-
Notifications
You must be signed in to change notification settings - Fork 0
/
0674.LongestContinuousIncreasingSubsequence.js
56 lines (41 loc) · 1.54 KB
/
0674.LongestContinuousIncreasingSubsequence.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Given an unsorted array of integers nums, return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing.
// A continuous increasing subsequence is defined by two indices l and r (l < r) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] and for each l <= i < r, nums[i] < nums[i + 1].
//
// Example 1:
// Input: nums = [1,3,5,4,7]
// Output: 3
// Explanation: The longest continuous increasing subsequence is [1,3,5] with length 3.
// Even though [1,3,5,7] is an increasing subsequence, it is not continuous as elements 5 and 7 are separated by element
// 4.
// Example 2:
// Input: nums = [2,2,2,2,2]
// Output: 1
// Explanation: The longest continuous increasing subsequence is [2] with length 1. Note that it must be strictly
// increasing.
//
// Constraints:
// 1 <= nums.length <= 104
// -109 <= nums[i] <= 109
// 来源:力扣(LeetCode)
// 链接:https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence
// 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
// 🎨 方法一:动态规划
/**
* @param {number[]} nums
* @return {number}
*/
var findLengthOfLCIS = function (nums) {
let n = nums.length;
if (n === 0) {
return 0
}
const dp = new Array(n).fill(1);
let res = 1;
for (let i = 1; i < n; i++) {
if (nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1
res = Math.max(dp[i], res)
}
}
return res
};