-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
astconv.rs
1686 lines (1504 loc) · 69.1 KB
/
astconv.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Conversion from AST representation of types to the ty.rs
//! representation. The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items. In the collect phase, the crate context is used as the
//! `AstConv` instance; in this phase, the `get_item_type()`
//! function triggers a recursive call to `type_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error). In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type()` just looks up the item type in
//! `tcx.types` (using `TyCtxt::item_type`).
use rustc_const_eval::eval_length;
use rustc_data_structures::accumulate_vec::AccumulateVec;
use hir;
use hir::def::Def;
use hir::def_id::DefId;
use middle::resolve_lifetime as rl;
use rustc::lint;
use rustc::ty::subst::{Kind, Subst, Substs};
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
use rustc::ty::wf::object_region_bounds;
use rustc_back::slice;
use require_c_abi_if_variadic;
use util::common::{ErrorReported, FN_OUTPUT_NAME};
use util::nodemap::{NodeMap, FxHashSet};
use std::cell::RefCell;
use std::iter;
use syntax::{abi, ast};
use syntax::feature_gate::{GateIssue, emit_feature_err};
use syntax::symbol::{Symbol, keywords};
use syntax_pos::Span;
pub trait AstConv<'gcx, 'tcx> {
fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
/// A cache used for the result of `ast_ty_to_ty_cache`
fn ast_ty_to_ty_cache(&self) -> &RefCell<NodeMap<Ty<'tcx>>>;
/// Returns the generic type and lifetime parameters for an item.
fn get_generics(&self, span: Span, id: DefId)
-> Result<&'tcx ty::Generics<'tcx>, ErrorReported>;
/// Identify the type for an item, like a type alias, fn, or struct.
fn get_item_type(&self, span: Span, id: DefId) -> Result<Ty<'tcx>, ErrorReported>;
/// Returns the `TraitDef` for a given trait. This allows you to
/// figure out the set of type parameters defined on the trait.
fn get_trait_def(&self, span: Span, id: DefId)
-> Result<&'tcx ty::TraitDef, ErrorReported>;
/// Ensure that the super-predicates for the trait with the given
/// id are available and also for the transitive set of
/// super-predicates.
fn ensure_super_predicates(&self, span: Span, id: DefId)
-> Result<(), ErrorReported>;
/// Returns the set of bounds in scope for the type parameter with
/// the given id.
fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
-> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
/// Return an (optional) substitution to convert bound type parameters that
/// are in scope into free ones. This function should only return Some
/// within a fn body.
/// See ParameterEnvironment::free_substs for more information.
fn get_free_substs(&self) -> Option<&Substs<'tcx>>;
/// What lifetime should we use when a lifetime is omitted (and not elided)?
fn re_infer(&self, span: Span, _def: Option<&ty::RegionParameterDef>)
-> Option<&'tcx ty::Region>;
/// What type should we use when a type is omitted?
fn ty_infer(&self, span: Span) -> Ty<'tcx>;
/// Same as ty_infer, but with a known type parameter definition.
fn ty_infer_for_def(&self,
_def: &ty::TypeParameterDef<'tcx>,
_substs: &[Kind<'tcx>],
span: Span) -> Ty<'tcx> {
self.ty_infer(span)
}
/// Projecting an associated type from a (potentially)
/// higher-ranked trait reference is more complicated, because of
/// the possibility of late-bound regions appearing in the
/// associated type binding. This is not legal in function
/// signatures for that reason. In a function body, we can always
/// handle it because we can use inference variables to remove the
/// late-bound regions.
fn projected_ty_from_poly_trait_ref(&self,
span: Span,
poly_trait_ref: ty::PolyTraitRef<'tcx>,
item_name: ast::Name)
-> Ty<'tcx>;
/// Project an associated type from a non-higher-ranked trait reference.
/// This is fairly straightforward and can be accommodated in any context.
fn projected_ty(&self,
span: Span,
_trait_ref: ty::TraitRef<'tcx>,
_item_name: ast::Name)
-> Ty<'tcx>;
/// Invoked when we encounter an error from some prior pass
/// (e.g. resolve) that is translated into a ty-error. This is
/// used to help suppress derived errors typeck might otherwise
/// report.
fn set_tainted_by_errors(&self);
}
struct ConvertedBinding<'tcx> {
item_name: ast::Name,
ty: Ty<'tcx>,
span: Span,
}
/// Dummy type used for the `Self` of a `TraitRef` created for converting
/// a trait object, and which gets removed in `ExistentialTraitRef`.
