forked from SumoLogic/sumologic-otel-collector
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsieve.go
217 lines (177 loc) · 5.83 KB
/
sieve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
package metricfrequencyprocessor
import (
"math"
"sort"
"time"
"go.opentelemetry.io/collector/pdata/pcommon"
"go.opentelemetry.io/collector/pdata/pmetric"
)
const (
float64EqualityThreshold = 1e-9
safetyInterval = time.Second * 1
)
type metricSieve interface {
Sift(metric pmetric.Metric) bool
}
// defaultMetricSieve removes data points from MetricSlices that would be reported more often than preset
// frequency for a given category.
// For metric sieve, there are three categories of metrics:
// 1) Constant metrics
// 2) Low info metrics - i.e. no anomaly in terms of iqr and low variation
// 3) All other metrics
type defaultMetricSieve struct {
config sieveConfig
metricCache *metricCache
lastReported map[string]pcommon.Timestamp
}
var _ metricSieve = (*defaultMetricSieve)(nil)
func newMetricSieve(config *Config) *defaultMetricSieve {
return &defaultMetricSieve{
metricCache: newMetricCache(config.cacheConfig),
lastReported: make(map[string]pcommon.Timestamp),
config: config.sieveConfig,
}
}
// Sift removes data points from MetricSlices of the metric argument according to specified strategy.
// It returns true if the metric should be removed.
func (ms *defaultMetricSieve) Sift(metric pmetric.Metric) bool {
switch metric.Type() {
case pmetric.MetricTypeGauge:
return ms.siftDropGauge(metric)
default:
return false
}
}
func (ms *defaultMetricSieve) siftDropGauge(metric pmetric.Metric) bool {
metric.Gauge().DataPoints().RemoveIf(ms.siftDataPoint(metric.Name()))
return metric.Gauge().DataPoints().Len() == 0
}
func (ms *defaultMetricSieve) siftDataPoint(name string) func(pmetric.NumberDataPoint) bool {
return func(dataPoint pmetric.NumberDataPoint) bool {
if math.IsNaN(getVal(dataPoint)) {
return false
}
cachedPoints := ms.metricCache.List(name)
ms.metricCache.Register(name, dataPoint)
lastReported, exists := ms.lastReported[name]
if !exists {
ms.lastReported[name] = dataPoint.Timestamp()
return false
}
earliest := earliestTimestamp(cachedPoints)
cachedPoints[dataPoint.Timestamp()] = getVal(dataPoint)
if ms.metricRequiresSamples(dataPoint, earliest) {
ms.lastReported[name] = dataPoint.Timestamp()
return false
}
if pastCategoryFrequency(dataPoint, lastReported, ms.config.ConstantMetricsReportFrequency) {
ms.lastReported[name] = dataPoint.Timestamp()
return false
}
if isConstant(dataPoint, cachedPoints) {
return true
}
if pastCategoryFrequency(dataPoint, lastReported, ms.config.LowInfoMetricsReportFrequency) {
ms.lastReported[name] = dataPoint.Timestamp()
return false
}
if ms.isLowInformation(cachedPoints) {
return true
}
if pastCategoryFrequency(dataPoint, lastReported, ms.config.MaxReportFrequency) {
ms.lastReported[name] = dataPoint.Timestamp()
return false
}
return true
}
}
func (ms *defaultMetricSieve) metricRequiresSamples(point pmetric.NumberDataPoint, earliest pcommon.Timestamp) bool {
return point.Timestamp().AsTime().Before(earliest.AsTime().Add(ms.config.MinPointAccumulationTime))
}
func pastCategoryFrequency(point pmetric.NumberDataPoint, lastReport pcommon.Timestamp, categoryFrequency time.Duration) bool {
return point.Timestamp().AsTime().Add(safetyInterval).After(lastReport.AsTime().Add(categoryFrequency))
}
func isConstant(point pmetric.NumberDataPoint, points map[pcommon.Timestamp]float64) bool {
for _, value := range points {
if !almostEqual(getVal(point), value) {
return false
}
}
return true
}
// isLowInformation is a heuristic attempt at defining uninteresting metrics. Requirements:
// 1) no big changes - defined by no iqr anomalies
// 2) little oscillations - defined by low variation
func (ms *defaultMetricSieve) isLowInformation(points map[pcommon.Timestamp]float64) bool {
q1, q3 := calculateQ1Q3(points)
iqr := q3 - q1
variation := calculateVariation(points)
noAnomaly := withinBounds(points, q1-ms.config.IqrAnomalyCoef*iqr, q3+ms.config.IqrAnomalyCoef*iqr)
return noAnomaly && ms.lowVariation(variation, iqr)
}
// calculateQ1Q3 returns specific quantiles - it refers to quantiles .25 and .75 respectively
func calculateQ1Q3(points map[pcommon.Timestamp]float64) (float64, float64) {
values := valueSlice(points)
sort.Float64s(values)
q1Index := len(points) / 4
q3Index := 3 * len(points) / 4
return values[q1Index], values[q3Index]
}
func withinBounds(points map[pcommon.Timestamp]float64, lowerBound float64, upperBound float64) bool {
for _, v := range points {
if v < lowerBound {
return false
}
if v > upperBound {
return false
}
}
return true
}
// calculateVariation returns a sum of absolute values of differences of subsequent data points.
func calculateVariation(points map[pcommon.Timestamp]float64) float64 {
keys := keySlice(points)
sortTimestampArray(keys)
variation := 0.0
previous := keys[0]
for i := 1; i < len(keys); i++ {
current := keys[i]
variation += math.Abs(points[current] - points[previous])
previous = current
}
return variation
}
// lowVariation returns a heuristic check indicating that data points display little oscillations
func (ms *defaultMetricSieve) lowVariation(variation float64, iqr float64) bool {
return variation < ms.config.VariationIqrThresholdCoef*iqr
}
func earliestTimestamp(points map[pcommon.Timestamp]float64) pcommon.Timestamp {
min := pcommon.NewTimestampFromTime(time.Now())
for k := range points {
if k < min {
min = k
}
}
return min
}
func keySlice(mapping map[pcommon.Timestamp]float64) []pcommon.Timestamp {
out := make([]pcommon.Timestamp, len(mapping))
i := 0
for k := range mapping {
out[i] = k
i++
}
return out
}
func valueSlice(mapping map[pcommon.Timestamp]float64) []float64 {
out := make([]float64, len(mapping))
i := 0
for _, v := range mapping {
out[i] = v
i++
}
return out
}
func almostEqual(a, b float64) bool {
return math.Abs(a-b) <= float64EqualityThreshold
}