-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathmod.rs
2527 lines (2364 loc) · 104 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Error Reporting Code for the inference engine
//!
//! Because of the way inference, and in particular region inference,
//! works, it often happens that errors are not detected until far after
//! the relevant line of code has been type-checked. Therefore, there is
//! an elaborate system to track why a particular constraint in the
//! inference graph arose so that we can explain to the user what gave
//! rise to a particular error.
//!
//! The basis of the system are the "origin" types. An "origin" is the
//! reason that a constraint or inference variable arose. There are
//! different "origin" enums for different kinds of constraints/variables
//! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
//! a span, but also more information so that we can generate a meaningful
//! error message.
//!
//! Having a catalog of all the different reasons an error can arise is
//! also useful for other reasons, like cross-referencing FAQs etc, though
//! we are not really taking advantage of this yet.
//!
//! # Region Inference
//!
//! Region inference is particularly tricky because it always succeeds "in
//! the moment" and simply registers a constraint. Then, at the end, we
//! can compute the full graph and report errors, so we need to be able to
//! store and later report what gave rise to the conflicting constraints.
//!
//! # Subtype Trace
//!
//! Determining whether `T1 <: T2` often involves a number of subtypes and
//! subconstraints along the way. A "TypeTrace" is an extended version
//! of an origin that traces the types and other values that were being
//! compared. It is not necessarily comprehensive (in fact, at the time of
//! this writing it only tracks the root values being compared) but I'd
//! like to extend it to include significant "waypoints". For example, if
//! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
//! <: T4` fails, I'd like the trace to include enough information to say
//! "in the 2nd element of the tuple". Similarly, failures when comparing
//! arguments or return types in fn types should be able to cite the
//! specific position, etc.
//!
//! # Reality vs plan
//!
//! Of course, there is still a LOT of code in typeck that has yet to be
//! ported to this system, and which relies on string concatenation at the
//! time of error detection.
use super::lexical_region_resolve::RegionResolutionError;
use super::region_constraints::GenericKind;
use super::{InferCtxt, RegionVariableOrigin, SubregionOrigin, TypeTrace, ValuePairs};
use crate::infer;
use crate::infer::error_reporting::nice_region_error::find_anon_type::find_anon_type;
use crate::traits::error_reporting::report_object_safety_error;
use crate::traits::{
IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
StatementAsExpression,
};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{pluralize, struct_span_err};
use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{Item, ItemKind, Node};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::{
self,
subst::{GenericArgKind, Subst, SubstsRef},
Region, Ty, TyCtxt, TypeFoldable,
};
use rustc_span::{sym, BytePos, DesugaringKind, Pos, Span};
use rustc_target::spec::abi;
use std::ops::ControlFlow;
use std::{cmp, fmt, iter};
mod note;
mod need_type_info;
pub use need_type_info::TypeAnnotationNeeded;
pub mod nice_region_error;
pub(super) fn note_and_explain_region(
tcx: TyCtxt<'tcx>,
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
region: ty::Region<'tcx>,
suffix: &str,
) {
let (description, span) = match *region {
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic => {
msg_span_from_free_region(tcx, region)
}
ty::ReEmpty(ty::UniverseIndex::ROOT) => ("the empty lifetime".to_owned(), None),
// uh oh, hope no user ever sees THIS
ty::ReEmpty(ui) => (format!("the empty lifetime in universe {:?}", ui), None),
ty::RePlaceholder(_) => return,
// FIXME(#13998) RePlaceholder should probably print like
// ReFree rather than dumping Debug output on the user.
//
// We shouldn't really be having unification failures with ReVar
// and ReLateBound though.