/// This type must not appear anywhere in other converted types.
const TRAIT_OBJECT_DUMMY_SELF: ty::TypeVariants<'static> = ty::TyInfer(ty::FreshTy(0));
impl<'o, 'gcx: 'tcx, 'tcx> AstConv<'gcx, 'tcx>+'o {
pub fn ast_region_to_region(&self,
lifetime: &hir::Lifetime,
def: Option<&ty::RegionParameterDef>)
-> &'tcx ty::Region
{
let tcx = self.tcx();
let r = match tcx.named_region_map.defs.get(&lifetime.id) {
Some(&rl::Region::Static) => {
tcx.mk_region(ty::ReStatic)
}
Some(&rl::Region::LateBound(debruijn, id)) => {
// If this region is declared on a function, it will have
// an entry in `late_bound`, but if it comes from
// `for<'a>` in some type or something, it won't
// necessarily have one. In that case though, we won't be
// changed from late to early bound, so we can just
// substitute false.
let issue_32330 = tcx.named_region_map
.late_bound
.get(&id)
.cloned()
.unwrap_or(ty::Issue32330::WontChange);
let name = tcx.hir.name(id);
tcx.mk_region(ty::ReLateBound(debruijn,
ty::BrNamed(tcx.hir.local_def_id(id), name, issue_32330)))
}
Some(&rl::Region::LateBoundAnon(debruijn, index)) => {
tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(index)))
}
Some(&rl::Region::EarlyBound(index, id)) => {
let name = tcx.hir.name(id);
tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
index: index,
name: name
}))
}
Some(&rl::Region::Free(scope, id)) => {
// As in Region::LateBound above, could be missing for some late-bound
// regions, but also for early-bound regions.
let issue_32330 = tcx.named_region_map
.late_bound
.get(&id)
.cloned()
.unwrap_or(ty::Issue32330::WontChange);
let name = tcx.hir.name(id);
tcx.mk_region(ty::ReFree(ty::FreeRegion {
scope: scope.to_code_extent(&tcx.region_maps),
bound_region: ty::BrNamed(tcx.hir.local_def_id(id), name, issue_32330)
}))
// (*) -- not late-bound, won't change
}
None => {
self.re_infer(lifetime.span, def).expect("unelided lifetime in signature")
}
};
debug!("ast_region_to_region(lifetime={:?}) yields {:?}",
lifetime,
r);
r
}
/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
pub fn ast_path_substs_for_ty(&self,
span: Span,
def_id: DefId,
item_segment: &hir::PathSegment)
-> &'tcx Substs<'tcx>
{
let tcx = self.tcx();
match item_segment.parameters {
hir::AngleBracketedParameters(_) => {}
hir::ParenthesizedParameters(..) => {
struct_span_err!(tcx.sess, span, E0214,
"parenthesized parameters may only be used with a trait")
.span_label(span, &format!("only traits may use parentheses"))
.emit();
return Substs::for_item(tcx, def_id, |_, _| {
tcx.mk_region(ty::ReStatic)
}, |_, _| {
tcx.types.err
});
}
}
let (substs, assoc_bindings) =
self.create_substs_for_ast_path(span,
def_id,
&item_segment.parameters,
None);
assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
substs
}
/// Given the type/region arguments provided to some path (along with
/// an implicit Self, if this is a trait reference) returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
///
/// Note that the type listing given here is *exactly* what the user provided.
fn create_substs_for_ast_path(&self,
span: Span,
def_id: DefId,
parameters: &hir::PathParameters,
self_ty: Option<Ty<'tcx>>)
-> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
{
let tcx = self.tcx();
debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
parameters={:?})",
def_id, self_ty, parameters);
let (lifetimes, num_types_provided, infer_types) = match *parameters {
hir::AngleBracketedParameters(ref data) => {
(&data.lifetimes[..], data.types.len(), data.infer_types)
}
hir::ParenthesizedParameters(_) => (&[][..], 1, false)
};
// If the type is parameterized by this region, then replace this
// region with the current anon region binding (in other words,
// whatever & would get replaced with).
let decl_generics = match self.get_generics(span, def_id) {
Ok(generics) => generics,
Err(ErrorReported) => {
// No convenient way to recover from a cycle here. Just bail. Sorry!
self.tcx().sess.abort_if_errors();
bug!("ErrorReported returned, but no errors reports?")
