From db5b70f193dcc08476ec1bef8dc1863d508eea1e Mon Sep 17 00:00:00 2001 From: Bastian Kauschke Date: Mon, 28 Sep 2020 20:21:44 +0200 Subject: [PATCH] move candidate_from_obligation_no_cache --- .../src/traits/select/candidate_assembly.rs | 162 +++++++++++++++++- .../src/traits/select/mod.rs | 155 ----------------- 2 files changed, 161 insertions(+), 156 deletions(-) diff --git a/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs b/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs index a4943231dfdff..9cb5c232646f8 100644 --- a/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs +++ b/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs @@ -7,14 +7,19 @@ //! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly use rustc_hir as hir; use rustc_infer::traits::{Obligation, SelectionError, TraitObligation}; +use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::{self, TypeFoldable}; use rustc_target::spec::abi::Abi; +use crate::traits::coherence::Conflict; use crate::traits::{util, SelectionResult}; +use crate::traits::{Overflow, Unimplemented}; use super::BuiltinImplConditions; +use super::IntercrateAmbiguityCause; +use super::OverflowError; use super::SelectionCandidate::{self, *}; -use super::{SelectionCandidateSet, SelectionContext, TraitObligationStack}; +use super::{EvaluatedCandidate, SelectionCandidateSet, SelectionContext, TraitObligationStack}; impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> { pub(super) fn candidate_from_obligation<'o>( @@ -62,6 +67,161 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> { candidate } + fn candidate_from_obligation_no_cache<'o>( + &mut self, + stack: &TraitObligationStack<'o, 'tcx>, + ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> { + if let Some(conflict) = self.is_knowable(stack) { + debug!("coherence stage: not knowable"); + if self.intercrate_ambiguity_causes.is_some() { + debug!("evaluate_stack: intercrate_ambiguity_causes is some"); + // Heuristics: show the diagnostics when there are no candidates in crate. + if let Ok(candidate_set) = self.assemble_candidates(stack) { + let mut no_candidates_apply = true; + + for c in candidate_set.vec.iter() { + if self.evaluate_candidate(stack, &c)?.may_apply() { + no_candidates_apply = false; + break; + } + } + + if !candidate_set.ambiguous && no_candidates_apply { + let trait_ref = stack.obligation.predicate.skip_binder().trait_ref; + let self_ty = trait_ref.self_ty(); + let (trait_desc, self_desc) = with_no_trimmed_paths(|| { + let trait_desc = trait_ref.print_only_trait_path().to_string(); + let self_desc = if self_ty.has_concrete_skeleton() { + Some(self_ty.to_string()) + } else { + None + }; + (trait_desc, self_desc) + }); + let cause = if let Conflict::Upstream = conflict { + IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc } + } else { + IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc } + }; + debug!("evaluate_stack: pushing cause = {:?}", cause); + self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause); + } + } + } + return Ok(None); + } + + let candidate_set = self.assemble_candidates(stack)?; + + if candidate_set.ambiguous { + debug!("candidate set contains ambig"); + return Ok(None); + } + + let mut candidates = candidate_set.vec; + + debug!("assembled {} candidates for {:?}: {:?}", candidates.len(), stack, candidates); + + // At this point, we know that each of the entries in the + // candidate set is *individually* applicable. Now we have to + // figure out if they contain mutual incompatibilities. This + // frequently arises if we have an unconstrained input type -- + // for example, we are looking for `$0: Eq` where `$0` is some + // unconstrained type variable. In that case, we'll get a + // candidate which assumes $0 == int, one that assumes `$0 == + // usize`, etc. This spells an ambiguity. + + // If there is more than one candidate, first winnow them down + // by considering extra conditions (nested obligations and so + // forth). We don't winnow if there is exactly one + // candidate. This is a relatively minor distinction but it + // can lead to better inference and error-reporting. An + // example would be if there was an impl: + // + // impl Vec { fn push_clone(...) { ... } } + // + // and we were to see some code `foo.push_clone()` where `boo` + // is a `Vec` and `Bar` does not implement `Clone`. If + // we were to winnow, we'd