ty::ReVar(_) | ty::ReLateBound(..) | ty::ReErased => {
(format!("lifetime {:?}", region), None)
}
};
emit_msg_span(err, prefix, description, span, suffix);
}
pub(super) fn note_and_explain_free_region(
tcx: TyCtxt<'tcx>,
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
region: ty::Region<'tcx>,
suffix: &str,
) {
let (description, span) = msg_span_from_free_region(tcx, region);
emit_msg_span(err, prefix, description, span, suffix);
}
fn msg_span_from_free_region(
tcx: TyCtxt<'tcx>,
region: ty::Region<'tcx>,
) -> (String, Option<Span>) {
match *region {
ty::ReEarlyBound(_) | ty::ReFree(_) => {
msg_span_from_early_bound_and_free_regions(tcx, region)
}
ty::ReStatic => ("the static lifetime".to_owned(), None),
ty::ReEmpty(ty::UniverseIndex::ROOT) => ("an empty lifetime".to_owned(), None),
ty::ReEmpty(ui) => (format!("an empty lifetime in universe {:?}", ui), None),
_ => bug!("{:?}", region),
}
}
fn msg_span_from_early_bound_and_free_regions(
tcx: TyCtxt<'tcx>,
region: ty::Region<'tcx>,
) -> (String, Option<Span>) {
let sm = tcx.sess.source_map();
let scope = region.free_region_binding_scope(tcx);
let node = tcx.hir().local_def_id_to_hir_id(scope.expect_local());
let tag = match tcx.hir().find(node) {
Some(Node::Block(_) | Node::Expr(_)) => "body",
Some(Node::Item(it)) => item_scope_tag(&it),
Some(Node::TraitItem(it)) => trait_item_scope_tag(&it),
Some(Node::ImplItem(it)) => impl_item_scope_tag(&it),
Some(Node::ForeignItem(it)) => foreign_item_scope_tag(&it),
_ => unreachable!(),
};
let (prefix, span) = match *region {
ty::ReEarlyBound(ref br) => {
let mut sp = sm.guess_head_span(tcx.hir().span(node));
if let Some(param) =
tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(br.name))
{
sp = param.span;
}
(format!("the lifetime `{}` as defined on", br.name), sp)
}
ty::ReFree(ty::FreeRegion {
bound_region: ty::BoundRegionKind::BrNamed(_, name), ..
}) => {
let mut sp = sm.guess_head_span(tcx.hir().span(node));
if let Some(param) =
tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(name))
{
sp = param.span;
}
(format!("the lifetime `{}` as defined on", name), sp)
}
ty::ReFree(ref fr) => match fr.bound_region {
ty::BrAnon(idx) => {
if let Some((ty, _)) = find_anon_type(tcx, region, &fr.bound_region) {
("the anonymous lifetime defined on".to_string(), ty.span)
} else {
(
format!("the anonymous lifetime #{} defined on", idx + 1),
tcx.hir().span(node),
)
}
}
_ => (
format!("the lifetime `{}` as defined on", region),
sm.guess_head_span(tcx.hir().span(node)),
),
},
_ => bug!(),
};
let (msg, opt_span) = explain_span(tcx, tag, span);
(format!("{} {}", prefix, msg), opt_span)
}
fn emit_msg_span(
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
description: String,
span: Option<Span>,
suffix: &str,
) {
let message = format!("{}{}{}", prefix, description, suffix);
if let Some(span) = span {
err.span_note(span, &message);
} else {
err.note(&message);
}
}
fn item_scope_tag(item: &hir::Item<'_>) -> &'static str {
match item.kind {
hir::ItemKind::Impl { .. } => "impl",
hir::ItemKind::Struct(..) => "struct",
hir::ItemKind::Union(..) => "union",
hir::ItemKind::Enum(..) => "enum",
hir::ItemKind::Trait(..) => "trait",
hir::ItemKind::Fn(..) => "function body",
_ => "item",
}
}
fn trait_item_scope_tag(item: &hir::TraitItem<'_>) -> &'static str {
match item.kind {
hir::TraitItemKind::Fn(..) => "method body",
hir::TraitItemKind::Const(..) | hir::TraitItemKind::Type(..) => "associated item",
}
}
fn impl_item_scope_tag(item: &hir::ImplItem<'_>) -> &'static str {
match item.kind {
hir::ImplItemKind::Fn(..) => "method body",
hir::ImplItemKind::Const(..) | hir::ImplItemKind::TyAlias(..) => "associated item",
}
}
fn foreign_item_scope_tag(item: &hir::ForeignItem<'_>) -> &'static str {
match item.kind {
hir::ForeignItemKind::Fn(..) => "method body",
hir::ForeignItemKind::Static(..) | hir::ForeignItemKind::Type => "associated item",
}
}
fn explain_span(tcx: TyCtxt<'tcx>, heading: &str, span: Span) -> (String, Option<Span>) {
let lo = tcx.sess.source_map().lookup_char_pos(span.lo());
(format!("the {} at {}:{}", heading, lo.line, lo.col.to_usize() + 1), Some(span))
}
pub fn unexpected_hidden_region_diagnostic(
tcx: TyCtxt<'tcx>,
span: Span,
hidden_ty: Ty<'tcx>,
hidden_region: ty::Region<'tcx>,
) -> DiagnosticBuilder<'tcx> {
let mut err = struct_span_err!(
tcx.sess,
span,
E0700,
"hidden type for `impl Trait` captures lifetime that does not appear in bounds",
);
// Explain the region we are capturing.
