-
Notifications
You must be signed in to change notification settings - Fork 0
/
0063.UniquePathsII.js
71 lines (51 loc) · 1.91 KB
/
0063.UniquePathsII.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
// The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
// Now consider if some obstacles are added to the grids. How many unique paths would there be?
// An obstacle and space is marked as 1 and 0 respectively in the grid.
//
// Example 1:
// Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
// Output: 2
// Explanation: There is one obstacle in the middle of the 3x3 grid above.
// There are two ways to reach the bottom-right corner:
// 1. Right -> Right -> Down -> Down
// 2. Down -> Down -> Right -> Right
// Example 2:
// Input: obstacleGrid = [[0,1],[0,0]]
// Output: 1
//
// Constraints:
// m == obstacleGrid.length
// n == obstacleGrid[i].length
// 1 <= m, n <= 100
// obstacleGrid[i][j] is 0 or 1.
// 来源:力扣(LeetCode)
// 链接:https://leetcode-cn.com/problems/unique-paths-ii
// 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
// 🎨 方法一:动态规划
/**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function (obstacleGrid) {
let rows = obstacleGrid.length;
let cols = obstacleGrid[0].length;
const dp = new Array(rows).fill(0).map(() => new Array(cols).fill(0))
for (let i = 0; i < rows; i++) {
dp[i][0] = obstacleGrid[i][0] === 1 ? 0 : 1;
}
for (let i = 0; i < cols; i++) {
dp[0][i] = obstacleGrid[0][i] ? 0 : 1
}
console.log(dp);
for (let i = 1; i < rows; i++) {
for (let j = 1; j < cols; j++) {
if (obstacleGrid[i][j] === 1) {
dp[i][j] = 0
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
}
}
}
return dp[rows - 1][cols - 1]
};