wind up with zero candidates. + // Instead, we select the right impl now but report "`Bar` does + // not implement `Clone`". + if candidates.len() == 1 { + return self.filter_negative_and_reservation_impls(candidates.pop().unwrap()); + } + + // Winnow, but record the exact outcome of evaluation, which + // is needed for specialization. Propagate overflow if it occurs. + let mut candidates = candidates + .into_iter() + .map(|c| match self.evaluate_candidate(stack, &c) { + Ok(eval) if eval.may_apply() => { + Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval })) + } + Ok(_) => Ok(None), + Err(OverflowError) => Err(Overflow), + }) + .flat_map(Result::transpose) + .collect::, _>>()?; + + debug!("winnowed to {} candidates for {:?}: {:?}", candidates.len(), stack, candidates); + + let needs_infer = stack.obligation.predicate.needs_infer(); + + // If there are STILL multiple candidates, we can further + // reduce the list by dropping duplicates -- including + // resolving specializations. + if candidates.len() > 1 { + let mut i = 0; + while i < candidates.len() { + let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| { + self.candidate_should_be_dropped_in_favor_of( + &candidates[i], + &candidates[j], + needs_infer, + ) + }); + if is_dup { + debug!("Dropping candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]); + candidates.swap_remove(i); + } else { + debug!("Retaining candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]); + i += 1; + + // If there are *STILL* multiple candidates, give up + // and report ambiguity. + if i > 1 { + debug!("multiple matches, ambig"); + return Ok(None); + } + } + } + } + + // If there are *NO* candidates, then there are no impls -- + // that we know of, anyway. Note that in the case where there + // are unbound type variables within the obligation, it might + // be the case that you could still satisfy the obligation + // from another crate by instantiating the type variables with + // a type from another crate that does have an impl. This case + // is checked for in `evaluate_stack` (and hence users + // who might care about this case, like coherence, should use + // that function). + if candidates.is_empty() { + // If there's an error type, 'downgrade' our result from + // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid + // emitting additional spurious errors, since we're guaranteed + // to have emitted at least one. + if stack.obligation.references_error() { + debug!("no results for error type, treating as ambiguous"); + return Ok(None); + } + return Err(Unimplemented); + } + + // Just one candidate left. + self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate) + } + pub(super) fn assemble_candidates<'o>( &mut self, stack: &TraitObligationStack<'o, 'tcx>, diff --git a/compiler/rustc_trait_selection/src/traits/select/mod.rs b/compiler/rustc_trait_selection/src/traits/select/mod.rs index 57f1fedacbe5a..114dc79c44f50 100644 --- a/compiler/rustc_trait_selection/src/traits/select/mod.rs +++ b/compiler/rustc_trait_selection/src/traits/select/mod.rs @@ -1029,161 +1029,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> { Ok(Some(candidate)) } - fn candidate_from_obligation_no_cache<'o>( - &mut self, - stack: &TraitObligationStack<'o, 'tcx>, - ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> { - if let Some(conflict) = self.is_knowable(stack) { - debug!("coherence stage: not knowable"); - if self.intercrate_ambiguity_causes.is_some() { - debug!("evaluate_stack: intercrate_ambiguity_causes is some"); - // Heuristics: show the diagnostics when there are no candidates in crate. - if let Ok(candidate_set) = self.assemble_candidates(stack) { - let mut no_candidates_apply = true; - - for c in candidate_set.vec.iter() { - if self.evaluate_candidate(stack, &c)?.may_apply() { - no_candidates_apply = false; - break; - } - } - - if !candidate_set.ambiguous && no_candidates_apply { - let trait_ref = stack.obligation.predicate.skip_binder().trait_ref; - let self_ty = trait_ref.self_ty(); - let (trait_desc, self_desc) = with_no_trimmed_paths(|| { - let trait_desc = trait_ref.print_only_trait_path().to_string(); - let self_desc = if self_ty.has_concrete_skeleton() { - Some(self_ty.to_string()) - } else { - None - }; - (trait_desc, self_desc) - }); - let cause = if let Conflict::Upstream = conflict { - IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc } - } else { - IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc } - }; - debug!