match hidden_region {
ty::ReEmpty(ty::UniverseIndex::ROOT) => {
// All lifetimes shorter than the function body are `empty` in
// lexical region resolution. The default explanation of "an empty
// lifetime" isn't really accurate here.
let message = format!(
"hidden type `{}` captures lifetime smaller than the function body",
hidden_ty
);
err.span_note(span, &message);
}
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic | ty::ReEmpty(_) => {
// Assuming regionck succeeded (*), we ought to always be
// capturing *some* region from the fn header, and hence it
// ought to be free. So under normal circumstances, we will go
// down this path which gives a decent human readable
// explanation.
//
// (*) if not, the `tainted_by_errors` field would be set to
// `Some(ErrorReported)` in any case, so we wouldn't be here at all.
note_and_explain_free_region(
tcx,
&mut err,
&format!("hidden type `{}` captures ", hidden_ty),
hidden_region,
"",
);
}
_ => {
// Ugh. This is a painful case: the hidden region is not one
// that we can easily summarize or explain. This can happen
// in a case like
// `src/test/ui/multiple-lifetimes/ordinary-bounds-unsuited.rs`:
//
// ```
// fn upper_bounds<'a, 'b>(a: Ordinary<'a>, b: Ordinary<'b>) -> impl Trait<'a, 'b> {
// if condition() { a } else { b }
// }
// ```
//
// Here the captured lifetime is the intersection of `'a` and
// `'b`, which we can't quite express.
// We can at least report a really cryptic error for now.
note_and_explain_region(
tcx,
&mut err,
&format!("hidden type `{}` captures ", hidden_ty),
hidden_region,
"",
);
}
}
err
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
pub fn report_region_errors(&self, errors: &Vec<RegionResolutionError<'tcx>>) {
debug!("report_region_errors(): {} errors to start", errors.len());
// try to pre-process the errors, which will group some of them
// together into a `ProcessedErrors` group:
let errors = self.process_errors(errors);
debug!("report_region_errors: {} errors after preprocessing", errors.len());
for error in errors {
debug!("report_region_errors: error = {:?}", error);
if !self.try_report_nice_region_error(&error) {
match error.clone() {
// These errors could indicate all manner of different
// problems with many different solutions. Rather
// than generate a "one size fits all" error, what we
// attempt to do is go through a number of specific
// scenarios and try to find the best way to present
// the error. If all of these fails, we fall back to a rather
// general bit of code that displays the error information
RegionResolutionError::ConcreteFailure(origin, sub, sup) => {
if sub.is_placeholder() || sup.is_placeholder() {
self.report_placeholder_failure(origin, sub, sup).emit();
} else {
self.report_concrete_failure(origin, sub, sup).emit();
}
}
RegionResolutionError::GenericBoundFailure(origin, param_ty, sub) => {
self.report_generic_bound_failure(
origin.span(),
Some(origin),
param_ty,
sub,
);
}
RegionResolutionError::SubSupConflict(
_,
var_origin,
sub_origin,
sub_r,
sup_origin,
sup_r,
) => {
if sub_r.is_placeholder() {
self.report_placeholder_failure(sub_origin, sub_r, sup_r).emit();
} else if sup_r.is_placeholder() {
self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
} else {
self.report_sub_sup_conflict(
var_origin, sub_origin, sub_r, sup_origin, sup_r,
);
}
}
RegionResolutionError::UpperBoundUniverseConflict(
_,
_,
var_universe,
sup_origin,
sup_r,
) => {
assert!(sup_r.is_placeholder());
// Make a dummy value for the "sub region" --
// this is the initial value of the
// placeholder. In practice, we expect more
// tailored errors that don't really use this
// value.
let sub_r = self.tcx.mk_region(ty::ReEmpty(var_universe));
self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
}
RegionResolutionError::MemberConstraintFailure {
hidden_ty,
member_region,
span,
} => {
let hidden_ty = self.resolve_vars_if_possible(hidden_ty);
unexpected_hidden_region_diagnostic(
self.tcx,
span,
hidden_ty,
member_region,
)
.emit();
}
}
}
}
}
// This method goes through all the errors and try to group certain types
// of error together, for the purpose of suggesting explicit lifetime
// parameters to the user. This is done so that we can have a more
// complete view of what lifetimes should be the same.
