-
Notifications
You must be signed in to change notification settings - Fork 13k
/
option.rs
1593 lines (1488 loc) · 47 KB
/
option.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Optional values.
//!
//! Type [`Option`] represents an optional value: every [`Option`]
//! is either [`Some`] and contains a value, or [`None`], and
//! does not. [`Option`] types are very common in Rust code, as
//! they have a number of uses:
//!
//! * Initial values
//! * Return values for functions that are not defined
//! over their entire input range (partial functions)
//! * Return value for otherwise reporting simple errors, where [`None`] is
//! returned on error
//! * Optional struct fields
//! * Struct fields that can be loaned or "taken"
//! * Optional function arguments
//! * Nullable pointers
//! * Swapping things out of difficult situations
//!
//! [`Option`]s are commonly paired with pattern matching to query the presence
//! of a value and take action, always accounting for the [`None`] case.
//!
//! ```
//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
//! if denominator == 0.0 {
//! None
//! } else {
//! Some(numerator / denominator)
//! }
//! }
//!
//! // The return value of the function is an option
//! let result = divide(2.0, 3.0);
//!
//! // Pattern match to retrieve the value
//! match result {
//! // The division was valid
//! Some(x) => println!("Result: {}", x),
//! // The division was invalid
//! None => println!("Cannot divide by 0"),
//! }
//! ```
//!
//
// FIXME: Show how `Option` is used in practice, with lots of methods
//
//! # Options and pointers ("nullable" pointers)
//!
//! Rust's pointer types must always point to a valid location; there are
//! no "null" references. Instead, Rust has *optional* pointers, like
//! the optional owned box, [`Option`]`<`[`Box<T>`]`>`.
//!
//! The following example uses [`Option`] to create an optional box of
//! [`i32`]. Notice that in order to use the inner [`i32`] value first, the
//! `check_optional` function needs to use pattern matching to
//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
//! not ([`None`]).
//!
//! ```
//! let optional = None;
//! check_optional(optional);
//!
//! let optional = Some(Box::new(9000));
//! check_optional(optional);
//!
//! fn check_optional(optional: Option<Box<i32>>) {
//! match optional {
//! Some(ref p) => println!("has value {}", p),
//! None => println!("has no value"),
//! }
//! }
//! ```
//!
//! This usage of [`Option`] to create safe nullable pointers is so
//! common that Rust does special optimizations to make the
//! representation of [`Option`]`<`[`Box<T>`]`>` a single pointer. Optional pointers
//! in Rust are stored as efficiently as any other pointer type.
//!
//! # Examples
//!
//! Basic pattern matching on [`Option`]:
//!
//! ```
//! let msg = Some("howdy");
//!
//! // Take a reference to the contained string
//! if let Some(ref m) = msg {
//! println!("{}", *m);
//! }
//!
//! // Remove the contained string, destroying the Option
//! let unwrapped_msg = msg.unwrap_or("default message");
//! ```
//!
//! Initialize a result to [`None`] before a loop:
//!
//! ```
//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
//!
//! // A list of data to search through.
//! let all_the_big_things = [
//! Kingdom::Plant(250, "redwood"),
//! Kingdom::Plant(230, "noble fir"),
//! Kingdom::Plant(229, "sugar pine"),
//! Kingdom::Animal(25, "blue whale"),
//! Kingdom::Animal(19, "fin whale"),
//! Kingdom::Animal(15, "north pacific right whale"),
//! ];
//!
//! // We're going to search for the name of the biggest animal,
//! // but to start with we've just got `None`.
//! let mut name_of_biggest_animal = None;
//! let mut size_of_biggest_animal = 0;
//! for big_thing in &all_the_big_things {
//! match *big_thing {
//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
//! // Now we've found the name of some big animal
//! size_of_biggest_animal = size;
//! name_of_biggest_animal = Some(name);
//! }
//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
//! }
//! }
//!
