-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
159 lines (141 loc) · 5.14 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
################################################################################
import pandas
import os
from uncertainties import ufloat
################################################################################
__author__ = 'Sam Hall'
__all__ = [
'alldata',
'particles',
'mass', 'umass',
'life', 'ulife',
'width', 'uwidth',
]
################################################################################
_FUZZ_ERROR_MESSAGE = False
_ALIASES = {
'K*' : 'K*(892)0',
'Kst' : 'K*(892)0',
'rho' : 'rho(770)0',
}
################################################################################
def _fuzzy_match(s1, s2):
'''Fuzzy string matching if fuzzywuzzy is not available'''
import string
def normalize(s):
for p in string.punctuation:
s = s.replace(p, '')
return s.lower().strip()
return normalize(s1) == normalize(s2)
################################################################################
def _guess_list(self, n):
'''Guess what particle is interesting and return the relevant object'''
try:
from fuzzywuzzy import fuzz
tpls = [(k, fuzz.ratio(n, k)) for k in self.keys()]
tpls = sorted(tpls, key=lambda x:x[1], reverse=True)
return tpls
except ImportError:
global _FUZZ_ERROR_MESSAGE
if not _FUZZ_ERROR_MESSAGE:
print 'For better particle finding install fuzzywuzzy'
print ' https://github.com/seatgeek/fuzzywuzzy'
_FUZZ_ERROR_MESSAGE = True
tpls = [(k, _fuzzy_match(n, k)) for k in self.keys()]
tpls = [x for x in tpls if x[1]]
return tpls
################################################################################
def _guess(self, n):
'''Guess what particle is interesting and return the relevant object'''
tpls = _guess_list(self, n)
if len(tpls) > 10:
if tpls[0][1]<60:
raise IndexError(
'''
Cannot guess reliably from {}
Best guesses are {} and {}
'''.format(n, *tpls))
return self[tpls[0][0]]
elif not len(tpls):
raise IndexError(
'''
Cannot guess reliably from {}
No guesses
'''.format(n))
elif len(tpls)>1:
raise IndexError(
'''
Cannot guess reliably from {}
Some guesses are {} and {}
'''.format(n, *tpls))
return self[tpls[0][0]]
################################################################################
class DetailErr(pandas.Series):
def __init__(self, detail, df, err=True):
details = {}
if err:
for k, i in df.iteritems():
details.update(
{k : ufloat(df[k][detail], df[k]['{}err'.format(detail)])}
)
df = pandas.DataFrame.from_dict({'mass' :details})
else:
for k, i in df.iteritems():
details.update({k : df[k][detail]})
df = pandas.DataFrame.from_dict({'mass' :details})
pandas.Series.__init__(self, df['mass'])
return
def guess(self, n):
return _guess(self, n)
################################################################################
class Particles(pandas.DataFrame):
def __init__(self, df, all_aliases=True):
dfalias = pandas.DataFrame()
if all_aliases:
for name in df:
if name == df[name]['name']:
continue
dfalias[df[name]['name']] = df[name]
pandas.DataFrame.__init__(self, df.join(dfalias))
if all_aliases:
self.setaliases()
self.allaliases()
return
#def __getitem__(self, *args, **kwargs):
#return super(Particles, self).__getitem__(*args, **kwargs)
def setaliases(self, aliases=_ALIASES):
for new, old in aliases.iteritems():
self[new] = self[old]
return
def allaliases(self):
for k, i in self.iteritems():
if k.endswith('pm'):
self[k.replace('pm', 'p')] = i
self[k.replace('pm', '+')] = i
self[k.replace('pm', 'm')] = i
self[k.replace('pm', '-')] = i
return
def guess(self, n):
return _guess(self, n)
def find(self, name, n=5):
'''Fine name in database, best n matches in order'''
return [x[0] for x in _guess_list(self, name)[:n]]
def floats(self):
df = self.drop(['latex', 'name']).astype(float)
return Particles(df, all_aliases=False)
################################################################################
csvfile = 'pdg_particles.csv'
abscsvfile = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
csvfile
)
df = pandas.DataFrame.from_csv(abscsvfile)
alldata = Particles(df)
particles = alldata.floats()
mass = DetailErr('mass', particles, err=False)
life = DetailErr('life', alldata, err=False)
width = DetailErr('width', alldata, err=False)
umass = DetailErr('mass', alldata)
ulife = DetailErr('life', alldata)
uwidth = DetailErr('width', alldata)
################################################################################