// If the return value is an empty vector, it means that processing
// failed (so the return value of this method should not be used).
//
// The method also attempts to weed out messages that seem like
// duplicates that will be unhelpful to the end-user. But
// obviously it never weeds out ALL errors.
fn process_errors(
&self,
errors: &[RegionResolutionError<'tcx>],
) -> Vec<RegionResolutionError<'tcx>> {
debug!("process_errors()");
// We want to avoid reporting generic-bound failures if we can
// avoid it: these have a very high rate of being unhelpful in
// practice. This is because they are basically secondary
// checks that test the state of the region graph after the
// rest of inference is done, and the other kinds of errors
// indicate that the region constraint graph is internally
// inconsistent, so these test results are likely to be
// meaningless.
//
// Therefore, we filter them out of the list unless they are
// the only thing in the list.
let is_bound_failure = |e: &RegionResolutionError<'tcx>| match *e {
RegionResolutionError::GenericBoundFailure(..) => true,
RegionResolutionError::ConcreteFailure(..)
| RegionResolutionError::SubSupConflict(..)
| RegionResolutionError::UpperBoundUniverseConflict(..)
| RegionResolutionError::MemberConstraintFailure { .. } => false,
};
let mut errors = if errors.iter().all(|e| is_bound_failure(e)) {
errors.to_owned()
} else {
errors.iter().filter(|&e| !is_bound_failure(e)).cloned().collect()
};
// sort the errors by span, for better error message stability.
errors.sort_by_key(|u| match *u {
RegionResolutionError::ConcreteFailure(ref sro, _, _) => sro.span(),
RegionResolutionError::GenericBoundFailure(ref sro, _, _) => sro.span(),
RegionResolutionError::SubSupConflict(_, ref rvo, _, _, _, _) => rvo.span(),
RegionResolutionError::UpperBoundUniverseConflict(_, ref rvo, _, _, _) => rvo.span(),
RegionResolutionError::MemberConstraintFailure { span, .. } => span,
});
errors
}
/// Adds a note if the types come from similarly named crates
fn check_and_note_conflicting_crates(
&self,
err: &mut DiagnosticBuilder<'_>,
terr: &TypeError<'tcx>,
) {
use hir::def_id::CrateNum;
use rustc_hir::definitions::DisambiguatedDefPathData;
use ty::print::Printer;
use ty::subst::GenericArg;
struct AbsolutePathPrinter<'tcx> {
tcx: TyCtxt<'tcx>,
}
struct NonTrivialPath;
impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
type Error = NonTrivialPath;
type Path = Vec<String>;
type Region = !;
type Type = !;
type DynExistential = !;
type Const = !;
fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
self.tcx
}
fn print_region(self, _region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
Err(NonTrivialPath)
}
fn print_type(self, _ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
Err(NonTrivialPath)
}
fn print_dyn_existential(
self,
_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
) -> Result<Self::DynExistential, Self::Error> {
Err(NonTrivialPath)
}
fn print_const(self, _ct: &'tcx ty::Const<'tcx>) -> Result<Self::Const, Self::Error> {
Err(NonTrivialPath)
}
fn path_crate(self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
Ok(vec![self.tcx.original_crate_name(cnum).to_string()])
}
fn path_qualified(
self,
_self_ty: Ty<'tcx>,
_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<Self::Path, Self::Error> {
Err(NonTrivialPath)
}
fn path_append_impl(
self,
_print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_disambiguated_data: &DisambiguatedDefPathData,
_self_ty: Ty<'tcx>,
_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<Self::Path, Self::Error> {
Err(NonTrivialPath)
}
fn path_append(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
disambiguated_data: &DisambiguatedDefPathData,
) -> Result<Self::Path, Self::Error> {
let mut path = print_prefix(self)?;
path.push(disambiguated_data.to_string());
Ok(path)
}
fn path_generic_args(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_args: &[GenericArg<'tcx>],
) -> Result<Self::Path, Self::Error> {
print_prefix(self)
}
}
let report_path_match = |err: &mut DiagnosticBuilder<'_>, did1: DefId, did2: DefId| {
// Only external crates, if either is from a local
// module we could have false positives
if !(did1.is_local() || did2.is_local()) && did1.krate != did2.krate {
let abs_path =
|def_id| AbsolutePathPrinter { tcx: self.tcx }.print_def_path(def_id, &[]);
// We compare strings because DefPath can be different
// for imported and non-imported crates
let same_path = || -> Result<_, NonTrivialPath> {
Ok(self.tcx.def_path_str(did1) == self.tcx.def_path_str(did2)
|| abs_path(did1)? == abs_path(did2)?)
