-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathhw4.py
239 lines (227 loc) · 7.14 KB
/
hw4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from math import log
from math import sin
from math import sqrt
from math import pi
from random import uniform
from tools import data_interval
def generalization_error(dvc,confidence,gen_err, iterations=10):
'from the VC generalization bound and using the Sample Complexity algorithm page:57'
N = 1000 #start with an initial sample of 1000
for i in range(iterations):
v = (4*((N*2)**dvc)+4)/confidence
N = (8/(gen_err**2))*log(v)
return N
def VC_bound(N,dvc,confidence):
e = sqrt((8/(N*1.0))*log((4*((N*2)**dvc)+4)/confidence))
return e
def Rademacher_Penalty_Bound(N,dvc,confidence):
e = sqrt((2*log(2*N*(N**dvc)+2*N)/(N*1.0)))+ sqrt((2/(N*1.0))*log(1/confidence)) + 1/(N*1.0)
return e
def ParrondoandVandenBroek(N,dvc,confidence):
e = (sqrt((1+N**2)+log((6*((2*N+1)**dvc)+6)/confidence))+1)/(N*1.0)
return e
def Devroye(N,dvc,confidence):
#use 2**N instead of dvc as it is a bound
e = ((sqrt((N*log((4*((2**N)))/confidence)+(1/(N-2)*1.0)*(N-2))) +1)/((N-2)*1.0))
return e
def pick_point(f):
'returns x coords randomly from interval -1 to 1 and y from function f'
x = uniform(-1,1)
y = f(x)
return x,y
def mean_sqrt_error(x1,y1,x2,y2):
return abs(x2-x1)/2.,abs(y2-y1)/2.
def print_info_bias_variance(slope,constant,bias,var):
if slope is not None: print 'a: %s'%slope
if constant is not None: print 'b: %s'%constant
print 'bias: %s'%bias
print 'var: %s'%var
print 'Eout: %s'%(bias+var)
def compute_bias(bias_fn,f):
table_bias = []
for i in range(100):
x = uniform(-1,1)
gx = bias_fn(x)
fx = f(x)
table_bias.append((gx-fx)**2)
bias = sum(table_bias)/(len(table_bias)*1.0)
return bias
def compute_var(var_fn, table_g):
table_var = []
for i in range(100):
x = uniform(-1,1)
gbarx = var_fn(x)
table_one_g = []
for g in table_g:
gx = g(x)
table_one_g.append((gx - gbarx)**2)
table_var.append(sum(table_one_g)/(len(table_one_g)*1.0))
var = sum(table_var)/(len(table_var)*1.0)
return var
def compute_var_ex(var_fn,table_a,table_b):
table_var = []
for i in range(100):
x = uniform(-1,1)
gbarx = var_fn(x)
table_one_g = []
for i in range(len(table_a)):
gx = table_a[i]*x**2 + table_b[i]
table_one_g.append((gx - gbarx)**2)
table_var.append(sum(table_one_g)/(len(table_one_g)*1.0))
var = sum(table_var)/(len(table_var)*1.0)
return var
def bias_and_variance():
f = lambda x:sin(x*pi)
table_g = []
table_a = []
for i in range(100):
x1,y1 = pick_point(f)
x2,y2 = pick_point(f)
x,y = mean_sqrt_error(x1,y1,x2,y2)
a = y/x #slope
#compute g
g1 = lambda x:a*x
table_g.append(g1)
table_a.append(a)
slope = sum(table_a)/(len(table_a)*1.0)
#bias
bias_fn = lambda x: slope*x
bias = compute_bias(bias_fn,f)
#variance
var_fn = lambda x: slope*x
var = compute_var(var_fn,table_g)
#print info
print_info_bias_variance(slope,None,bias,var)
def bias_and_variance_constant():
f = lambda x:sin(x*pi)
table_g = []
table_b = []
for i in range(100):
x1,y1 = pick_point(f)
x2,y2 = pick_point(f)
x,y = mean_sqrt_error(x1,y1,x2,y2)
b = y
#compute g
g1 = lambda x:b
table_g.append(g1)
table_b.append(b)
constant = sum(table_b)/(len(table_b)*1.0)