//! match name_of_biggest_animal {
//! Some(name) => println!("the biggest animal is {}", name),
//! None => println!("there are no animals :("),
//! }
//! ```
//!
//! [`Option`]: enum.Option.html
//! [`Some`]: enum.Option.html#variant.Some
//! [`None`]: enum.Option.html#variant.None
//! [`Box<T>`]: ../../std/boxed/struct.Box.html
//! [`i32`]: ../../std/primitive.i32.html
#![stable(feature = "rust1", since = "1.0.0")]
use crate::iter::{FromIterator, FusedIterator, TrustedLen};
use crate::{convert, fmt, hint, mem, ops::{self, Deref, DerefMut}};
use crate::pin::Pin;
// Note that this is not a lang item per se, but it has a hidden dependency on
// `Iterator`, which is one. The compiler assumes that the `next` method of
// `Iterator` is an enumeration with one type parameter and two variants,
// which basically means it must be `Option`.
/// The `Option` type. See [the module level documentation](index.html) for more.
#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum Option<T> {
/// No value
#[stable(feature = "rust1", since = "1.0.0")]
None,
/// Some value `T`
#[stable(feature = "rust1", since = "1.0.0")]
Some(#[stable(feature = "rust1", since = "1.0.0")] T),
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
impl<T> Option<T> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
/// Returns `true` if the option is a [`Some`] value.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_some(), true);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_some(), false);
/// ```
///
/// [`Some`]: #variant.Some
#[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_some(&self) -> bool {
match *self {
Some(_) => true,
None => false,
}
}
/// Returns `true` if the option is a [`None`] value.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_none(), false);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_none(), true);
/// ```
///
/// [`None`]: #variant.None
#[must_use = "if you intended to assert that this doesn't have a value, consider \
`.and_then(|| panic!(\"`Option` had a value when expected `None`\"))` instead"]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_none(&self) -> bool {
!self.is_some()
}
/// Returns `true` if the option is a [`Some`] value containing the given value.
///
/// # Examples
///
/// ```
/// #![feature(option_result_contains)]
///
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.contains(&2), true);
///
/// let x: Option<u32> = Some(3);
/// assert_eq!(x.contains(&2), false);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.contains(&2), false);
/// ```
#[must_use]
#[inline]
#[unstable(feature = "option_result_contains", issue = "62358")]
pub fn contains<U>(&self, x: &U) -> bool where U: PartialEq<T> {
match self {
Some(y) => x == y,
None => false,
}
}
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
/// Converts from `&Option<T>` to `Option<&T>`.
///
/// # Examples
///
/// Converts an `Option<`[`String`]`>` into an `Option<`[`usize`]`>`, preserving the original.
/// The [`map`] method takes the `self` argument by value, consuming the original,
/// so this technique uses `as_ref` to first take an `Option` to a reference
/// to the value inside the original.
///
/// [`map`]: enum.Option.html#method.map
/// [`String`]: ../../std/string/struct.String.html
/// [`usize`]: ../../std/primitive.usize.html
///
/// ```
/// let text: Option<String> = Some("Hello, world!".to_string());
/// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
/// // then consume *that* with `map`, leaving `text` on the stack.
/// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
/// println!("still can print text: {:?}", text);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn as_ref(&self) -> Option<&T> {
match *self {
Some(ref x) => Some(x),
None => None,
}
}
/// Converts from `&mut Option<T>` to `Option<&mut T>`.
///
/// # Examples
///
/// ```
/// let mut x = Some(2);
/// match x.as_mut() {
/// Some(v) => *v = 42,
/// None => {},
/// }
/// assert_eq!(x, Some(42));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn as_mut(&mut self) -> Option<&mut T> {
match *self {
Some(ref mut x) => Some(x),
None => None,
}
}
/// Converts from [`Pin`]`<&Option<T>>` to `Option<`[`Pin`]`<&T>>`.