};
if same_path().unwrap_or(false) {
let crate_name = self.tcx.crate_name(did1.krate);
err.note(&format!(
"perhaps two different versions of crate `{}` are being used?",
crate_name
));
}
}
};
match *terr {
TypeError::Sorts(ref exp_found) => {
// if they are both "path types", there's a chance of ambiguity
// due to different versions of the same crate
if let (&ty::Adt(exp_adt, _), &ty::Adt(found_adt, _)) =
(exp_found.expected.kind(), exp_found.found.kind())
{
report_path_match(err, exp_adt.did, found_adt.did);
}
}
TypeError::Traits(ref exp_found) => {
report_path_match(err, exp_found.expected, exp_found.found);
}
_ => (), // FIXME(#22750) handle traits and stuff
}
}
fn note_error_origin(
&self,
err: &mut DiagnosticBuilder<'tcx>,
cause: &ObligationCause<'tcx>,
exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>,
) {
match cause.code {
ObligationCauseCode::Pattern { origin_expr: true, span: Some(span), root_ty } => {
let ty = self.resolve_vars_if_possible(root_ty);
if ty.is_suggestable() {
// don't show type `_`
err.span_label(span, format!("this expression has type `{}`", ty));
}
if let Some(ty::error::ExpectedFound { found, .. }) = exp_found {
if ty.is_box() && ty.boxed_ty() == found {
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
err.span_suggestion(
span,
"consider dereferencing the boxed value",
format!("*{}", snippet),
Applicability::MachineApplicable,
);
}
}
}
}
ObligationCauseCode::Pattern { origin_expr: false, span: Some(span), .. } => {
err.span_label(span, "expected due to this");
}
ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
semi_span,
source,
ref prior_arms,
last_ty,
scrut_hir_id,
opt_suggest_box_span,
arm_span,
scrut_span,
..
}) => match source {
hir::MatchSource::IfLetDesugar { .. } => {
let msg = "`if let` arms have incompatible types";
err.span_label(cause.span, msg);
if let Some(ret_sp) = opt_suggest_box_span {
self.suggest_boxing_for_return_impl_trait(
err,
ret_sp,
prior_arms.iter().chain(std::iter::once(&arm_span)).map(|s| *s),
);
}
}
hir::MatchSource::TryDesugar => {
if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
let scrut_expr = self.tcx.hir().expect_expr(scrut_hir_id);
let scrut_ty = if let hir::ExprKind::Call(_, args) = &scrut_expr.kind {
let arg_expr = args.first().expect("try desugaring call w/out arg");
self.in_progress_typeck_results.and_then(|typeck_results| {
typeck_results.borrow().expr_ty_opt(arg_expr)
})
} else {
bug!("try desugaring w/out call expr as scrutinee");
};
match scrut_ty {
Some(ty) if expected == ty => {
let source_map = self.tcx.sess.source_map();
err.span_suggestion(
source_map.end_point(cause.span),
"try removing this `?`",
"".to_string(),
Applicability::MachineApplicable,
);
}
_ => {}
}
}
}
_ => {
// `last_ty` can be `!`, `expected` will have better info when present.
let t = self.resolve_vars_if_possible(match exp_found {
Some(ty::error::ExpectedFound { expected, .. }) => expected,
_ => last_ty,
});
let source_map = self.tcx.sess.source_map();
let mut any_multiline_arm = source_map.is_multiline(arm_span);
if prior_arms.len() <= 4 {
for sp in prior_arms {
any_multiline_arm |= source_map.is_multiline(*sp);
err.span_label(*sp, format!("this is found to be of type `{}`", t));
}
} else if let Some(sp) = prior_arms.last() {
any_multiline_arm |= source_map.is_multiline(*sp);
err.span_label(
*sp,
format!("this and all prior arms are found to be of type `{}`", t),
);
}
let outer_error_span = if any_multiline_arm {
// Cover just `match` and the scrutinee expression, not
// the entire match body, to reduce diagram noise.
cause.span.shrink_to_lo().to(scrut_span)
} else {
cause.span
};
let msg = "`match` arms have incompatible types";
err.span_label(outer_error_span, msg);
if let Some((sp, boxed)) = semi_span {
if let (StatementAsExpression::NeedsBoxing, [.., prior_arm]) =
(boxed, &prior_arms[..])
