-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathloadData.py
132 lines (110 loc) · 4.8 KB
/
loadData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import cv2
import pickle
__author__ = "Sachin Mehta"
class LoadData:
'''
Class to laod the data
'''
def __init__(self, data_dir, classes, cached_data_file, normVal=1.10):
'''
:param data_dir: directory where the dataset is kept
:param classes: number of classes in the dataset
:param cached_data_file: location where cached file has to be stored
:param normVal: normalization value, as defined in ERFNet paper
'''
self.data_dir = data_dir
self.classes = classes
self.classWeights = np.ones(self.classes, dtype=np.float32)
self.normVal = normVal
self.mean = np.zeros(3, dtype=np.float32)
self.std = np.zeros(3, dtype=np.float32)
self.trainImList = list()
self.valImList = list()
self.trainAnnotList = list()
self.valAnnotList = list()
self.cached_data_file = cached_data_file
def compute_class_weights(self, histogram):
'''
Helper function to compute the class weights
:param histogram: distribution of class samples
:return: None, but updates the classWeights variable
'''
normHist = histogram / np.sum(histogram)
for i in range(self.classes):
self.classWeights[i] = 1 / (np.log(self.normVal + normHist[i]))
def readFile(self, fileName, trainStg=False):
'''
Function to read the data
:param fileName: file that stores the image locations
:param trainStg: if processing training or validation data
:return: 0 if successful
'''
if trainStg == True:
global_hist = np.zeros(self.classes, dtype=np.float32)
no_files = 0
min_val_al = 0
max_val_al = 0
with open(self.data_dir + '/' + fileName, 'r') as textFile:
for line in textFile:
# we expect the text file to contain the data in following format
# <RGB Image>, <Label Image>
line_arr = line.split(',')
img_file = ((self.data_dir).strip() + '/' + line_arr[0].strip()).strip()
label_file = ((self.data_dir).strip() + '/' + line_arr[1].strip()).strip()
label_img = cv2.imread(label_file, 0)
unique_values = np.unique(label_img)
max_val = max(unique_values)
min_val = min(unique_values)
max_val_al = max(max_val, max_val_al)
min_val_al = min(min_val, min_val_al)
if trainStg == True:
hist = np.histogram(label_img, self.classes)
global_hist += hist[0]
rgb_img = cv2.imread(img_file)
self.mean[0] += np.mean(rgb_img[:,:,0])
self.mean[1] += np.mean(rgb_img[:, :, 1])
self.mean[2] += np.mean(rgb_img[:, :, 2])
self.std[0] += np.std(rgb_img[:, :, 0])
self.std[1] += np.std(rgb_img[:, :, 1])
self.std[2] += np.std(rgb_img[:, :, 2])
self.trainImList.append(img_file)
self.trainAnnotList.append(label_file)
else:
self.valImList.append(img_file)
self.valAnnotList.append(label_file)
if max_val > (self.classes - 1) or min_val < 0:
print('Labels can take value between 0 and number of classes.')
print('Some problem with labels. Please check.')
print('Label Image ID: ' + label_file)
no_files += 1
if trainStg == True:
# divide the mean and std values by the sample space size
self.mean /= no_files
self.std /= no_files
#compute the class imbalance information
self.compute_class_weights(global_hist)
return 0
def processData(self):
'''
main.py calls this function
We expect train.txt and val.txt files to be inside the data directory.
:return:
'''
print('Processing training data')
return_val = self.readFile('train.txt', True)
print('Processing validation data')
return_val1 = self.readFile('val.txt')
print('Pickling data')
if return_val ==0 and return_val1 ==0:
data_dict = dict()
data_dict['trainIm'] = self.trainImList
data_dict['trainAnnot'] = self.trainAnnotList
data_dict['valIm'] = self.valImList
data_dict['valAnnot'] = self.valAnnotList
data_dict['mean'] = self.mean
data_dict['std'] = self.std
data_dict['classWeights'] = self.classWeights
pickle.dump(data_dict, open(self.cached_data_file, "wb"))
return data_dict
return None