///
/// [`Pin`]: ../pin/struct.Pin.html
#[inline]
#[stable(feature = "pin", since = "1.33.0")]
pub fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
unsafe {
Pin::get_ref(self).as_ref().map(|x| Pin::new_unchecked(x))
}
}
/// Converts from [`Pin`]`<&mut Option<T>>` to `Option<`[`Pin`]`<&mut T>>`.
///
/// [`Pin`]: ../pin/struct.Pin.html
#[inline]
#[stable(feature = "pin", since = "1.33.0")]
pub fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
unsafe {
Pin::get_unchecked_mut(self).as_mut().map(|x| Pin::new_unchecked(x))
}
}
/////////////////////////////////////////////////////////////////////////
// Getting to contained values
/////////////////////////////////////////////////////////////////////////
/// Unwraps an option, yielding the content of a [`Some`].
///
/// # Panics
///
/// Panics if the value is a [`None`] with a custom panic message provided by
/// `msg`.
///
/// [`Some`]: #variant.Some
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// let x = Some("value");
/// assert_eq!(x.expect("the world is ending"), "value");
/// ```
///
/// ```{.should_panic}
/// let x: Option<&str> = None;
/// x.expect("the world is ending"); // panics with `the world is ending`
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn expect(self, msg: &str) -> T {
match self {
Some(val) => val,
None => expect_failed(msg),
}
}
/// Moves the value `v` out of the `Option<T>` if it is [`Some(v)`].
///
/// In general, because this function may panic, its use is discouraged.
/// Instead, prefer to use pattern matching and handle the [`None`]
/// case explicitly.
///
/// # Panics
///
/// Panics if the self value equals [`None`].
///
/// [`Some(v)`]: #variant.Some
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// let x = Some("air");
/// assert_eq!(x.unwrap(), "air");
/// ```
///
/// ```{.should_panic}
/// let x: Option<&str> = None;
/// assert_eq!(x.unwrap(), "air"); // fails
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap(self) -> T {
match self {
Some(val) => val,
None => panic!("called `Option::unwrap()` on a `None` value"),
}
}
/// Returns the contained value or a default.
///
/// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`unwrap_or_else`],
/// which is lazily evaluated.
///
/// [`unwrap_or_else`]: #method.unwrap_or_else
///
/// # Examples
///
/// ```
/// assert_eq!(Some("car").unwrap_or("bike"), "car");
/// assert_eq!(None.unwrap_or("bike"), "bike");
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or(self, def: T) -> T {
match self {
Some(x) => x,
None => def,
}
}
/// Returns the contained value or computes it from a closure.
///
/// # Examples
///
/// ```
/// let k = 10;
/// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
/// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T {
match self {
Some(x) => x,
None => f(),
}
}
/////////////////////////////////////////////////////////////////////////
// Transforming contained values
/////////////////////////////////////////////////////////////////////////
/// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value.
///
/// # Examples
///
/// Converts an `Option<`[`String`]`>` into an `Option<`[`usize`]`>`, consuming the original:
///
/// [`String`]: ../../std/string/struct.String.html
/// [`usize`]: ../../std/primitive.usize.html
///
/// ```
/// let maybe_some_string = Some(String::from("Hello, World!"));
/// // `Option::map` takes self *by value*, consuming `maybe_some_string`
/// let maybe_some_len = maybe_some_string.map(|s| s.len());
///
/// assert_eq!(maybe_some_len, Some(13));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> {
match self {
Some(x) => Some(f(x)),
None => None,
}
}
/// Applies a function to the contained value (if any),
/// or returns the provided default (if not).
///
/// # Examples
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.map_or(42, |v| v.len()), 3);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or(42, |v| v.len()), 42);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map_or<U, F: FnOnce(T) -> U>(self, default: U, f: F) -> U {
match self {
Some(t) => f(t),
None => default,
}
}
/// Applies a function to the contained value (if any),
/// or computes a default (if not).
