-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCOMPLETE HYBRID A STAR ALGORITHM - IN MOULDING V3.0
792 lines (792 loc) · 269 KB
/
COMPLETE HYBRID A STAR ALGORITHM - IN MOULDING V3.0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "TensorFlow with GPU",
"version": "0.3.2",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 2",
"name": "python2"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"[View in Colaboratory](https://colab.research.google.com/github/sharathsrini/Extended-Kalman-Filter-for-Sensor-Fusion/blob/master/COMPLETE%20HYBRID%20A%20STAR%20ALGORITHM%20-%20IN%20MOULDING%20V3.0)"
]
},
{
"metadata": {
"id": "bRqO9Qo-KgUd",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"############PROGRAM STARTS HERE ######################\n",
"import numpy as np\n",
"import math as MT\n",
"from math import floor\n",
"import matplotlib.pyplot as plt\n",
"import time\n",
"\n",
"\n",
"###CONSTANTS\n",
"max_angle = 0.785398 #45Deg\n",
"min_angle = -0.785398 #-45Deg\n",
"free_space=0\n",
"locked_space=1\n",
"\n",
"### HYPER PARAMETERS\n",
"NUMBERS_OF_STEERS=4\n",
"STEER_OFFSET=5.0*np.pi/180\n",
"LENGTH=4.0\n",
"NUM_THETA_CELLS =60\n",
"\n",
"### GRID MAKING \n",
"grid_x_m = 50\n",
"grid_y_m = 50\n",
"\n",
"### FOR CELL DIVISION\n",
"coll_cell_side = 0.5\n",
"grid_on_x = np.int( np.ceil(grid_x_m/coll_cell_side) )\n",
"grid_on_y = np.int( np.ceil(grid_y_m/coll_cell_side) )\n",
"\n",
"### FIT ZEROS\n",
"GRID_TEST = np.zeros((grid_on_x,grid_on_y),np.int)\n",
"### INITIALIZE COST_MAPS AND ASTAR CLOSE MAPS\n",
"closed_A_star=np.array([[free_space for x in range(grid_on_x)] for y in range(grid_on_y)])\n",
"cost_map = np.array([[-1 for x in range(grid_on_x)] for y in range(grid_on_y)])\n",
"policy_map = [[' ' for x in range(grid_on_x)] for y in range(grid_on_y)]\n",
"\n",
"### MOTION MATRIX FOR ASTAR\n",
"motion_mat=np.array([[1,0],[-1,0],[0,-1],[0,1]])\n",
"policy_mat=['>',]\n"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "4IOZHrpeKyAa",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"\n",
"### STATE CLASS\n",
"class state:\n",
" def __init__(self,x,y,theta,g,f,h,steer):\n",
" self.x=x\n",
" self.y=y\n",
" self.theta=theta\n",
" self.g=g\n",
" self.f=f\n",
" self.h=h\n",
" self.steer=steer\n",
" \n",
" ## GOAL NODE \n",
"class goal:\n",
" def __init__(self, x, y):\n",
" self.x = x\n",
" self.y = y\n",
" \n",
" \n",
"### INPUT VEHICLE CO-ORDINATES\n",
"class vehicle_points():\n",
" def __init__(self,input_co_ordinates,center):\n",
" self.input_co_ordinates=input_co_ordinates\n",
" self.center=center\n",
" \n",
"### PATH CLASS FOR TRACKING \n",
"class path():\n",
" def __init__(self,closed,came_from,final):\n",
" self.closed=closed\n",
" self.came_from=came_from\n",
" self.final=final\n",
" \n",
"\n",
"### AUGMENT DELTA +/- GIVEN OFFSET\n",
"def delta_augmentation(delta, numbers, offset):\n",
" delta_list = []\n",
