kind {
for (op, op_sp) in asm.operands {
match op {
hir::InlineAsmOperand::Const { .. } => {
// Only constants which resolve to a plain integer
// are supported. Therefore the value should not
// depend on any other items.
}
_ => span_bug!(*op_sp, "invalid operand type for global_asm!"),
}
}
} else {
span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
}
}
}
// Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
// mono item graph where the PME diagnostics are currently the most problematic (e.g. ones
// involving a dependency, and the lack of context is confusing) in this MVP, we focus on
// diagnostics on edges crossing a crate boundary: the collected mono items which are not
// defined in the local crate.
if tcx.sess.diagnostic().err_count() > error_count
&& starting_point.node.krate() != LOCAL_CRATE
&& starting_point.node.is_user_defined()
{
let formatted_item = with_no_trimmed_paths(|| starting_point.node.to_string());
tcx.sess.span_note_without_error(
starting_point.span,
&format!("the above error was encountered while instantiating `{}`", formatted_item),
);
}
record_accesses(tcx, starting_point.node, neighbors.iter().map(|i| &i.node), inlining_map);
for neighbour in neighbors {
collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map);
}
if let Some((def_id, depth)) = recursion_depth_reset {
recursion_depths.insert(def_id, depth);
}
debug!("END collect_items_rec({})", starting_point.node);
}
fn record_accesses<'a, 'tcx: 'a>(
tcx: TyCtxt<'tcx>,
caller: MonoItem<'tcx>,
callees: impl Iterator<Item = &'a MonoItem<'tcx>>,
inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
) {
let is_inlining_candidate = |mono_item: &MonoItem<'tcx>| {
mono_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
};
// We collect this into a `SmallVec` to avoid calling `is_inlining_candidate` in the lock.
// FIXME: Call `is_inlining_candidate` when pushing to `neighbors` in `collect_items_rec`
// instead to avoid creating this `SmallVec`.
let accesses: SmallVec<[_; 128]> =
callees.map(|mono_item| (*mono_item, is_inlining_candidate(mono_item))).collect();
inlining_map.lock_mut().record_accesses(caller, &accesses);
}
/// Format instance name that is already known to be too long for rustc.
/// Show only the first and last 32 characters to avoid blasting
/// the user's terminal with thousands of lines of type-name.
///
/// If the type name is longer than before+after, it will be written to a file.
fn shrunk_instance_name<'tcx>(
tcx: TyCtxt<'tcx>,
instance: &Instance<'tcx>,
before: usize,
after: usize,
) -> (String, Option<PathBuf>) {
let s = instance.to_string();
// Only use the shrunk version if it's really shorter.
// This also avoids the case where before and after slices overlap.
if s.chars().nth(before + after + 1).is_some() {
// An iterator of all byte positions including the end of the string.
let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len()));
let shrunk = format!(
"{before}...{after}",
before = &s[..positions().nth(before).unwrap_or(s.len())],
after = &s[positions().rev().nth(after).unwrap_or(0)..],
);
let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None);
let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
(shrunk, written_to_path)
} else {
(s, None)
}
}
fn check_recursion_limit<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
span: Span,
recursion_depths: &mut DefIdMap<usize>,
recursion_limit: Limit,
) -> (DefId, usize) {
let def_id = instance.def_id();
let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
debug!(" => recursion depth={}", recursion_depth);
let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
// HACK: drop_in_place creates tight monomorphization loops. Give
// it more margin.
recursion_depth / 4
} else {
recursion_depth
};
// Code that needs to instantiate the same function recursively
// more than the recursion limit is assumed to be causing an
// infinite expansion.
if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
let error = format!("reached the recursion limit while instantiating `{}`", shrunk);
let mut err = tcx.sess.struct_span_fatal(span, &error);
err.span_note(
tcx.def_span(def_id),
&format!("`{}` defined here", tcx.def_path_str(def_id)),
);
if let Some(path) = written_to_path {
err.note(&format!("the full type name has been written to '{}'", path.display()));
}
err.emit();
FatalError.raise();
}
recursion_depths.insert(def_id, recursion_depth + 1);
(def_id, recursion_depth)
}
fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
let type_length = instance
.substs
.iter()
.flat_map(|arg| arg.walk())
.filter(|arg| match arg.unpack() {
GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
GenericArgKind::Lifetime(_) => false,
})
.count();
debug!(" => type length={}", type_length);
// Rust code can easily create exponentially-long types using only a
// polynomial recursion depth. Even with the default recursion
// depth, you can easily get cases that take >2^60 steps to run,
// which means that rustc basically hangs.