{
err.multipart_suggestion(
"consider removing this semicolon and boxing the expressions",
vec![
(prior_arm.shrink_to_lo(), "Box::new(".to_string()),
(prior_arm.shrink_to_hi(), ")".to_string()),
(arm_span.shrink_to_lo(), "Box::new(".to_string()),
(arm_span.shrink_to_hi(), ")".to_string()),
(sp, String::new()),
],
Applicability::HasPlaceholders,
);
} else if matches!(boxed, StatementAsExpression::NeedsBoxing) {
err.span_suggestion_short(
sp,
"consider removing this semicolon and boxing the expressions",
String::new(),
Applicability::MachineApplicable,
);
} else {
err.span_suggestion_short(
sp,
"consider removing this semicolon",
String::new(),
Applicability::MachineApplicable,
);
}
}
if let Some(ret_sp) = opt_suggest_box_span {
// Get return type span and point to it.
self.suggest_boxing_for_return_impl_trait(
err,
ret_sp,
prior_arms.iter().chain(std::iter::once(&arm_span)).map(|s| *s),
);
}
}
},
ObligationCauseCode::IfExpression(box IfExpressionCause {
then,
else_sp,
outer,
semicolon,
opt_suggest_box_span,
}) => {
err.span_label(then, "expected because of this");
if let Some(sp) = outer {
err.span_label(sp, "`if` and `else` have incompatible types");
}
if let Some((sp, boxed)) = semicolon {
if matches!(boxed, StatementAsExpression::NeedsBoxing) {
err.multipart_suggestion(
"consider removing this semicolon and boxing the expression",
vec![
(then.shrink_to_lo(), "Box::new(".to_string()),
(then.shrink_to_hi(), ")".to_string()),
(else_sp.shrink_to_lo(), "Box::new(".to_string()),
(else_sp.shrink_to_hi(), ")".to_string()),
(sp, String::new()),
],
Applicability::MachineApplicable,
);
} else {
err.span_suggestion_short(
sp,
"consider removing this semicolon",
String::new(),
Applicability::MachineApplicable,
);
}
}
if let Some(ret_sp) = opt_suggest_box_span {
self.suggest_boxing_for_return_impl_trait(
err,
ret_sp,
vec![then, else_sp].into_iter(),
);
}
}
_ => (),
}
}
fn suggest_boxing_for_return_impl_trait(
&self,
err: &mut DiagnosticBuilder<'tcx>,
return_sp: Span,
arm_spans: impl Iterator<Item = Span>,
) {
err.multipart_suggestion(
"you could change the return type to be a boxed trait object",
vec![
(return_sp.with_hi(return_sp.lo() + BytePos(4)), "Box<dyn".to_string()),
(return_sp.shrink_to_hi(), ">".to_string()),
],
Applicability::MaybeIncorrect,
);
let sugg = arm_spans
.flat_map(|sp| {
vec![
(sp.shrink_to_lo(), "Box::new(".to_string()),
(sp.shrink_to_hi(), ")".to_string()),
]
.into_iter()
})
.collect::<Vec<_>>();
err.multipart_suggestion(
"if you change the return type to expect trait objects, box the returned expressions",
sugg,
Applicability::MaybeIncorrect,
);
}
/// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
/// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
/// populate `other_value` with `other_ty`.
///
/// ```text
/// Foo<Bar<Qux>>
/// ^^^^--------^ this is highlighted
/// | |
/// | this type argument is exactly the same as the other type, not highlighted
/// this is highlighted
/// Bar<Qux>
/// -------- this type is the same as a type argument in the other type, not highlighted
/// ```
fn highlight_outer(
&self,
value: &mut DiagnosticStyledString,
other_value: &mut DiagnosticStyledString,
name: String,
sub: ty::subst::SubstsRef<'tcx>,
pos: usize,
other_ty: Ty<'tcx>,
) {
// `value` and `other_value` hold two incomplete type representation for display.