}
};
let expected_num_region_params = decl_generics.regions.len();
let supplied_num_region_params = lifetimes.len();
if expected_num_region_params != supplied_num_region_params {
report_lifetime_number_error(tcx, span,
supplied_num_region_params,
expected_num_region_params);
}
// If a self-type was declared, one should be provided.
assert_eq!(decl_generics.has_self, self_ty.is_some());
// Check the number of type parameters supplied by the user.
let ty_param_defs = &decl_generics.types[self_ty.is_some() as usize..];
if !infer_types || num_types_provided > ty_param_defs.len() {
check_type_argument_count(tcx, span, num_types_provided, ty_param_defs);
}
let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
let default_needs_object_self = |p: &ty::TypeParameterDef<'tcx>| {
if let Some(ref default) = p.default {
if is_object && default.has_self_ty() {
// There is no suitable inference default for a type parameter
// that references self, in an object type.
return true;
}
}
false
};
let mut output_assoc_binding = None;
let substs = Substs::for_item(tcx, def_id, |def, _| {
let i = def.index as usize - self_ty.is_some() as usize;
if let Some(lifetime) = lifetimes.get(i) {
self.ast_region_to_region(lifetime, Some(def))
} else {
tcx.mk_region(ty::ReStatic)
}
}, |def, substs| {
let i = def.index as usize;
// Handle Self first, so we can adjust the index to match the AST.
if let (0, Some(ty)) = (i, self_ty) {
return ty;
}
let i = i - self_ty.is_some() as usize - decl_generics.regions.len();
if i < num_types_provided {
// A provided type parameter.
match *parameters {
hir::AngleBracketedParameters(ref data) => {
self.ast_ty_to_ty(&data.types[i])
}
hir::ParenthesizedParameters(ref data) => {
assert_eq!(i, 0);
let (ty, assoc) = self.convert_parenthesized_parameters(data);
output_assoc_binding = Some(assoc);
ty
}
}
} else if infer_types {
// No type parameters were provided, we can infer all.
let ty_var = if !default_needs_object_self(def) {
self.ty_infer_for_def(def, substs, span)
} else {
self.ty_infer(span)
};
ty_var
} else if let Some(default) = def.default {
// No type parameter provided, but a default exists.
// If we are converting an object type, then the
// `Self` parameter is unknown. However, some of the
// other type parameters may reference `Self` in their
// defaults. This will lead to an ICE if we are not
// careful!
if default_needs_object_self(def) {
struct_span_err!(tcx.sess, span, E0393,
"the type parameter `{}` must be explicitly specified",
def.name)
.span_label(span, &format!("missing reference to `{}`", def.name))
.note(&format!("because of the default `Self` reference, \
type parameters must be specified on object types"))
.emit();
tcx.types.err
} else {
// This is a default type parameter.
default.subst_spanned(tcx, substs, Some(span))
}
} else {
// We've already errored above about the mismatch.
tcx.types.err
}
});
let assoc_bindings = match *parameters {
hir::AngleBracketedParameters(ref data) => {
data.bindings.iter().map(|b| {
ConvertedBinding {
item_name: b.name,
ty: self.ast_ty_to_ty(&b.ty),
span: b.span
}
}).collect()
}
hir::ParenthesizedParameters(ref data) => {
vec![output_assoc_binding.unwrap_or_else(|| {
// This is an error condition, but we should
// get the associated type binding anyway.
self.convert_parenthesized_parameters(data).1
})]
}
};
debug!("create_substs_for_ast_path(decl_generics={:?}, self_ty={:?}) -> {:?}",
decl_generics, self_ty, substs);
(substs, assoc_bindings)
}
fn convert_parenthesized_parameters(&self,
data: &hir::ParenthesizedParameterData)
-> (Ty<'tcx>, ConvertedBinding<'tcx>)
{
let inputs = self.tcx().mk_type_list(data.inputs.iter().map(|a_t| {
self.ast_ty_to_ty(a_t)
}));
let (output, output_span) = match data.output {
Some(ref output_ty) => {
(self.ast_ty_to_ty(output_ty), output_ty.span)
}
None => {
(self.tcx().mk_nil(), data.span)
}
};
let output_binding = ConvertedBinding {
item_name: Symbol::intern(FN_OUTPUT_NAME),
ty: output,
span: output_span
};
(self.tcx().mk_ty(ty::TyTuple(inputs)), output_binding)
}
/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the def_id for the defining trait.
