-
Notifications
You must be signed in to change notification settings - Fork 710
/
Copy pathlora_manager.py
329 lines (294 loc) · 12.6 KB
/
lora_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Integrates "S-LoRA: Serving Thousands of Concurrent LoRA Adapters"
# and "Punica: Multi-Tenant LoRA Serving"
import logging
import re
import torch
from sglang.srt.lora.lora import LoRAAdapter, get_lora_layer
from sglang.srt.lora.lora_config import LoRAConfig
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import is_flashinfer_available, replace_submodule
logger = logging.getLogger(__name__)
if is_flashinfer_available():
from flashinfer import SegmentGEMMWrapper
def get_module_name(name):
# Fallback solution of mapping from config module name to module name in model class.
# Please check if it aligns with your base model.
# Please implement the function in the model class if it is not.
# You can reference this function in llama.py.
params_mapping = {
"q_proj": "qkv_proj",
"k_proj": "qkv_proj",
"v_proj": "qkv_proj",
"gate_proj": "gate_up_proj",
"up_proj": "gate_up_proj",
}
return params_mapping.get(name, name)
def get_hidden_dim(module_name, config):
# Fallback solution of get_hidden_dim for different modules
# Please check if it aligns with your base model.
# Please implement the function in the model class if it is not.
# You can reference this function in llama.py.
if module_name in ["q_proj", "o_proj", "qkv_proj"]:
return config.hidden_size, config.hidden_size
elif module_name in ["kv_proj"]:
return config.hidden_size, config.hidden_size // (
config.num_attention_heads // config.num_key_value_heads
)
elif module_name == "gate_up_proj":
return config.hidden_size, config.intermediate_size
elif module_name == "down_proj":
return config.intermediate_size, config.hidden_size
else:
raise NotImplementedError()
def get_stacked_name(name):
# origin name -> (name for A, name for B)
params_mapping = {
"q_proj": ("qkv_proj", "q_proj"),
"k_proj": ("qkv_proj", "kv_proj"),
"v_proj": ("qkv_proj", "kv_proj"),
"gate_proj": ("gate_up_proj", "gate_up_proj"),
"up_proj": ("gate_up_proj", "gate_up_proj"),
}
return params_mapping.get(name, (name, name))
def get_layer_id(name):
match = re.search(r"layers\.(\d+)\.", name)
if match is None:
return None
return int(match.group(1))
class LoRAManager:
def __init__(
self,
base_model,
lora_paths,
base_hf_config,
max_loras_per_batch,
load_config,
dtype,
):
self.base_model = base_model
self.lora_paths = lora_paths
self.base_hf_config = base_hf_config
self.max_loras_per_batch = max_loras_per_batch
self.load_config = load_config
self.dtype = dtype
workspace_buffer = torch.empty(1 * 1024 * 1024, dtype=torch.int8, device="cuda")
self.segment_gemm = SegmentGEMMWrapper(workspace_buffer)
self.init_loras()
self.init_lora_memory_pool()
self.init_lora_batch()
def match_target_modules(self, module_name):
for target_module in self.target_modules:
if module_name.split(".")[-1] == target_module:
return True
return False
def get_target_modules(self):
modules = []
for module_name, module in self.base_model.named_modules():
if self.match_target_modules(module_name):
modules.append((module_name, module))
return modules
def set_lora_module(self, module_name, module):
lora_module = get_lora_layer(
module, self.segment_gemm, self.max_lora_dim, self.scaling
)
replace_submodule(self.base_model, module_name, lora_module)
return lora_module
def init_loras(self):
# get configs and target modules
self.configs = {}
self.origin_target_modules = set()
for name, path in self.lora_paths.items():
self.configs[name] = LoRAConfig(path)
self.origin_target_modules = set(self.origin_target_modules) | set(
self.configs[name].target_modules
)
if hasattr(self.base_model, "get_module_name"):
self.target_modules = {
self.base_model.get_module_name(module)
for module in self.origin_target_modules
}
else:
logger.warning(
"WARNING: get_module_name() is not defined, "
"which is used to map config module name to model implementation module name."
"Use the default one, but please check if it is correct for your model."
)
self.target_modules = {
get_module_name(module) for module in self.origin_target_modules
}
self.target_weights = set(
[get_stacked_name(module) for module in self.origin_target_modules]
)
# load all weights to cpu
self.loras = []
self.lora_id = {}
for name in self.lora_paths.keys():
self.lora_id[name] = len(self.loras)
self.loras.append(
LoRAAdapter(
name, self.configs[name], self.base_hf_config, self.load_config
)
)
self.loras[-1].initialize_weights()
# misc lora configs
self.max_lora_dim = max([x.hf_config["r"] for x in self.configs.values()])
self.scaling = self.loras[0].scaling
# FIXME remove the restrictions
assert all(x.hf_config["r"] == self.max_lora_dim for x in self.configs.values())
assert all(x.scaling == self.scaling for x in self.loras)
# monkey patch to use the LoRA version
self.lora_modules = []
for module_name, module in self.get_target_modules():
self.lora_modules.append(
(module_name, self.set_lora_module(module_name, module))
)
def init_lora_memory_pool(self):
# preallocate lora memory pool
self.A_buffer = {}
self.B_buffer = {}
num_layer = self.base_hf_config.num_hidden_layers
for module_A, module_B in self.target_weights:
# init A tensor, column_major=True
if hasattr(self.base_model, "get_hidden_dim"):
hidden_dim_A, _ = self.base_model.get_hidden_dim(module_A)
else:
logger.warning(
"WARNING: get_hidden_dim() is not defined, "
"which is used to get the hidden dim for different lora modules"
"Use the default one, but please check if it is correct for your model."
