Writeup Template: You can use this file as a template for your writeup if you want to submit it as a markdown file, but feel free to use some other method and submit a pdf if you prefer.
The goals / steps of this project are the following:
Training / Calibration
- Download the simulator and take data in "Training Mode"
- Test out the functions in the Jupyter Notebook provided
- Add functions to detect obstacles and samples of interest (golden rocks)
- Fill in the
process_image()
function with the appropriate image processing steps (perspective transform, color threshold etc.) to get from raw images to a map. Theoutput_image
you create in this step should demonstrate that your mapping pipeline works. - Use
moviepy
to process the images in your saved dataset with theprocess_image()
function. Include the video you produce as part of your submission.
Autonomous Navigation / Mapping
- Fill in the
perception_step()
function within theperception.py
script with the appropriate image processing functions to create a map and updateRover()
data (similar to what you did withprocess_image()
in the notebook). - Fill in the
decision_step()
function within thedecision.py
script with conditional statements that take into consideration the outputs of theperception_step()
in deciding how to issue throttle, brake and steering commands. - Iterate on your perception and decision function until your rover does a reasonable (need to define metric) job of navigating and mapping.
- Note: running the simulator with different choices of resolution and graphics quality may produce different results! Make a note of your simulator settings in this writeup when you submit the project. [//]: # (Image References)
Rubric Points
Here I will consider the rubric points individually and describe how I addressed each point in my implementation.
1. Provide a Writeup / README that includes all the rubric points and how you addressed each one. You can submit your writeup as markdown or pdf. Here is a template writeup for this project you can use as a guide and a starting point.
You're reading it!
2. Describe how (and identify where in your code) you used color thresholds to create a thresholded binary image. Provide an example of a binary image result.
I used a combination of color thresholds to generate a binary image (thresholding steps at lines # through # in another_file.py
). Here's an example of my output for this step.
1. Briefly discuss any problems / issues you faced in your implementation of this project. Where will your pipeline likely fail? What could you do to make it more robust?
Here I'll talk about the approach I took, what techniques I used, what worked and why, where the pipeline might fail and how I might improve it if I were going to pursue this project further.