/// Fails if the type is a type other than a trait type.
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
pub fn instantiate_mono_trait_ref(&self,
trait_ref: &hir::TraitRef,
self_ty: Ty<'tcx>)
-> ty::TraitRef<'tcx>
{
let trait_def_id = self.trait_def_id(trait_ref);
self.ast_path_to_mono_trait_ref(trait_ref.path.span,
trait_def_id,
self_ty,
trait_ref.path.segments.last().unwrap())
}
fn trait_def_id(&self, trait_ref: &hir::TraitRef) -> DefId {
let path = &trait_ref.path;
match path.def {
Def::Trait(trait_def_id) => trait_def_id,
Def::Err => {
self.tcx().sess.fatal("cannot continue compilation due to previous error");
}
_ => {
span_fatal!(self.tcx().sess, path.span, E0245, "`{}` is not a trait",
self.tcx().hir.node_to_pretty_string(trait_ref.ref_id));
}
}
}
pub fn instantiate_poly_trait_ref(&self,
ast_trait_ref: &hir::PolyTraitRef,
self_ty: Ty<'tcx>,
poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
-> ty::PolyTraitRef<'tcx>
{
let trait_ref = &ast_trait_ref.trait_ref;
let trait_def_id = self.trait_def_id(trait_ref);
debug!("ast_path_to_poly_trait_ref({:?}, def_id={:?})", trait_ref, trait_def_id);
let (substs, assoc_bindings) =
self.create_substs_for_ast_trait_ref(trait_ref.path.span,
trait_def_id,
self_ty,
trait_ref.path.segments.last().unwrap());
let poly_trait_ref = ty::Binder(ty::TraitRef::new(trait_def_id, substs));
poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
// specify type to assert that error was already reported in Err case:
let predicate: Result<_, ErrorReported> =
self.ast_type_binding_to_poly_projection_predicate(trait_ref.ref_id,
poly_trait_ref,
binding);
predicate.ok() // ok to ignore Err() because ErrorReported (see above)
}));
debug!("ast_path_to_poly_trait_ref({:?}, projections={:?}) -> {:?}",
trait_ref, poly_projections, poly_trait_ref);
poly_trait_ref
}
fn ast_path_to_mono_trait_ref(&self,
span: Span,
trait_def_id: DefId,
self_ty: Ty<'tcx>,
trait_segment: &hir::PathSegment)
-> ty::TraitRef<'tcx>
{
let (substs, assoc_bindings) =
self.create_substs_for_ast_trait_ref(span,
trait_def_id,
self_ty,
trait_segment);
assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
ty::TraitRef::new(trait_def_id, substs)
}
fn create_substs_for_ast_trait_ref(&self,
span: Span,
trait_def_id: DefId,
self_ty: Ty<'tcx>,
trait_segment: &hir::PathSegment)
-> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
{
debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
trait_segment);
let trait_def = match self.get_trait_def(span, trait_def_id) {
Ok(trait_def) => trait_def,
Err(ErrorReported) => {
// No convenient way to recover from a cycle here. Just bail. Sorry!
self.tcx().sess.abort_if_errors();
bug!("ErrorReported returned, but no errors reports?")
}
};
match trait_segment.parameters {
hir::AngleBracketedParameters(_) => {
// For now, require that parenthetical notation be used
// only with `Fn()` etc.
if !self.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
emit_feature_err(&self.tcx().sess.parse_sess,
"unboxed_closures", span, GateIssue::Language,
"\
the precise format of `Fn`-family traits' \
type parameters is subject to change. \
Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead");
}
}
hir::ParenthesizedParameters(_) => {
// For now, require that parenthetical notation be used
// only with `Fn()` etc.
if !self.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
emit_feature_err(&self.tcx().sess.parse_sess,
"unboxed_closures", span, GateIssue::Language,
"\
parenthetical notation is only stable when used with `Fn`-family traits");
}
}
}
self.create_substs_for_ast_path(span,
trait_def_id,
&trait_segment.parameters,
Some(self_ty))
}
fn trait_defines_associated_type_named(&self,
trait_def_id: DefId,
assoc_name: ast::Name)
-> bool
{
self.tcx().associated_items(trait_def_id).any(|item| {
item.kind == ty::AssociatedKind::Type && item.name == assoc_name
})
}
fn ast_type_binding_to_poly_projection_predicate(
&self,
path_id: ast::NodeId,
trait_ref: ty::PolyTraitRef<'tcx>,
binding: &ConvertedBinding<'tcx>)
-> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
{
let tcx = self.tcx();
// Given something like `U : SomeTrait<T=X>`, we want to produce a
// predicate like `<U as SomeTrait>::T = X`. This is somewhat
// subtle in the event that `T` is defined in a supertrait of
// `SomeTrait`, because in that case we need to upcast.