("evaluate_stack: pushing cause = {:?}", cause); - self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause); - } - } - } - return Ok(None); - } - - let candidate_set = self.assemble_candidates(stack)?; - - if candidate_set.ambiguous { - debug!("candidate set contains ambig"); - return Ok(None); - } - - let mut candidates = candidate_set.vec; - - debug!("assembled {} candidates for {:?}: {:?}", candidates.len(), stack, candidates); - - // At this point, we know that each of the entries in the - // candidate set is *individually* applicable. Now we have to - // figure out if they contain mutual incompatibilities. This - // frequently arises if we have an unconstrained input type -- - // for example, we are looking for `$0: Eq` where `$0` is some - // unconstrained type variable. In that case, we'll get a - // candidate which assumes $0 == int, one that assumes `$0 == - // usize`, etc. This spells an ambiguity. - - // If there is more than one candidate, first winnow them down - // by considering extra conditions (nested obligations and so - // forth). We don't winnow if there is exactly one - // candidate. This is a relatively minor distinction but it - // can lead to better inference and error-reporting. An - // example would be if there was an impl: - // - // impl Vec { fn push_clone(...) { ... } } - // - // and we were to see some code `foo.push_clone()` where `boo` - // is a `Vec` and `Bar` does not implement `Clone`. If - // we were to winnow, we'd wind up with zero candidates. - // Instead, we select the right impl now but report "`Bar` does - // not implement `Clone`". - if candidates.len() == 1 { - return self.filter_negative_and_reservation_impls(candidates.pop().unwrap()); - } - - // Winnow, but record the exact outcome of evaluation, which - // is needed for specialization. Propagate overflow if it occurs. - let mut candidates = candidates - .into_iter() - .map(|c| match self.evaluate_candidate(stack, &c) { - Ok(eval) if eval.may_apply() => { - Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval })) - } - Ok(_) => Ok(None), - Err(OverflowError) => Err(Overflow), - }) - .flat_map(Result::transpose) - .collect::, _>>()?; - - debug!("winnowed to {} candidates for {:?}: {:?}", candidates.len(), stack, candidates); - - let needs_infer = stack.obligation.predicate.needs_infer(); - - // If there are STILL multiple candidates, we can further - // reduce the list by dropping duplicates -- including - // resolving specializations. - if candidates.len() > 1 { - let mut i = 0; - while i < candidates.len() { - let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| { - self.candidate_should_be_dropped_in_favor_of( - &candidates[i], - &candidates[j], - needs_infer, - ) - }); - if is_dup { - debug!("Dropping candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]); - candidates.swap_remove(i); - } else { - debug!("Retaining candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]); - i += 1; - - // If there are *STILL* multiple candidates, give up - // and report ambiguity. - if i > 1 { - debug!("multiple matches, ambig"); - return Ok(None); - } - } - } - } - - // If there are *NO* candidates, then there are no impls -- - // that we know of, anyway. Note that in the case where there - // are unbound type variables within the obligation, it might - // be the case that you could still satisfy the obligation - // from another crate by instantiating the type variables with - // a type from another crate that does have an impl. This case - // is checked for in `evaluate_stack` (and hence users - // who might care about this case, like coherence, should use - // that function). - if candidates.is_empty() { - // If there's an error type, 'downgrade' our result from - // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid - // emitting additional spurious errors, since we're guaranteed - // to have emitted at least one. - if stack.obligation.references_error() { - debug!("no results for error type, treating as ambiguous"); - return Ok(None); - } - return Err(Unimplemented); - } - - // Just one candidate left. - self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate) - } - fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option { debug!("is_knowable(intercrate={:?})", self.intercrate);