-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
391 lines (316 loc) · 11.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from torch.autograd import Variable
from mpl_toolkits.axes_grid1 import ImageGrid
from torchvision.transforms import Compose, ToTensor, ToPILImage, RandomVerticalFlip, RandomRotation, RandomHorizontalFlip, ToTensor, Grayscale, RandomResizedCrop
from flags import FLAGS
import math
import random
from torch.nn import functional as F
import numbers
import numpy as np
# compose a transform configuration
transform_config = Compose([ToTensor()])
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / std) ** 2 / 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
)
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight, groups=self.groups)
class Cutout(object):
"""Randomly mask out one or more patches from an image.
Args:
n_holes (int): Number of patches to cut out of each image.
length (int): The length (in pixels) of each square patch.
"""
def __init__(self, n_holes, length):
self.n_holes = n_holes
self.length = length
def __call__(self, img):
"""
Args:
img (Tensor): Tensor image of size (C, H, W).
Returns:
Tensor: Image with n_holes of dimension length x length cut out of it.
"""
h = img.size(1)
w = img.size(2)
mask = np.ones((h, w), np.float32)
for n in range(self.n_holes):
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(torch.Tensor(img))
img = img * mask
return img
def mse_loss(input1, target):
return torch.sum((input1 - target).pow(2)) / input1.data.nelement()
def reparameterize(training, mu, logvar):
if training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def weights_init(layer):
if isinstance(layer, nn.Conv2d):
layer.weight.data.normal_(0.0, 0.05)
layer.bias.data.zero_()
elif isinstance(layer, nn.BatchNorm2d):
layer.weight.data.normal_(1.0, 0.02)
layer.bias.data.zero_()
elif isinstance(layer, nn.Linear):
layer.weight.data.normal_(0.0, 0.05)
layer.bias.data.zero_()
def imshow_grid(images, shape=[2, 8], name='default', save=False):
"""Plot images in a grid of a given shape."""
fig = plt.figure(1)
grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)
size = shape[0] * shape[1]
for i in range(size):
grid[i].axis('off')
grid[i].imshow(images[i]) # The AxesGrid object work as a list of axes.
if save:
plt.savefig('reconstructed_images/' + str(name) + '.png')
plt.clf()
else:
plt.show()
# reference: https://github.com/YannDubs/disentangling-vae/blob/master/disvae/utils/math.py
def log_density_gaussian(x, mu, logvar):
"""Calculates log density of a Gaussian.
Parameters
----------
x: torch.Tensor or np.ndarray or float
Value at which to compute the density.
mu: torch.Tensor or np.ndarray or float
Mean.
logvar: torch.Tensor or np.ndarray or float
Log variance.
"""
normalization = - 0.5 * (math.log(2 * math.pi) + logvar)
inv_var = torch.exp(-logvar)
log_density = normalization - 0.5 * ((x - mu)**2 * inv_var)
return log_density
def matrix_log_density_gaussian(z, mu, logvar):
z_cat = torch.cat([z[i].unsqueeze(1) for i in range(len(z))], dim=1).unsqueeze(1) # batch, 1, 3, 8
mu_cat = torch.cat([mu[i].unsqueeze(1) for i in range(len(mu))], dim=1).unsqueeze(0) # 1, batch, 3, 8
logvar_cat = torch.cat([logvar[i].unsqueeze(1) for i in range(len(logvar))], dim=1).unsqueeze(0) # 1, batch, 3, 8
batch_size, dim = z[0].shape[0], FLAGS.num_chunks
normalization = - 0.5 * (math.log(2 * math.pi) + logvar_cat) # 1, batch, 3 8
inv_var = torch.exp(-logvar_cat) # 1, batch, 3, 8
log_density = normalization - 0.5 * ((z_cat - mu_cat)**2 * inv_var)
return log_density
# Check for one dimension (chunk_size=1) only
def matrix_log_density_gaussian_(x, mu, logvar):
"""Calculates log density of a Gaussian for all combination of bacth pairs of
`x` and `mu`. I.e. return tensor of shape `(batch_size, batch_size, dim)`
instead of (batch_size, dim) in the usual log density.
Parameters
----------
x: torch.Tensor
Value at which to compute the density. Shape: (batch_size, dim).
mu: torch.Tensor
Mean. Shape: (batch_size, dim).
logvar: torch.Tensor
Log variance. Shape: (batch_size, dim).
batch_size: int
number of training images in the batch
"""
batch_size, dim = x.shape
x = x.view(batch_size, 1, dim)
mu = mu.view(1, batch_size, dim)
logvar = logvar.view(1, batch_size, dim)
return log_density_gaussian_(x, mu, logvar)
def log_density_gaussian_(x, mu, logvar):
"""Calculates log density of a Gaussian.
Parameters
----------
x: torch.Tensor or np.ndarray or float
Value at which to compute the density.
mu: torch.Tensor or np.ndarray or float
Mean.
logvar: torch.Tensor or np.ndarray or float
Log variance.