//
// That is, consider this case:
//
// ```
// trait SubTrait : SuperTrait<int> { }
// trait SuperTrait<A> { type T; }
//
// ... B : SubTrait<T=foo> ...
// ```
//
// We want to produce `<B as SuperTrait<int>>::T == foo`.
// Find any late-bound regions declared in `ty` that are not
// declared in the trait-ref. These are not wellformed.
//
// Example:
//
// for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
// for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
let late_bound_in_ty = tcx.collect_referenced_late_bound_regions(&ty::Binder(binding.ty));
debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
let br_name = match *br {
ty::BrNamed(_, name, _) => name,
_ => {
span_bug!(
binding.span,
"anonymous bound region {:?} in binding but not trait ref",
br);
}
};
tcx.sess.add_lint(
lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
path_id,
binding.span,
format!("binding for associated type `{}` references lifetime `{}`, \
which does not appear in the trait input types",
binding.item_name, br_name));
}
// Simple case: X is defined in the current trait.
if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
return Ok(trait_ref.map_bound(|trait_ref| {
ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy {
trait_ref: trait_ref,
item_name: binding.item_name,
},
ty: binding.ty,
}
}));
}
// Otherwise, we have to walk through the supertraits to find
// those that do.
self.ensure_super_predicates(binding.span, trait_ref.def_id())?;
let candidates =
traits::supertraits(tcx, trait_ref.clone())
.filter(|r| self.trait_defines_associated_type_named(r.def_id(), binding.item_name));
let candidate = self.one_bound_for_assoc_type(candidates,
&trait_ref.to_string(),
&binding.item_name.as_str(),
binding.span)?;
Ok(candidate.map_bound(|trait_ref| {
ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy {
trait_ref: trait_ref,
item_name: binding.item_name,
},
ty: binding.ty,
}
}))
}
fn ast_path_to_ty(&self,
span: Span,
did: DefId,
item_segment: &hir::PathSegment)
-> Ty<'tcx>
{
let tcx = self.tcx();
let decl_ty = match self.get_item_type(span, did) {
Ok(ty) => ty,
Err(ErrorReported) => {
return tcx.types.err;
}
};
let substs = self.ast_path_substs_for_ty(span, did, item_segment);
decl_ty.subst(self.tcx(), substs)
}
/// Transform a PolyTraitRef into a PolyExistentialTraitRef by
/// removing the dummy Self type (TRAIT_OBJECT_DUMMY_SELF).
fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
-> ty::ExistentialTraitRef<'tcx> {
assert_eq!(trait_ref.self_ty().sty, TRAIT_OBJECT_DUMMY_SELF);
ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
}
fn conv_object_ty_poly_trait_ref(&self,
span: Span,
trait_bounds: &[hir::PolyTraitRef],
lifetime: &hir::Lifetime)
-> Ty<'tcx>
{
let tcx = self.tcx();
if trait_bounds.is_empty() {
span_err!(tcx.sess, span, E0224,
"at least one non-builtin trait is required for an object type");
return tcx.types.err;
}
let mut projection_bounds = vec![];
let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
let principal = self.instantiate_poly_trait_ref(&trait_bounds[0],
dummy_self,
&mut projection_bounds);
let (auto_traits, trait_bounds) = split_auto_traits(tcx, &trait_bounds[1..]);
if !trait_bounds.is_empty() {
let b = &trait_bounds[0];
let span = b.trait_ref.path.span;
struct_span_err!(self.tcx().sess, span, E0225,
"only Send/Sync traits can be used as additional traits in a trait object")
.span_label(span, &format!("non-Send/Sync additional trait"))
.emit();
}
// Erase the dummy_self (TRAIT_OBJECT_DUMMY_SELF) used above.
