forked from vivanov879/translator
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.lua
244 lines (186 loc) · 7.37 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
require 'mobdebug'.start()
require 'nn'
require 'nngraph'
require 'optim'
require 'image'
require 'Embedding'
local model_utils=require 'model_utils'
require 'table_utils'
nngraph.setDebug(true)
rnn_size = 100
--train data
function read_words(fn)
fd = io.lines(fn)
sentences = {}
line = fd()
while line do
sentence = {}
for _, word in pairs(string.split(line, " ")) do
sentence[#sentence + 1] = word
end
sentences[#sentences + 1] = sentence
line = fd()
end
return sentences
end
function convert2tensors(sentences)
l = {}
for _, sentence in pairs(sentences) do
t = torch.zeros(1, #sentence)
for i = 1, #sentence do
t[1][i] = sentence[i]
end
l[#l + 1] = t
end
return l
end
sentences_ru = read_words('filtered_sentences_indexes_ru_rev1')
sentences_en = read_words('filtered_sentences_indexes_en1')
sentences_ru = convert2tensors(sentences_ru)
sentences_en = convert2tensors(sentences_en)
--print(sentences_ru)
assert(#sentences_en == #sentences_ru)
n_data = #sentences_en
vocabulary_ru = table.load('vocabulary_ru')
vocabulary_en = table.load('vocabulary_en')
vocab_size = #vocabulary_ru
assert (#vocabulary_en == #vocabulary_ru)
--encoder
x = nn.Identity()()
prev_h = nn.Identity()()
prev_c = nn.Identity()()
function new_input_sum()
-- transforms input
i2h = nn.Linear(rnn_size, rnn_size)(x):annotate{name='i2h'}
-- transforms previous timestep's output
h2h = nn.Linear(rnn_size, rnn_size)(prev_h):annotate{name='h2h'}
return nn.CAddTable()({i2h, h2h})
end
in_gate = nn.Sigmoid()(new_input_sum())
forget_gate = nn.Sigmoid()(new_input_sum())
out_gate = nn.Sigmoid()(new_input_sum())
in_transform = nn.Tanh()(new_input_sum())
next_c = nn.CAddTable()({
nn.CMulTable()({forget_gate, prev_c}),
nn.CMulTable()({in_gate, in_transform})
})
next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
encoder = nn.gModule({x, prev_c, prev_h}, {next_c, next_h})
--decoder
x = nn.Identity()()
prev_h = nn.Identity()()
prev_c = nn.Identity()()
function new_input_sum()
-- transforms input
i2h = nn.Linear(rnn_size, rnn_size)(x)
-- transforms previous timestep's output
h2h = nn.Linear(rnn_size, rnn_size)(prev_h)
return nn.CAddTable()({i2h, h2h})
end
in_gate = nn.Sigmoid()(new_input_sum())
forget_gate = nn.Sigmoid()(new_input_sum())
out_gate = nn.Sigmoid()(new_input_sum())
in_transform = nn.Tanh()(new_input_sum())
next_c = nn.CAddTable()({
nn.CMulTable()({forget_gate, prev_c}),
nn.CMulTable()({in_gate, in_transform})
})
next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
prediction = nn.Linear(rnn_size, vocab_size)(next_h)
prediction = nn.LogSoftMax()(prediction)
decoder = nn.gModule({x, prev_c, prev_h}, {next_c, next_h, prediction})
--embedding layer fed into encoder
embed_enc = Embedding(vocab_size, rnn_size)
--embedding layer fed into decoder
embed_dec = Embedding(vocab_size, rnn_size)
criterion = nn.ClassNLLCriterion()
-- put the above things into one flattened parameters tensor
local params, grad_params = model_utils.combine_all_parameters(embed_enc, embed_dec, encoder, decoder)
params:uniform(-0.08, 0.08)
seq_length = 30
-- make a bunch of clones, AFTER flattening, as that reallocates memory
embed_enc_clones = model_utils.clone_many_times(embed_enc, seq_length)
embed_dec_clones = model_utils.clone_many_times(embed_dec, seq_length)
encoder_clones = model_utils.clone_many_times(encoder, seq_length)