//
// Bail out in these cases to avoid that bad user experience.
if !tcx.type_length_limit().value_within_limit(type_length) {
let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
let msg = format!("reached the type-length limit while instantiating `{}`", shrunk);
let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg);
if let Some(path) = written_to_path {
diag.note(&format!("the full type name has been written to '{}'", path.display()));
}
diag.help(&format!(
"consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
type_length
));
diag.emit();
tcx.sess.abort_if_errors();
}
}
struct MirNeighborCollector<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body: &'a mir::Body<'tcx>,
output: &'a mut Vec<Spanned<MonoItem<'tcx>>>,
instance: Instance<'tcx>,
}
impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
pub fn monomorphize<T>(&self, value: T) -> T
where
T: TypeFoldable<'tcx>,
{
debug!("monomorphize: self.instance={:?}", self.instance);
self.instance.subst_mir_and_normalize_erasing_regions(
self.tcx,
ty::ParamEnv::reveal_all(),
value,
)
}
}
impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
debug!("visiting rvalue {:?}", *rvalue);
let span = self.body.source_info(location).span;
match *rvalue {
// When doing an cast from a regular pointer to a fat pointer, we
// have to instantiate all methods of the trait being cast to, so we
// can build the appropriate vtable.
mir::Rvalue::Cast(
mir::CastKind::Pointer(PointerCast::Unsize),
ref operand,
target_ty,
) => {
let target_ty = self.monomorphize(target_ty);
let source_ty = operand.ty(self.body, self.tcx);
let source_ty = self.monomorphize(source_ty);
let (source_ty, target_ty) =
find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty);
// This could also be a different Unsize instruction, like
// from a fixed sized array to a slice. But we are only
// interested in things that produce a vtable.
if target_ty.is_trait() && !source_ty.is_trait() {
create_mono_items_for_vtable_methods(
self.tcx,
target_ty,
source_ty,
span,
self.output,
);
}
}
mir::Rvalue::Cast(
mir::CastKind::Pointer(PointerCast::ReifyFnPointer),
ref operand,
_,
) => {
let fn_ty = operand.ty(self.body, self.tcx);
let fn_ty = self.monomorphize(fn_ty);
visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output);
}
mir::Rvalue::Cast(
mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)),
ref operand,
_,
) => {
let source_ty = operand.ty(self.body, self.tcx);
let source_ty = self.monomorphize(source_ty);
match *source_ty.kind() {
ty::Closure(def_id, substs) => {
let instance = Instance::resolve_closure(
self.tcx,
def_id,
substs,
ty::ClosureKind::FnOnce,
);
if should_codegen_locally(self.tcx, &instance) {
self.output.push(create_fn_mono_item(self.tcx, instance, span));
}
}
_ => bug!(),
}
}
mir::Rvalue::ThreadLocalRef(def_id) => {
assert!(self.tcx.is_thread_local_static(def_id));
let instance = Instance::mono(self.tcx, def_id);
if should_codegen_locally(self.tcx, &instance) {
trace!("collecting thread-local static {:?}", def_id);
self.output.push(respan(span, MonoItem::Static(def_id)));
}
}
_ => { /* not interesting */ }
}
self.super_rvalue(rvalue, location);
}
/// This does not walk the constant, as it has been handled entirely here and trying
/// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily
/// work, as some constants cannot be represented in the type system.
fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) {
let literal = self.monomorphize(constant.literal);
let val = match literal {
mir::ConstantKind::Val(val, _) => val,
mir::ConstantKind::Ty(ct) => match ct.val {
ty::ConstKind::Value(val) => val,
ty::ConstKind::Unevaluated(ct) => {
let param_env = ty::ParamEnv::reveal_all();
match self.tcx.const_eval_resolve(param_env, ct, None) {
// The `monomorphize` call should have evaluated that constant already.
