-
Notifications
You must be signed in to change notification settings - Fork 0
/
0300.LongestIncreasingSubsequence.js
62 lines (45 loc) · 1.48 KB
/
0300.LongestIncreasingSubsequence.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// Given an integer array nums, return the length of the longest strictly increasing subsequence.
// A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].
//
// Example 1:
// Input: nums = [10,9,2,5,3,7,101,18]
// Output: 4
// Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
// Example 2:
// Input: nums = [0,1,0,3,2,3]
// Output: 4
// Example 3:
// Input: nums = [7,7,7,7,7,7,7]
// Output: 1
//
// Constraints:
// 1 <= nums.length <= 2500
// -104 <= nums[i] <= 104
//
// Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?
// 来源:力扣(LeetCode)
// 链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
// 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
// 🎨 方法一:动态规划
/**
* @param {number[]} nums
* @return {number}
*/
var lengthOfLIS = function (nums) {
let n = nums.length;
if (n === 0) {
return 0
}
// memo 定义 dp[i] 表示 区间 [0,i] 的最长上升子序列
let dp = new Array(n).fill(1)
let res = 1
for (let j = 1; j < n; j++) {
for (let i = 0; i < j; i++) {
if (nums[i] < nums[j]) {
dp[j] = Math.max(dp[i] + 1, dp[j])
res = Math.max(res, dp[j])
}
}
}
return res
};