decoder_clones = model_utils.clone_many_times(decoder, seq_length)
criterion_clones = model_utils.clone_many_times(criterion, seq_length)
x_raw_enc = sentences_ru
x_raw_dec = sentences_en
iteration_counter = 1
-- do fwd/bwd and return loss, grad_params
function feval(x_arg)
if x_arg ~= params then
params:copy(x_arg)
end
grad_params:zero()
------------------- forward pass -------------------
lstm_c_enc = {[0]=torch.zeros(1, rnn_size)}
lstm_h_enc = {[0]=torch.zeros(1, rnn_size)}
x_enc_embedding = {}
local loss = 0
x_enc = x_raw_enc[iteration_counter]
for t = 1, x_enc:size(2) - 1 do
x_enc_embedding[t] = embed_enc_clones[t]:forward(x_enc[{{}, {t}}]:reshape(1))
lstm_c_enc[t], lstm_h_enc[t] = unpack(encoder_clones[t]:forward({x_enc_embedding[t], lstm_c_enc[t-1], lstm_h_enc[t-1]}))
end
lstm_c_dec = {[0]=torch.zeros(1, rnn_size)}
lstm_h_dec = {[0]=lstm_h_enc[x_enc:size(2)-1]}
x_dec_prediction = {}
x_dec_embedding = {}
x_dec = x_raw_dec[iteration_counter]
x_dec_embedding[0] = embed_dec_clones[1]:forward(torch.Tensor(1):fill(vocab_size))
for t = 1, x_dec:size(2) - 1 do
x_dec_embedding[t] = embed_dec_clones[t]:forward(x_dec[{{}, {t}}]:reshape(1))
lstm_c_dec[t], lstm_h_dec[t], x_dec_prediction[t] = unpack(decoder_clones[t]:forward({x_dec_embedding[t-1], lstm_c_dec[t-1], lstm_h_dec[t-1]}))
loss_x = criterion_clones[t]:forward(x_dec_prediction[t], x_dec[{{}, {t}}]:reshape(1))
loss = loss + loss_x
--print(loss_x)
end
loss = loss / (x_dec:size(2) - 1)
------------------ backward pass -------------------
-- complete reverse order of the above
dlstm_c_dec = {[x_dec:size(2) - 1] = torch.zeros(1, rnn_size)}
dlstm_h_dec = {[x_dec:size(2) - 1] = torch.zeros(1, rnn_size)}
dx_dec_prediction = {}
dx_dec_embedding = {[x_dec:size(2) - 1] = torch.zeros(1, rnn_size)}
dx_dec = {}
dloss_x = {}
for t = x_dec:size(2) - 1,1,-1 do
dx_dec_prediction[t] = criterion_clones[t]:backward(x_dec_prediction[t], x_dec[{{}, {t}}]:reshape(1))
dx_dec_embedding[t-1], dlstm_c_dec[t-1], dlstm_h_dec[t-1] = unpack(decoder_clones[t]:backward({x_dec_embedding[t-1], lstm_c_dec[t-1], lstm_h_dec[t-1]}, {dlstm_c_dec[t], dlstm_h_dec[t], dx_dec_prediction[t]}))
dx_dec[t] = embed_dec_clones[t]:backward(x_dec[{{}, {t}}]:reshape(1), dx_dec_embedding[t])
end
dlstm_c_enc = {[x_enc:size(2) - 1] = torch.zeros(1, rnn_size)}
dlstm_h_enc = {[x_enc:size(2) - 1] = dlstm_h_dec[0]}
dx_enc_embedding = {}
dx_enc = {}
for t = x_enc:size(2) -1, 1, -1 do
dx_enc_embedding[t], dlstm_c_enc[t-1], dlstm_h_enc[t-1] = unpack(encoder_clones[t]:backward({x_enc_embedding[t], lstm_c_enc[t-1], lstm_h_enc[t-1]}, {dlstm_c_enc[t], dlstm_h_enc[t]}))
dx_enc[{{}, {t}}] = embed_enc_clones[t]:backward(x_enc[{{}, {t}}]:reshape(1), dx_enc_embedding[t])
end
-- clip gradient element-wise
grad_params:clamp(-5, 5)
iteration_counter = iteration_counter + 1
if iteration_counter > #x_raw_enc then
iteration_counter = 1
end
return loss, grad_params
end
optim_state = {learningRate = 1e-2}
for i = 1, 200000 do
local _, loss = optim.adagrad(feval, params, optim_state)
if i % 30 == 0 then
print(string.format("iteration %4d, loss = %6.6f", i, loss[1]))
--print(params)
sample_sentence = {}
target_sentence = {}
for t = 1, x_dec:size(2) - 1 do
_, sampled_index = x_dec_prediction[t]:max(2)
--print(sampled_index)
sample_sentence[#sample_sentence + 1] = vocabulary_en[sampled_index[1][1]]
target_sentence[#target_sentence + 1] = vocabulary_en[x_dec[1][t]]
end
print(table.concat(sample_sentence, ' '))
print(table.concat(target_sentence, ' '))
end
end