" delta_list.append(delta)\n",
" delta_calc_add=delta_calc_sub = delta\n",
" for i in range(0 ,numbers):\n",
" delta_calc_add += offset\n",
" delta_calc_sub -= offset\n",
" if delta_calc_add < max_angle:\n",
" delta_list.append(delta_calc_add)\n",
" if delta_calc_sub > min_angle:\n",
" delta_list.append(delta_calc_sub)\n",
" return delta_list\n",
" \n",
"\n",
"\n",
"### NEW STATE TRANSITIONS\n",
"def new_state_transition(current_state,goal,speed):\n",
" next_states = []\n",
" delta_angles = delta_augmentation( delta=current_state.steer, numbers=NUMBERS_OF_STEERS,offset=STEER_OFFSET)\n",
" DT=1.0/speed\n",
" for delta in delta_angles:\n",
" omega = (speed / LENGTH) * np.tan(delta)\n",
" theta2 = normalize_theta(current_state.theta + (omega * DT))\n",
" dX = speed * np.cos(theta2) * DT\n",
" dY = speed * np.sin(theta2) * DT\n",
" #i=i+1\n",
" #print(i,[SPEED,np.cos(theta2),DT,omega,theta2,dX,dY])\n",
" x2 = current_state.x + dX\n",
" y2 = current_state.y + dY\n",
" g2 = current_state.g + np.sqrt(dX*dX + dY*dY)\n",
" arc_cost=arc_heuristic(goal.x-x2,goal.y-y2,theta2) \n",
" #print(arc_cost)\n",
" h2 = euclidean_distance([x2,y2],[goal.x,goal.y])+arc_cost\n",
" if(cost_map[idx(x2)][idx(y2)]==-1):\n",
" h2+=100\n",
" else:\n",
" h2+=cost_map[idx(x2)][idx(y2)]\n",
" f2 = g2 + h2\n",
" new_state=state(x2,y2,theta2,g2,f2,h2,delta)\n",
" #jj=np.arctan2(goal.y-y2,goal.x-x2)\n",
" #print(['X: ',x2,'Y: ',y2,'ang_goal',normalize_theta(jj)*180/np.pi,'taken_angle',theta2*180/np.pi,'cost:',arc_cost])\n",
" next_states.append(new_state)\n",
" return next_states\n",
"\n",
"### TRANSFORM VEHICLE CO-ORDINATES \n",
"def transform_vehicle_co_ordinates(vehicle_point_object, next_state, angle_of_rotation):\n",
" displaced_matrix = np.array([next_state[0]-vehicle_point_object.center[0],next_state[1]-vehicle_point_object.center[1]])\n",
" transformed_matrix=np.add(vehicle_point_object.input_co_ordinates,displaced_matrix)\n",
" return vehicle_points(rotate_vehicle_co_ordinates(vehicle_points(transformed_matrix,next_state),angle_of_rotation),next_state)\n",
" \n",
" \n",
"### ROTATE VEHICLE CO-ORDINATES \n",
"def rotate_vehicle_co_ordinates(vehicle_point_object,angle_of_rotation):\n",
" rotation_matrix = np.array([[np.cos(angle_of_rotation), np.sin(angle_of_rotation)], \n",
" [-np.sin(angle_of_rotation), np.cos(angle_of_rotation)]])\n",
" return np.add(vehicle_point_object.center,np.matmul(np.subtract(vehicle_point_object.input_co_ordinates,vehicle_point_object.center), rotation_matrix))\n",
" \n",
" \n",
"### CHECK VEHICLE IN SAFE POSITION \n",
"def is_vehicle_in_safe_position(vehicle_point_object,grid):\n",
" for point in vehicle_point_object.input_co_ordinates:\n",
" if(is_within_grid( idx(point[0]),idx(point[1])) and \n",
" (grid[idx(point[0])][idx(point[1])]==0)):\n",
" continue\n",
" else:\n",
" return False\n",
" return True\n",
"\n",
"### CHK A STAR VEHICLE:\n",
