forked from charlotte-pel/igarss2019-dl4sits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathres_func.py
134 lines (121 loc) · 3.74 KB
/
res_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/python
"""
Saving the resultss
"""
import os, sys
import argparse
import numpy as np
import pandas as pd
import math
import random
import itertools
import time
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#----------------- SAVE RESULTS --------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
def saveLossAcc(model_hist, filename):
"""
Save all the accuracy measures into a csv file
INPUT:
- model_hist: all accuracy measures
- filename: csv file where to store the dictionary
(erase the file it does already exist)
8 significant digits after the decimal point
"""
f = open(filename, 'w')
for key in model_hist.keys():
line = key + ',' + ','.join(map(str, model_hist[key])) + '\n'
f.write(line)
f.close()
#-----------------------------------------------------------------------
def saveMatrix(mat, filename, label):
"""
Save numpy array into a csv file
INPUT:
- mat: numpy array
- filename: csv file where to store the mat array
(erase the file it does already exist)
8 significant digits after the decimal point
- label: name of the columns
"""
df = pd.DataFrame(mat, columns=label)
df.to_csv(filename)
#-----------------------------------------------------------------------
def save_confusion_matrix(C, class_name, conf_file):
"""
Create a confusion matrix with IndexName, Precision, Recall, F-Score, OA and Kappa
Charlotte's style
INPUT:
- C: confusion_matrix compute by sklearn.metrics.confusion_matrix
- class_name: corresponding name class
OUTPUT:
- conf_mat: Charlotte's confusion matrix
"""
nclass, _ = C.shape
#-- Compute the different statistics
recall = np.zeros(nclass)
precision = np.zeros(nclass)
fscore = np.zeros(nclass)
diag_sum = 0
hdiag_sum = 0
for add in range(nclass):
hdiag_sum = hdiag_sum + np.sum(C[add,:])*np.sum(C[:,add])
if C[add,add] == 0:
recall[add] =0
precision[add] =0
fscore[add] =0
else:
recall[add] = C[add,add]/np.sum(C[add,:])
recall[add] = "%.6f" % recall[add]
precision[add] = C[add,add]/np.sum(C[:,add])
precision[add] = "%.6f" % precision[add]
fscore[add] = (2*precision[add]*recall[add])/(precision[add]+recall[add])
fscore[add] = "%.6f" % fscore[add]
nbSamples = np.sum(C)
OA = np.trace(C)/nbSamples
ph = hdiag_sum/(nbSamples*nbSamples)
kappa = (OA-ph)/(1.0-ph)
f = open(conf_file, 'w')
line = ' '
for name in class_name:
line = line + ',' + name
line = line + ',Recall\n'
f.write(line)
for j in range(nclass):
line = class_name[j]
for i in range(nclass):
line = line + ',' + str(C[j,i])
line = line + ',' + str(recall[j]) + '\n'
f.write(line)
line = "Precision"
for add in range(nclass):
line = line + ',' + str(precision[add])
line = line + ',' + str(OA)
line = line + ',' + str(kappa) + '\n'
f.write(line)
line = "F-Score"
for add in range(nclass):
line = line + ',' + str(fscore[add])
line = line + '\n'
f.write(line)
f.close()
#-----------------------------------------------------------------------
def computingConfMatrix(referenced, p_test, n_classes):
"""
Computing a n_classes by n_classes confusion matrix
INPUT:
- referenced: reference data labels
- p_test: predicted 'probabilities' from the model for the test instances
- n_classes: number of classes (numbered from 0 to 1)
OUTPUT:
- C: computed confusion matrix
"""
predicted = p_test.argmax(axis=1)
C = np.zeros((n_classes, n_classes))
for act, pred in zip(referenced, predicted):
C[act][pred] += 1
return C
#EOF