///
/// # Examples
///
/// ```
/// let k = 21;
///
/// let x = Some("foo");
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
match self {
Some(t) => f(t),
None => default(),
}
}
/// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
/// [`Ok(v)`] and [`None`] to [`Err(err)`].
///
/// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`ok_or_else`], which is
/// lazily evaluated.
///
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
/// [`Ok(v)`]: ../../std/result/enum.Result.html#variant.Ok
/// [`Err(err)`]: ../../std/result/enum.Result.html#variant.Err
/// [`None`]: #variant.None
/// [`Some(v)`]: #variant.Some
/// [`ok_or_else`]: #method.ok_or_else
///
/// # Examples
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or(0), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or(0), Err(0));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn ok_or<E>(self, err: E) -> Result<T, E> {
match self {
Some(v) => Ok(v),
None => Err(err),
}
}
/// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
/// [`Ok(v)`] and [`None`] to [`Err(err())`].
///
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
/// [`Ok(v)`]: ../../std/result/enum.Result.html#variant.Ok
/// [`Err(err())`]: ../../std/result/enum.Result.html#variant.Err
/// [`None`]: #variant.None
/// [`Some(v)`]: #variant.Some
///
/// # Examples
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or_else(|| 0), Err(0));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn ok_or_else<E, F: FnOnce() -> E>(self, err: F) -> Result<T, E> {
match self {
Some(v) => Ok(v),
None => Err(err()),
}
}
/////////////////////////////////////////////////////////////////////////
// Iterator constructors
/////////////////////////////////////////////////////////////////////////
/// Returns an iterator over the possibly contained value.
///
/// # Examples
///
/// ```
/// let x = Some(4);
/// assert_eq!(x.iter().next(), Some(&4));
///
/// let x: Option<u32> = None;
/// assert_eq!(x.iter().next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<'_, T> {
Iter { inner: Item { opt: self.as_ref() } }
}
/// Returns a mutable iterator over the possibly contained value.
///
/// # Examples
///
/// ```
/// let mut x = Some(4);
/// match x.iter_mut().next() {
/// Some(v) => *v = 42,
/// None => {},
/// }
/// assert_eq!(x, Some(42));
///
/// let mut x: Option<u32> = None;
/// assert_eq!(x.iter_mut().next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
IterMut { inner: Item { opt: self.as_mut() } }
}
/////////////////////////////////////////////////////////////////////////
// Boolean operations on the values, eager and lazy
/////////////////////////////////////////////////////////////////////////
/// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
///
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// let x = Some(2);
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
///
/// let x: Option<u32> = None;
/// let y = Some("foo");
/// assert_eq!(x.and(y), None);
///
/// let x = Some(2);
/// let y = Some("foo");
/// assert_eq!(x.and(y), Some("foo"));
///
/// let x: Option<u32> = None;
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn and<U>(self, optb: Option<U>) -> Option<U> {
match self {
Some(_) => optb,
None => None,
}
}
/// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
/// wrapped value and returns the result.
///
/// Some languages call this operation flatmap.
///
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// fn sq(x: u32) -> Option<u32> { Some(x * x) }
/// fn nope(_: u32) -> Option<u32> { None }
///
/// assert_eq!(Some(2).and_then(sq).and_then(sq), Some(16));
/// assert_eq!(Some(2).and_then(sq).and_then(nope), None);
/// assert_eq!(Some(2).and_then(nope).and_then(sq), None);
/// assert_eq!(None.and_then(sq).and_then(sq), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn and_then<U, F: FnOnce(T) -> Option<U>>(self, f: F) -> Option<U> {
match self {
Some(x) => f(x),
None => None,
}
}
/// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
/// with the wrapped value and returns:
///
/// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
/// value), and
/// - [`None`] if `predicate` returns `false`.
///
/// This function works similar to [`Iterator::filter()`]. You can imagine
/// the `Option<T>` being an iterator over one or zero elements. `filter()`
/// lets you decide which elements to keep.