"def A_vehicle_is_safe(vehicle_point_A,add_value,grid):\n",
" vp=vehicle_point_A.input_co_ordinates+add_value\n",
" for point in vp:\n",
" if(is_within_grid( idx(point[0]),idx(point[1])) and \n",
" (grid[idx(point[0])][idx(point[1])]==0)):\n",
" continue\n",
" else:\n",
" #print('False',add_value)\n",
" return False\n",
" #('True',add_value)\n",
" return True\n",
" \n",
" \n",
"\n",
"### EUCLIDEAN DISTANCE\n",
"def euclidean_distance(start_point,end_point):\n",
" return np.round(np.sqrt((end_point[0]-start_point[0])**2 +(end_point[1]-start_point[1])**2),4)\n",
"\n",
"### ARC HEURISTIC\n",
"def arc_heuristic(x,y,theta_to_be_taken):\n",
" ang_rad=normalize_theta(np.arctan2(y,x))\n",
" diff=np.pi-abs(abs(theta_to_be_taken-ang_rad)-np.pi)\n",
" return diff\n",
" \n",
"### NORMALIZE THETA\n",
"def normalize_theta(theta):\n",
" if( theta<0 ):\n",
" theta +=( 2*np.pi )\n",
" elif( theta>2*np.pi ):\n",
" theta %=( 2*np.pi)\n",
" return theta\n",
"\n",
"### THETA TO STACK NUMBER\n",
"def theta_to_stack_number(theta):\n",
" new = (theta+2*np.pi)%(2*np.pi)\n",
" stack_number = round(new*NUM_THETA_CELLS/2*np.pi)%NUM_THETA_CELLS\n",
" return int(stack_number)\n",
"\n",
"### FLOOR VALUE\n",
"def idx(value):\n",
" return int(MT.floor(value))\n",
"\n",
"### CHECK WITHIN GRID \n",
"def is_within_grid(x,y):\n",
" return (x>=0 and x<grid_on_x and y>=0 and y<grid_on_y)\n",
"\n",
"### IS_GOAL_REACHED\n",
"def is_goal_reached(start,goal):\n",
" result=False\n",
" if( idx(start[0]) == idx(goal[0]) and idx(start[1])==idx(goal[1])):\n",
" result=True\n",
" return result\n",
"\n",
"\n",
"### A_STAR SEARCH\n",
"def A_Star(current_state,goal,grid):\n",
" vehicle_point_A=vehicle_points(np.array([[0,2],[0,1],[0,-1],[0,-2],[1,0],[2,0],[-1,0],[-2,0]]),[0,0])\n",
" print(\"STARTED A*\")\n",
" open_list = []\n",
" open_list.append(current_state )\n",
" is_goal_attained=False\n",
" cost=0\n",
" heu=0\n",
" closed_A_star[current_state.x][current_state.y]=1\n",
" cost_map[current_state.x][current_state.y]=cost\n",
" \n",
" while(len(open_list)>0):\n",
" open_list.sort(key=lambda state_srt : float(state_srt.f))\n",
" old_state=open_list.pop(0)\n",
" if(goal.x==old_state.x and goal.y==old_state.y):\n",
" is_goal_attained=True\n",
" print(\"GOAL REACHED BY A*\")\n",
" return is_goal_attained\n",
" node=np.array([old_state.x,old_state.y])\n",
" for move in motion_mat:\n",
" nxt_node=node+move\n",
" if( is_within_grid(nxt_node[0],nxt_node[1])):\n",
" if(grid[nxt_node[0]][nxt_node[1]]==0 and closed_A_star[nxt_node[0]][nxt_node[1]]==0):\n",
" if(A_vehicle_is_safe(vehicle_point_A,np.array([nxt_node]),grid)):\n",
" g2=old_state.g+1\n",
" heu=euclidean_distance([nxt_node[0],nxt_node[1]],[goal.x,goal.y])\n",
" new_state=state(nxt_node[0],nxt_node[1],0,g2,g2+heu,heu,0)\n",
" open_list.append(new_state)\n",
" closed_A_star[nxt_node[0]][nxt_node[1]]=1\n",
" cost_map[nxt_node[0]][nxt_node[1]]=g2\n",
