-
Notifications
You must be signed in to change notification settings - Fork 0
/
0062.UniquePaths.js
71 lines (53 loc) · 1.66 KB
/
0062.UniquePaths.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
// The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
// How many possible unique paths are there?
//
// Example 1:
// Input: m = 3, n = 7
// Output: 28
// Example 2:
// Input: m = 3, n = 2
// Output: 3
// Explanation:
// From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
// 1. Right -> Down -> Down
// 2. Down -> Down -> Right
// 3. Down -> Right -> Down
// Example 3:
// Input: m = 7, n = 3
// Output: 28
// Example 4:
// Input: m = 3, n = 3
// Output: 6
//
// Constraints:
// 1 <= m, n <= 100
// It's guaranteed that the answer will be less than or equal to 2 * 109.
// 来源:力扣(LeetCode)
// 链接:https://leetcode-cn.com/problems/unique-paths
// 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
// 🎨 方法一:动态规划
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
// memo 定义 dp[i][j] 表示下标为 [i,j] 位置的最大路径数
const dp = new Array(m).fill(0).map(() => new Array(n).fill(0));
// 初始化 第一行
for (let i = 0; i < m; i++) {
dp[i][0] = 1;
}
// 初始化 第一列
for (let i = 0; i < n; i++) {
dp[0][i] = 1;
}
// 状态转移
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1]
};