///
/// # Examples
///
/// ```rust
/// fn is_even(n: &i32) -> bool {
/// n % 2 == 0
/// }
///
/// assert_eq!(None.filter(is_even), None);
/// assert_eq!(Some(3).filter(is_even), None);
/// assert_eq!(Some(4).filter(is_even), Some(4));
/// ```
///
/// [`None`]: #variant.None
/// [`Some(t)`]: #variant.Some
/// [`Iterator::filter()`]: ../../std/iter/trait.Iterator.html#method.filter
#[inline]
#[stable(feature = "option_filter", since = "1.27.0")]
pub fn filter<P: FnOnce(&T) -> bool>(self, predicate: P) -> Self {
if let Some(x) = self {
if predicate(&x) {
return Some(x)
}
}
None
}
/// Returns the option if it contains a value, otherwise returns `optb`.
///
/// Arguments passed to `or` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`or_else`], which is
/// lazily evaluated.
///
/// [`or_else`]: #method.or_else
///
/// # Examples
///
/// ```
/// let x = Some(2);
/// let y = None;
/// assert_eq!(x.or(y), Some(2));
///
/// let x = None;
/// let y = Some(100);
/// assert_eq!(x.or(y), Some(100));
///
/// let x = Some(2);
/// let y = Some(100);
/// assert_eq!(x.or(y), Some(2));
///
/// let x: Option<u32> = None;
/// let y = None;
/// assert_eq!(x.or(y), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or(self, optb: Option<T>) -> Option<T> {
match self {
Some(_) => self,
None => optb,
}
}
/// Returns the option if it contains a value, otherwise calls `f` and
/// returns the result.
///
/// # Examples
///
/// ```
/// fn nobody() -> Option<&'static str> { None }
/// fn vikings() -> Option<&'static str> { Some("vikings") }
///
/// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
/// assert_eq!(None.or_else(vikings), Some("vikings"));
/// assert_eq!(None.or_else(nobody), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or_else<F: FnOnce() -> Option<T>>(self, f: F) -> Option<T> {
match self {
Some(_) => self,
None => f(),
}
}
/// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
///
/// [`Some`]: #variant.Some
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// let x = Some(2);
/// let y: Option<u32> = None;
/// assert_eq!(x.xor(y), Some(2));
///
/// let x: Option<u32> = None;
/// let y = Some(2);
/// assert_eq!(x.xor(y), Some(2));
///
/// let x = Some(2);
/// let y = Some(2);
/// assert_eq!(x.xor(y), None);
///
/// let x: Option<u32> = None;
/// let y: Option<u32> = None;
/// assert_eq!(x.xor(y), None);
/// ```
#[inline]
#[stable(feature = "option_xor", since = "1.37.0")]
pub fn xor(self, optb: Option<T>) -> Option<T> {
match (self, optb) {
(Some(a), None) => Some(a),
(None, Some(b)) => Some(b),
_ => None,
}
}
/////////////////////////////////////////////////////////////////////////
// Entry-like operations to insert if None and return a reference
/////////////////////////////////////////////////////////////////////////
/// Inserts `v` into the option if it is [`None`], then
/// returns a mutable reference to the contained value.
///
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// let mut x = None;
///
/// {
/// let y: &mut u32 = x.get_or_insert(5);
/// assert_eq!(y, &5);
///
/// *y = 7;
/// }
///
/// assert_eq!(x, Some(7));
/// ```
#[inline]
#[stable(feature = "option_entry", since = "1.20.0")]
pub fn get_or_insert(&mut self, v: T) -> &mut T {
self.get_or_insert_with(|| v)
}
/// Inserts a value computed from `f` into the option if it is [`None`], then
/// returns a mutable reference to the contained value.