let existential_principal = principal.map_bound(|trait_ref| {
self.trait_ref_to_existential(trait_ref)
});
let existential_projections = projection_bounds.iter().map(|bound| {
bound.map_bound(|b| {
let p = b.projection_ty;
ty::ExistentialProjection {
trait_ref: self.trait_ref_to_existential(p.trait_ref),
item_name: p.item_name,
ty: b.ty
}
})
});
// ensure the super predicates and stop if we encountered an error
if self.ensure_super_predicates(span, principal.def_id()).is_err() {
return tcx.types.err;
}
// check that there are no gross object safety violations,
// most importantly, that the supertraits don't contain Self,
// to avoid ICE-s.
let object_safety_violations =
tcx.astconv_object_safety_violations(principal.def_id());
if !object_safety_violations.is_empty() {
tcx.report_object_safety_error(
span, principal.def_id(), object_safety_violations)
.emit();
return tcx.types.err;
}
let mut associated_types = FxHashSet::default();
for tr in traits::supertraits(tcx, principal) {
associated_types.extend(tcx.associated_items(tr.def_id())
.filter(|item| item.kind == ty::AssociatedKind::Type)
.map(|item| (tr.def_id(), item.name)));
}
for projection_bound in &projection_bounds {
let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
projection_bound.0.projection_ty.item_name);
associated_types.remove(&pair);
}
for (trait_def_id, name) in associated_types {
struct_span_err!(tcx.sess, span, E0191,
"the value of the associated type `{}` (from the trait `{}`) must be specified",
name,
tcx.item_path_str(trait_def_id))
.span_label(span, &format!(
"missing associated type `{}` value", name))
.emit();
}
let mut v =
iter::once(ty::ExistentialPredicate::Trait(*existential_principal.skip_binder()))
.chain(auto_traits.into_iter().map(ty::ExistentialPredicate::AutoTrait))
.chain(existential_projections
.map(|x| ty::ExistentialPredicate::Projection(*x.skip_binder())))
.collect::<AccumulateVec<[_; 8]>>();
v.sort_by(|a, b| a.cmp(tcx, b));
let existential_predicates = ty::Binder(tcx.mk_existential_predicates(v.into_iter()));
// Explicitly specified region bound. Use that.
let region_bound = if !lifetime.is_elided() {
self.ast_region_to_region(lifetime, None)
} else {
self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
if tcx.named_region_map.defs.contains_key(&lifetime.id) {
self.ast_region_to_region(lifetime, None)
} else {
self.re_infer(span, None).unwrap_or_else(|| {
span_err!(tcx.sess, span, E0228,
"the lifetime bound for this object type cannot be deduced \
from context; please supply an explicit bound");
tcx.mk_region(ty::ReStatic)
})
}
})
};
debug!("region_bound: {:?}", region_bound);
let ty = tcx.mk_dynamic(existential_predicates, region_bound);
debug!("trait_object_type: {:?}", ty);
ty
}
fn report_ambiguous_associated_type(&self,
span: Span,
type_str: &str,
trait_str: &str,
name: &str) {
struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
.span_label(span, &format!("ambiguous associated type"))
.note(&format!("specify the type using the syntax `<{} as {}>::{}`",
type_str, trait_str, name))
.emit();
}
// Search for a bound on a type parameter which includes the associated item
// given by assoc_name. ty_param_node_id is the node id for the type parameter
// (which might be `Self`, but only if it is the `Self` of a trait, not an
// impl). This function will fail if there are no suitable bounds or there is
// any ambiguity.
fn find_bound_for_assoc_item(&self,
ty_param_node_id: ast::NodeId,
ty_param_name: ast::Name,
assoc_name: ast::Name,
span: Span)
-> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
{
let tcx = self.tcx();
let bounds = match self.get_type_parameter_bounds(span, ty_param_node_id) {
Ok(v) => v,
Err(ErrorReported) => {
return Err(ErrorReported);
}
};
// Ensure the super predicates and stop if we encountered an error.
if bounds.iter().any(|b| self.ensure_super_predicates(span, b.def_id()).is_err()) {
return Err(ErrorReported);
}
// Check that there is exactly one way to find an associated type with the
// correct name.
let suitable_bounds =
traits::transitive_bounds(tcx, &bounds)
.filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name));
self.one_bound_for_assoc_type(suitable_bounds,
&ty_param_name.as_str(),
&assoc_name.as_str(),
span)
}
// Checks that bounds contains exactly one element and reports appropriate
// errors otherwise.