"""
normalization = - 0.5 * (math.log(2 * math.pi) + logvar)
inv_var = torch.exp(-logvar)
log_density = normalization - 0.5 * ((x - mu)**2 * inv_var)
return log_density
def sample_augmentation():
augs = ['rot', 'flip', 'gauss_n', 'gauss_s']
return random.choice(augs)
def rotate_aug(image_batch):
angle = random.choice([90, 180, 270])
aug = torch.zeros_like(image_batch)
for i in range(image_batch.shape[0]):
aug[i] = ToTensor()(RandomRotation(degrees=angle)(ToPILImage(mode='RGB')(image_batch[i].cpu())))
if(FLAGS.cuda):
aug = aug.cuda()
return aug
def flip_aug(image_batch):
flip_dir = random.choice([0, 1])
aug = torch.zeros_like(image_batch)
if(flip_dir==0):
for i in range(image_batch.shape[0]):
aug[i] = ToTensor()(RandomHorizontalFlip(p=1)(ToPILImage(mode='RGB')(image_batch[i].cpu())))
else:
for i in range(image_batch.shape[0]):
aug[i] = ToTensor()(RandomVerticalFlip(p=1)(ToPILImage(mode='RGB')(image_batch[i].cpu())))
if(FLAGS.cuda):
aug = aug.cuda()
return aug
def color_aug(image_batch):
aug = torch.zeros_like(image_batch)
for i in range(image_batch.shape[0]):
aug[i] = ToTensor()(Grayscale()(ToPILImage(mode='RGB')(image_batch[i].cpu())))
if(FLAGS.cuda):
aug = aug.cuda()
return aug
def cutout_aug(image_batch):
aug = torch.zeros_like(image_batch)
n_holes = [5, 10, 15, 20]
for i in range(image_batch.shape[0]):
# aug[i] = ToTensor()(Cutout(n_holes=1, length=random.choice(n_holes))(ToPILImage(mode='RGB')(image_batch[i].cpu())))
aug[i] = Cutout(n_holes=1, length=random.choice(n_holes))(image_batch[i].cpu())
if(FLAGS.cuda):
aug = aug.cuda()
return aug
def crop_and_resize_aug(image_batch):
aug = torch.zeros_like(image_batch)
for i in range(image_batch.shape[0]):
aug[i] = ToTensor()(RandomResizedCrop(size=FLAGS.image_size)(ToPILImage(mode='RGB')(image_batch[i].cpu())))
if(FLAGS.cuda):
aug = aug.cuda()
return aug
def gauss_smoothing(image_batch):
smoothing = GaussianSmoothing(3, 5, 1)
if(FLAGS.cuda):
smoothing.cuda()
img = F.pad(image_batch, (2, 2, 2, 2), mode='reflect')
return smoothing(img)
def gauss_noise(image_batch):
std = random.choice([0.5, 1, 2, 5])
noise = torch.randn(image_batch.size()) * std
if(FLAGS.cuda):
noise = noise.cuda()
return image_batch + noise
def augment_batch(image_batch):
aug = sample_augmentation()
if(aug=='rot'):
augmented_img = rotate_aug(image_batch)
return augmented_img
elif(aug=='flip'):
augmented_img = flip_aug(image_batch)
return augmented_img
elif(aug=='gauss_s'):
augmented_img = gauss_smoothing(image_batch)
return augmented_img
elif(aug=='gauss_n'):
augmented_img = gauss_noise(image_batch)
return augmented_img
def get_augmentations_and_mask(image_batch):
neg_augs = ['rot_or_flip', 'color', 'cutout', 'crop_and_resize']
neutral_augs = ['gauss_n', 'gauss_s']
mask = [0]*(len(neg_augs)+1) #always consider the non neg augs to be 0
final_batch = image_batch
for i, aug in enumerate(neg_augs):
if(random.choice([0, 1])==1):
mask[i] = 1
if(aug=='rot_or_flip'):
if(random.choice([0, 1])==1):
final_batch = rotate_aug(final_batch)
else:
final_batch = flip_aug(final_batch)
if(aug=='color'):
final_batch = color_aug(final_batch)
if(aug=='cutout'):
final_batch = cutout_aug(final_batch)
if(aug=='crop_and_resize'):
final_batch = crop_and_resize_aug(final_batch)
for i, aug in enumerate(neutral_augs):
if(random.choice([0, 1])==1):
if(aug=='gauss_s'):
final_batch = gauss_smoothing(final_batch)
if(aug=='gauss_n'):
final_batch = gauss_noise(final_batch)
return final_batch, mask
def mix_latents(s, aug_s, v, aug_v):
if(random.choice([0, 1])==0):
ret_v = v
else:
ret_v = aug_v
ret_s = []
for i in range(len(s)):
if(random.choice([0, 1])==0):
ret_s.append(s[i])
else:
ret_s.append(aug_s[i])
return ret_s, ret_v
if __name__ == '__main__':
print(sample_augmentation())
rand = torch.randn((5, 3, 64, 64))
print(gauss_smoothing(rand).shape)
print(gauss_noise(rand).shape)
print(rotate_aug(rand).shape)
print(flip_aug(rand).shape)
print(color_aug(rand).shape)
print(cutout_aug(rand).shape)
print(crop_and_resize_aug(rand).shape)