///
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// let mut x = None;
///
/// {
/// let y: &mut u32 = x.get_or_insert_with(|| 5);
/// assert_eq!(y, &5);
///
/// *y = 7;
/// }
///
/// assert_eq!(x, Some(7));
/// ```
#[inline]
#[stable(feature = "option_entry", since = "1.20.0")]
pub fn get_or_insert_with<F: FnOnce() -> T>(&mut self, f: F) -> &mut T {
match *self {
None => *self = Some(f()),
_ => (),
}
match *self {
Some(ref mut v) => v,
None => unsafe { hint::unreachable_unchecked() },
}
}
/////////////////////////////////////////////////////////////////////////
// Misc
/////////////////////////////////////////////////////////////////////////
/// Takes the value out of the option, leaving a [`None`] in its place.
///
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// let mut x = Some(2);
/// let y = x.take();
/// assert_eq!(x, None);
/// assert_eq!(y, Some(2));
///
/// let mut x: Option<u32> = None;
/// let y = x.take();
/// assert_eq!(x, None);
/// assert_eq!(y, None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn take(&mut self) -> Option<T> {
mem::take(self)
}
/// Replaces the actual value in the option by the value given in parameter,
/// returning the old value if present,
/// leaving a [`Some`] in its place without deinitializing either one.
///
/// [`Some`]: #variant.Some
///
/// # Examples
///
/// ```
/// let mut x = Some(2);
/// let old = x.replace(5);
/// assert_eq!(x, Some(5));
/// assert_eq!(old, Some(2));
///
/// let mut x = None;
/// let old = x.replace(3);
/// assert_eq!(x, Some(3));
/// assert_eq!(old, None);
/// ```
#[inline]
#[stable(feature = "option_replace", since = "1.31.0")]
pub fn replace(&mut self, value: T) -> Option<T> {
mem::replace(self, Some(value))
}
}
impl<T: Copy> Option<&T> {
/// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let x = 12;
/// let opt_x = Some(&x);
/// assert_eq!(opt_x, Some(&12));
/// let copied = opt_x.copied();
/// assert_eq!(copied, Some(12));
/// ```
#[stable(feature = "copied", since = "1.35.0")]
pub fn copied(self) -> Option<T> {
self.map(|&t| t)
}
}
impl<T: Copy> Option<&mut T> {
/// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let mut x = 12;
/// let opt_x = Some(&mut x);
/// assert_eq!(opt_x, Some(&mut 12));
/// let copied = opt_x.copied();
/// assert_eq!(copied, Some(12));
/// ```
#[stable(feature = "copied", since = "1.35.0")]
pub fn copied(self) -> Option<T> {
self.map(|&mut t| t)
}
}
impl<T: Clone> Option<&T> {
/// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let x = 12;
/// let opt_x = Some(&x);
/// assert_eq!(opt_x, Some(&12));
/// let cloned = opt_x.cloned();
/// assert_eq!(cloned, Some(12));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn cloned(self) -> Option<T> {
self.map(|t| t.clone())
}
}
impl<T: Clone> Option<&mut T> {
/// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let mut x = 12;
/// let opt_x = Some(&mut x);
/// assert_eq!(opt_x, Some(&mut 12));
/// let cloned = opt_x.cloned();
/// assert_eq!(cloned, Some(12));
/// ```
#[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
pub fn cloned(self) -> Option<T> {
self.map(|t| t.clone())
}
}
impl<T: fmt::Debug> Option<T> {
/// Unwraps an option, expecting [`None`] and returning nothing.
///
/// # Panics
///
/// Panics if the value is a [`Some`], with a panic message including the
/// passed message, and the content of the [`Some`].
///
/// [`Some`]: #variant.Some
/// [`None`]: #variant.None
///
/// # Examples
///
/// ```
/// #![feature(option_expect_none)]
///
/// use std::collections::HashMap;
/// let mut squares = HashMap::new();
/// for i in -10..=10 {
/// // This will not panic, since all keys are unique.
/// squares.insert(i, i * i).expect_none("duplicate key");