Ok(val) => val,
Err(ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted) => return,
Err(ErrorHandled::TooGeneric) => span_bug!(
self.body.source_info(location).span,
"collection encountered polymorphic constant: {:?}",
literal
),
}
}
_ => return,
},
};
collect_const_value(self.tcx, val, self.output);
self.visit_ty(literal.ty(), TyContext::Location(location));
}
fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
debug!("visiting const {:?} @ {:?}", *constant, location);
let substituted_constant = self.monomorphize(*constant);
let param_env = ty::ParamEnv::reveal_all();
match substituted_constant.val {
ty::ConstKind::Value(val) => collect_const_value(self.tcx, val, self.output),
ty::ConstKind::Unevaluated(unevaluated) => {
match self.tcx.const_eval_resolve(param_env, unevaluated, None) {
// The `monomorphize` call should have evaluated that constant already.
Ok(val) => span_bug!(
self.body.source_info(location).span,
"collection encountered the unevaluated constant {} which evaluated to {:?}",
substituted_constant,
val
),
Err(ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted) => {}
Err(ErrorHandled::TooGeneric) => span_bug!(
self.body.source_info(location).span,
"collection encountered polymorphic constant: {}",
substituted_constant
),
}
}
_ => {}
}
self.super_const(constant);
}
fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
debug!("visiting terminator {:?} @ {:?}", terminator, location);
let source = self.body.source_info(location).span;
let tcx = self.tcx;
match terminator.kind {
mir::TerminatorKind::Call { ref func, .. } => {
let callee_ty = func.ty(self.body, tcx);
let callee_ty = self.monomorphize(callee_ty);
visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output);
}
mir::TerminatorKind::Drop { ref place, .. }
| mir::TerminatorKind::DropAndReplace { ref place, .. } => {
let ty = place.ty(self.body, self.tcx).ty;
let ty = self.monomorphize(ty);
visit_drop_use(self.tcx, ty, true, source, self.output);
}
mir::TerminatorKind::InlineAsm { ref operands, .. } => {
for op in operands {
match *op {
mir::InlineAsmOperand::SymFn { ref value } => {
let fn_ty = self.monomorphize(value.literal.ty());
visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output);
}
mir::InlineAsmOperand::SymStatic { def_id } => {
let instance = Instance::mono(self.tcx, def_id);
if should_codegen_locally(self.tcx, &instance) {
trace!("collecting asm sym static {:?}", def_id);
self.output.push(respan(source, MonoItem::Static(def_id)));
}
}
_ => {}
}
}
}
mir::TerminatorKind::Assert { ref msg, .. } => {
let lang_item = match msg {
mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck,
_ => LangItem::Panic,
};
let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source)));
if should_codegen_locally(tcx, &instance) {
self.output.push(create_fn_mono_item(tcx, instance, source));
}
}
mir::TerminatorKind::Abort { .. } => {
let instance = Instance::mono(
tcx,
tcx.require_lang_item(LangItem::PanicNoUnwind, Some(source)),
);
if should_codegen_locally(tcx, &instance) {
self.output.push(create_fn_mono_item(tcx, instance, source));
}
}
mir::TerminatorKind::Goto { .. }
| mir::TerminatorKind::SwitchInt { .. }
| mir::TerminatorKind::Resume
| mir::TerminatorKind::Return
| mir::TerminatorKind::Unreachable => {}
mir::TerminatorKind::GeneratorDrop
| mir::TerminatorKind::Yield { .. }
| mir::TerminatorKind::FalseEdge { .. }
| mir::TerminatorKind::FalseUnwind { .. } => bug!(),
}
self.super_terminator(terminator, location);
}
fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
self.super_operand(operand, location);
let limit = self.tcx.move_size_limit().0;
if limit == 0 {
return;
}
let limit = Size::from_bytes(limit);
let ty = operand.ty(self.body, self.tcx);
let ty = self.monomorphize(ty);
let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty));
if let Ok(layout) = layout {
if layout.size > limit {
debug!(?layout);
let source_info = self.body.source_info(location);
debug!(?source_info);
let lint_root = source_info.scope.lint_root(&self.body.source_scopes);
debug!(?lint_root);
let lint_root = match lint_root {
Some(lint_root) => lint_root,
// This happens when the issue is in a function from a foreign crate that
// we monomorphized in the current crate. We can't get a `HirId` for things
// in other crates.