)
hidden_dim_A, _ = get_hidden_dim(module_A, self.base_hf_config)
c = self.loras[-1].get_stacked_multiply(module_A)
if module_A not in self.A_buffer:
self.A_buffer[module_A] = [
torch.empty(
(
self.max_loras_per_batch,
self.max_lora_dim * c,
hidden_dim_A,
),
dtype=self.dtype,
device="cuda",
)
for i in range(num_layer)
]
# init B tensor, column_major=True
if hasattr(self.base_model, "get_hidden_dim"):
_, hidden_dim_B = self.base_model.get_hidden_dim(module_B)
else:
logger.warning(
"WARNING: get_hidden_dim() is not defined, "
"which is used to get the hidden dim for different lora modules"
"Use the default one, but please check if it is correct for your model."
)
_, hidden_dim_B = get_hidden_dim(module_B, self.base_hf_config)
c = self.loras[-1].get_stacked_multiply(module_B)
if module_B not in self.B_buffer:
self.B_buffer[module_B] = [
torch.empty(
(
self.max_loras_per_batch,
hidden_dim_B * c,
self.max_lora_dim,
),
dtype=self.dtype,
device="cuda",
)
for i in range(num_layer)
]
def init_lora_batch(self):
self.active_uids = set() # set of active loras
self.buffer_id = {} # lora uid -> idx in memory pool
def get_weight_name(self, name, idx):
for target_weight_name in self.target_weights:
if target_weight_name[idx] in name:
return target_weight_name[idx]
def load_lora(self, uid, buffer_id):
num_layer = self.base_hf_config.num_hidden_layers
if uid is None:
for i in range(num_layer):
for k in self.A_buffer.keys():
self.A_buffer[k][i][buffer_id] *= 0
return
for i in range(num_layer):
layer_weights = self.loras[self.lora_id[uid]].layers[i].weights
for name, weights in layer_weights.items():
if "lora_A" in name:
lora_weight_name = self.get_weight_name(name, 0)
if lora_weight_name:
self.A_buffer[lora_weight_name][i][buffer_id].copy_(weights)
else:
lora_weight_name = self.get_weight_name(name, 1)
if lora_weight_name:
self.B_buffer[lora_weight_name][i][buffer_id].copy_(weights)
def prepare_lora_batch(self, forward_batch: ForwardBatch):
# load active loras into lora memory pool
cur_uids = set(forward_batch.lora_paths)
assert len(cur_uids) <= self.max_loras_per_batch
i = 0
j = len(self.active_uids)
evictable_uids = list(self.active_uids)
for uid in cur_uids:
if uid not in self.active_uids:
if j < self.max_loras_per_batch:
index = j
j += 1
else:
while i < len(evictable_uids) and evictable_uids[i] in cur_uids:
i += 1
assert i < len(evictable_uids)
self.active_uids.remove(evictable_uids[i])
self.buffer_id.pop(evictable_uids[i])
index = i
i += 1
self.load_lora(uid, index)
self.active_uids.add(uid)
self.buffer_id[uid] = index
if cur_uids == set([None]):
return
# setup lora in forward modules
bs = forward_batch.batch_size
seg_lens = (
forward_batch.extend_seq_lens
if forward_batch.forward_mode.is_extend()
else torch.ones(bs, device="cuda")
)
# FIXME: reuse the data rather than recompute
seg_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
seg_indptr[1:] = torch.cumsum(seg_lens, dim=0)
weight_indices = torch.empty((bs,), dtype=torch.int64, device="cuda")
for i, lora_path in enumerate(forward_batch.lora_paths):
weight_indices[i] = self.buffer_id[lora_path]
for module_name, module in self.lora_modules:
layer_id = get_layer_id(module_name)
if "qkv_proj" not in module_name:
weight_name = self.get_weight_name(module_name, 0)
module.set_lora_info(
self.A_buffer[weight_name][layer_id],
self.B_buffer[weight_name][layer_id],
bs,
seg_indptr,
weight_indices,
)
else:
module.set_lora_info(
self.A_buffer["qkv_proj"][layer_id],
self.B_buffer["q_proj"][layer_id],
self.B_buffer["kv_proj"][layer_id],
bs,
seg_indptr,
weight_indices,
)