#bias
bias_fn = lambda x: constant
bias = compute_bias(bias_fn,f)
#variance
var_fn = lambda x: constant
var = compute_var(var_fn,table_g)
#print info
print_info_bias_variance(None,constant,bias,var)
def bias_and_variance_function():
f = lambda x:sin(x*pi)
table_g = []
table_a = []
table_b = []
for i in range(100):
x1,y1 = pick_point(f)
x2,y2 = pick_point(f)
#slope
a = (y1-y2)/(x1-x2)
b = y1 - a*x1
#compute g
table_a.append(a)
table_b.append(b)
slope = sum(table_a)/(len(table_a)*1.0)
constant = sum(table_b)/(len(table_b)*1.0)
#bias
bias_fn = lambda x: slope*x+constant
bias = compute_bias(bias_fn,f)
#variance
var_fn = lambda x: slope*x
var = compute_var_ex(var_fn,table_a,table_b)
#print info
print_info_bias_variance(None,constant,bias,var)
def bias_and_variance_square():
f = lambda x:sin(x*pi)
table_g = []
table_a = []
for i in range(100):
x1,y1 = pick_point(f)
x2,y2 = pick_point(f)
x,y = mean_sqrt_error(x1,y1,x2,y2)
a = y/x #slope
#compute g
g1 = lambda x:a*x**2
table_g.append(g1)
table_a.append(a)
slope = sum(table_a)/(len(table_a)*1.0)
#bias
bias_fn = lambda x: slope*x**2
bias = compute_bias(bias_fn,f)
#variance
var_fn = lambda x: slope*x**2
var = compute_var(var_fn,table_g)
#print info
print_info_bias_variance(slope,None,bias,var)
def bias_and_variance_square_constant():
f = lambda x:sin(x*pi)
table_g = []
table_a = []
table_b = []
for i in range(100):
x1,y1 = pick_point(f)
x2,y2 = pick_point(f)
#slope
a = (y1-y2)/(x1-x2)
b = y1 - a*x1**2
#compute g
table_a.append(a)
table_b.append(b)
slope = sum(table_a)/(len(table_a)*1.0)
constant = sum(table_b)/(len(table_b)*1.0)
#bias
bias_fn = lambda x: slope*x**2 + constant
bias = compute_bias(bias_fn,f)
#variance
var_fn = lambda x: slope*x**2
var = compute_var_ex(var_fn,table_a,table_b)
#print info
print_info_bias_variance(None,constant,bias,var)
def tests():
print 'Tests begin'
print '--------------------'
print '-1-'
#1
dvc = 10
confidence = 0.05
gen_err = 0.05
N = generalization_error(dvc,confidence,gen_err)
print 'Sample Size for dvc:%s with confidence of %s and with generalization error of %s is %s'%(dvc,confidence,gen_err,N)
#2
print '-2-'
dvc = 50
confidence = 0.05
N = 1000
print 'experience with dvc=%s, confidence of %s and %s samples'%(dvc,confidence,N)
print 'Original VC bound: %s'%(VC_bound(N,dvc,confidence))
print 'Rademacher Penalty bound: %s'%(Rademacher_Penalty_Bound(N,dvc,confidence))
print 'Parrondo and Vanden Broek bound: %s'%(ParrondoandVandenBroek(N,dvc,confidence))
print 'Devroye bound: %s' %(Devroye(N,dvc,confidence))
#3
print '_3_'
N = 5
print 'experience with dvc=%s, confidence of %s and %s samples'%(dvc,confidence,N)
print 'Original VC bound: %s'%(VC_bound(N,dvc,confidence))
print 'Rademacher Penalty bound: %s'%(Rademacher_Penalty_Bound(N,dvc,confidence))
print 'Parrondo and Vanden Broek bound: %s'%(ParrondoandVandenBroek(N,dvc,confidence))
print 'Devroye bound: %s' %(Devroye(N,dvc,confidence))
#4
print '-4-5-6-'
bias_and_variance()
print '-7-'
bias_and_variance_constant()
print '--'
bias_and_variance_function()
print '--'
bias_and_variance_square()
print '--'
bias_and_variance_square_constant()
print '--------------------'
print 'Tests end'