// FIXME: Find out where to report the lint on. Maybe simply crate-level lint root
// but correct span? This would make the lint at least accept crate-level lint attributes.
None => return,
};
self.tcx.struct_span_lint_hir(
LARGE_ASSIGNMENTS,
lint_root,
source_info.span,
|lint| {
let mut err = lint.build(&format!("moving {} bytes", layout.size.bytes()));
err.span_label(source_info.span, "value moved from here");
err.emit()
},
);
}
}
}
fn visit_local(
&mut self,
_place_local: &Local,
_context: mir::visit::PlaceContext,
_location: Location,
) {
}
}
fn visit_drop_use<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
source: Span,
output: &mut Vec<Spanned<MonoItem<'tcx>>>,
) {
let instance = Instance::resolve_drop_in_place(tcx, ty);
visit_instance_use(tcx, instance, is_direct_call, source, output);
}
fn visit_fn_use<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
source: Span,
output: &mut Vec<Spanned<MonoItem<'tcx>>>,
) {
if let ty::FnDef(def_id, substs) = *ty.kind() {
let instance = if is_direct_call {
ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
} else {
ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs)
.unwrap()
};
visit_instance_use(tcx, instance, is_direct_call, source, output);
}
}
fn visit_instance_use<'tcx>(
tcx: TyCtxt<'tcx>,
instance: ty::Instance<'tcx>,
is_direct_call: bool,
source: Span,
output: &mut Vec<Spanned<MonoItem<'tcx>>>,
) {
debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
if !should_codegen_locally(tcx, &instance) {
return;
}
match instance.def {
ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
if !is_direct_call {
bug!("{:?} being reified", instance);
}
}
ty::InstanceDef::DropGlue(_, None) => {
// Don't need to emit noop drop glue if we are calling directly.
if !is_direct_call {
output.push(create_fn_mono_item(tcx, instance, source));
}
}
ty::InstanceDef::DropGlue(_, Some(_))
| ty::InstanceDef::VtableShim(..)
| ty::InstanceDef::ReifyShim(..)
| ty::InstanceDef::ClosureOnceShim { .. }
| ty::InstanceDef::Item(..)
| ty::InstanceDef::FnPtrShim(..)
| ty::InstanceDef::CloneShim(..) => {
output.push(create_fn_mono_item(tcx, instance, source));
}
}
}
/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
/// can just link to the upstream crate and therefore don't need a mono item.
fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
let def_id = if let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() {
def_id
} else {
return true;
};
if tcx.is_foreign_item(def_id) {
// Foreign items are always linked against, there's no way of instantiating them.
return false;
}
if def_id.is_local() {
// Local items cannot be referred to locally without monomorphizing them locally.
return true;
}
if tcx.is_reachable_non_generic(def_id)
|| instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
{
// We can link to the item in question, no instance needed in this crate.
return false;
}
if !tcx.is_mir_available(def_id) {
bug!("no MIR available for {:?}", def_id);
}
true
}
/// For a given pair of source and target type that occur in an unsizing coercion,
/// this function finds the pair of types that determines the vtable linking
/// them.
///
/// For example, the source type might be `&SomeStruct` and the target type\
/// might be `&SomeTrait` in a cast like:
///
/// let src: &SomeStruct = ...;
/// let target = src as &SomeTrait;
///
/// Then the output of this function would be (SomeStruct, SomeTrait) since for
/// constructing the `target` fat-pointer we need the vtable for that pair.
///
/// Things can get more complicated though because there's also the case where
/// the unsized type occurs as a field:
///
/// ```rust
/// struct ComplexStruct<T: ?Sized> {
/// a: u32,
/// b: f64,
/// c: T