// `name` is the path of both types being compared. `sub`
value.push_highlighted(name);
let len = sub.len();
if len > 0 {
value.push_highlighted("<");
}
// Output the lifetimes for the first type
let lifetimes = sub
.regions()
.map(|lifetime| {
let s = lifetime.to_string();
if s.is_empty() { "'_".to_string() } else { s }
})
.collect::<Vec<_>>()
.join(", ");
if !lifetimes.is_empty() {
if sub.regions().count() < len {
value.push_normal(lifetimes + ", ");
} else {
value.push_normal(lifetimes);
}
}
// Highlight all the type arguments that aren't at `pos` and compare the type argument at
// `pos` and `other_ty`.
for (i, type_arg) in sub.types().enumerate() {
if i == pos {
let values = self.cmp(type_arg, other_ty);
value.0.extend((values.0).0);
other_value.0.extend((values.1).0);
} else {
value.push_highlighted(type_arg.to_string());
}
if len > 0 && i != len - 1 {
value.push_normal(", ");
}
}
if len > 0 {
value.push_highlighted(">");
}
}
/// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
/// as that is the difference to the other type.
///
/// For the following code:
///
/// ```no_run
/// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
/// ```
///
/// The type error output will behave in the following way:
///
/// ```text
/// Foo<Bar<Qux>>
/// ^^^^--------^ this is highlighted
/// | |
/// | this type argument is exactly the same as the other type, not highlighted
/// this is highlighted
/// Bar<Qux>
/// -------- this type is the same as a type argument in the other type, not highlighted
/// ```
fn cmp_type_arg(
&self,
mut t1_out: &mut DiagnosticStyledString,
mut t2_out: &mut DiagnosticStyledString,
path: String,
sub: ty::subst::SubstsRef<'tcx>,
other_path: String,
other_ty: Ty<'tcx>,
) -> Option<()> {
for (i, ta) in sub.types().enumerate() {
if ta == other_ty {
self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
return Some(());
}
if let ty::Adt(def, _) = ta.kind() {
let path_ = self.tcx.def_path_str(def.did);
if path_ == other_path {
self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
return Some(());
}
}
}
None
}
/// Adds a `,` to the type representation only if it is appropriate.
fn push_comma(
&self,
value: &mut DiagnosticStyledString,
other_value: &mut DiagnosticStyledString,
len: usize,
pos: usize,
) {
if len > 0 && pos != len - 1 {
value.push_normal(", ");
other_value.push_normal(", ");
}
}
/// For generic types with parameters with defaults, remove the parameters corresponding to
/// the defaults. This repeats a lot of the logic found in `ty::print::pretty`.
fn strip_generic_default_params(
&self,
def_id: DefId,
substs: ty::subst::SubstsRef<'tcx>,
) -> SubstsRef<'tcx> {
let generics = self.tcx.generics_of(def_id);
let mut num_supplied_defaults = 0;
let default_params = generics.params.iter().rev().filter_map(|param| match param.kind {
ty::GenericParamDefKind::Type { has_default: true, .. } => Some(param.def_id),
ty::GenericParamDefKind::Const { has_default: true } => Some(param.def_id),
_ => None,
});
for (def_id, actual) in iter::zip(default_params, substs.iter().rev()) {
match actual.unpack() {
GenericArgKind::Const(c) => {
if self.tcx.const_param_default(def_id).subst(self.tcx, substs) != c {
break;
}
}
GenericArgKind::Type(ty) => {
if self.tcx.type_of(def_id).subst(self.tcx, substs) != ty {
break;
}
}
_ => break,
}
num_supplied_defaults += 1;
}
let len = generics.params.len();
let mut generics = generics.clone();
generics.params.truncate(len - num_supplied_defaults);
substs.truncate_to(self.tcx, &generics)
}
/// Given two `fn` signatures highlight only sub-parts that are different.
fn cmp_fn_sig(
&self,
sig1: &ty::PolyFnSig<'tcx>,
sig2: &ty::PolyFnSig<'tcx>,
) -> (DiagnosticStyledString, DiagnosticStyledString) {
let get_lifetimes = |sig| {
use rustc_hir::def::Namespace;
let mut s = String::new();
let (_, (sig, reg)) = ty::print::FmtPrinter::new(self.tcx, &mut s, Namespace::TypeNS)
.name_all_regions(sig)
.unwrap();
let lts: Vec<String> = reg.into_iter().map(|(_, kind)| kind.to_string()).collect();