fn one_bound_for_assoc_type<I>(&self,
mut bounds: I,
ty_param_name: &str,
assoc_name: &str,
span: Span)
-> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
where I: Iterator<Item=ty::PolyTraitRef<'tcx>>
{
let bound = match bounds.next() {
Some(bound) => bound,
None => {
struct_span_err!(self.tcx().sess, span, E0220,
"associated type `{}` not found for `{}`",
assoc_name,
ty_param_name)
.span_label(span, &format!("associated type `{}` not found", assoc_name))
.emit();
return Err(ErrorReported);
}
};
if let Some(bound2) = bounds.next() {
let bounds = iter::once(bound).chain(iter::once(bound2)).chain(bounds);
let mut err = struct_span_err!(
self.tcx().sess, span, E0221,
"ambiguous associated type `{}` in bounds of `{}`",
assoc_name,
ty_param_name);
err.span_label(span, &format!("ambiguous associated type `{}`", assoc_name));
for bound in bounds {
let bound_span = self.tcx().associated_items(bound.def_id()).find(|item| {
item.kind == ty::AssociatedKind::Type && item.name == assoc_name
})
.and_then(|item| self.tcx().hir.span_if_local(item.def_id));
if let Some(span) = bound_span {
err.span_label(span, &format!("ambiguous `{}` from `{}`",
assoc_name,
bound));
} else {
span_note!(&mut err, span,
"associated type `{}` could derive from `{}`",
ty_param_name,
bound);
}
}
err.emit();
}
return Ok(bound);
}
// Create a type from a path to an associated type.
// For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
// and item_segment is the path segment for D. We return a type and a def for
// the whole path.
// Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
// parameter or Self.
pub fn associated_path_def_to_ty(&self,
ref_id: ast::NodeId,
span: Span,
ty: Ty<'tcx>,
ty_path_def: Def,
item_segment: &hir::PathSegment)
-> (Ty<'tcx>, Def)
{
let tcx = self.tcx();
let assoc_name = item_segment.name;
debug!("associated_path_def_to_ty: {:?}::{}", ty, assoc_name);
tcx.prohibit_type_params(slice::ref_slice(item_segment));
// Find the type of the associated item, and the trait where the associated
// item is declared.
let bound = match (&ty.sty, ty_path_def) {
(_, Def::SelfTy(Some(_), Some(impl_def_id))) => {
// `Self` in an impl of a trait - we have a concrete self type and a
// trait reference.
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
let trait_ref = if let Some(free_substs) = self.get_free_substs() {
trait_ref.subst(tcx, free_substs)
} else {
trait_ref
};
if self.ensure_super_predicates(span, trait_ref.def_id).is_err() {
return (tcx.types.err, Def::Err);
}
let candidates =
traits::supertraits(tcx, ty::Binder(trait_ref))
.filter(|r| self.trait_defines_associated_type_named(r.def_id(),
assoc_name));
match self.one_bound_for_assoc_type(candidates,
"Self",
&assoc_name.as_str(),
span) {
Ok(bound) => bound,
Err(ErrorReported) => return (tcx.types.err, Def::Err),
}
}
(&ty::TyParam(_), Def::SelfTy(Some(trait_did), None)) => {
let trait_node_id = tcx.hir.as_local_node_id(trait_did).unwrap();
match self.find_bound_for_assoc_item(trait_node_id,
keywords::SelfType.name(),
assoc_name,
span) {
Ok(bound) => bound,
Err(ErrorReported) => return (tcx.types.err, Def::Err),
}
}
(&ty::TyParam(_), Def::TyParam(param_did)) => {
let param_node_id = tcx.hir.as_local_node_id(param_did).unwrap();
let param_name = tcx.type_parameter_def(param_node_id).name;
match self.find_bound_for_assoc_item(param_node_id,
param_name,
assoc_name,
span) {
Ok(bound) => bound,
Err(ErrorReported) => return (tcx.types.err, Def::Err),
}
}
_ => {
// Don't print TyErr to the user.
if !ty.references_error() {
self.report_ambiguous_associated_type(span,
&ty.to_string(),
"Trait",
&assoc_name.as_str());
}
return (tcx.types.err, Def::Err);
}
};
let trait_did = bound.0.def_id;
let ty = self.projected_ty_from_poly_trait_ref(span, bound, assoc_name);
let item = tcx.associated_items(trait_did).find(|i| i.name == assoc_name);