" #plt.plot([node[0],nxt_node[0]],[node[1],nxt_node[1]])\n",
" return is_goal_attained\n",
"\n",
"### SEARCH ALGORITHM\n",
"def Hybrid_A_Star(grid,current_state,goal,vehicle_point_object,speed):\n",
" print(\"STARTED HYBRID A*\")\n",
" start_time = time.time()\n",
" closed = np.array([[[free_space for x in range(grid_on_x)] for y in range(grid_on_y)] for cell in range(NUM_THETA_CELLS)])\n",
" came_from = [[[free_space for x in range(grid_on_x)] for y in range(grid_on_y)] for cell in range(NUM_THETA_CELLS)]\n",
" is_goal_attained=False\n",
" stack_number=theta_to_stack_number(current_state.theta)\n",
" closed[stack_number][idx(current_state.x)][idx(current_state.y)]=1\n",
" came_from[stack_number][idx(current_state.x)][idx(current_state.y)]=current_state\n",
" total_closed=1\n",
" opened=[current_state]\n",
" \n",
" while (len(opened)>0):\n",
" opened.sort(key=lambda state_srt : float(state_srt.f))\n",
" state_now=opened.pop(0)\n",
" #print([state_now.x,state_now.y,state_now.theta*np.pi/180])\n",
" if(is_goal_reached([idx(state_now.x),idx(state_now.y)],[idx(goal.x),idx(goal.y)])):\n",
" is_goal_attained=True\n",
" print('GOAL REACHED BY HYBRID A*')\n",
" ret_path=path(closed,came_from,state_now)\n",
" end_time = time.time()\n",
" print(end_time - start_time)\n",
" return (is_goal_attained,ret_path)\n",
" \n",
" for evry_state in new_state_transition(state_now,goal,speed):\n",
" #print('Before',[evry_state.x,evry_state.y,evry_state.theta*np.pi/180])\n",
" if(not is_within_grid(idx(evry_state.x),idx(evry_state.y))):\n",
" continue\n",
" \n",
" stack_num=theta_to_stack_number(evry_state.theta)\n",
" #print([stack_num,idx(evry_state.x),idx(evry_state.y)])\n",
" if closed[stack_num][idx(evry_state.x)][idx(evry_state.y)]==0 and grid[idx(evry_state.x)][idx(evry_state.y)]==0:\n",
" new_vehicle_point_obj = transform_vehicle_co_ordinates(vehicle_point_object,[evry_state.x,evry_state.y],evry_state.theta)\n",
" #print(new_vehicle_point_obj.input_co_ordinates)\n",
" if(is_vehicle_in_safe_position(new_vehicle_point_obj,grid)):\n",
" opened.append(evry_state)\n",
" closed[stack_num][idx(evry_state.x)][idx(evry_state.y)]=1\n",
" came_from[stack_num][idx(evry_state.x)][idx(evry_state.y)]=state_now\n",
" total_closed+= 1\n",
" #print('After',[evry_state.x,evry_state.y,evry_state.theta*np.pi/180])\n",
" #plt.plot([state_now.x,evry_state.x],[state_now.y,evry_state.y])\n",
" #closed[stack_num][idx(evry_state.x)][idx(evry_state.y)]=1\n",
" #print('-------------')\n",
" print('No Valid path')\n",
" ret_path=path(closed,came_from,evry_state)\n",
" return (is_goal_attained,ret_path)\n",
"\n",
"\n",
"\n",
"### RECONSTRUCT PATH\n",
"def reconstruct_path(came_from, start, final):\n",
" path = [(final)]\n",
" stack = theta_to_stack_number(final.theta)\n",
" current = came_from[stack][idx(final.x)][idx(final.y)]\n",
" stack = theta_to_stack_number(current.theta)\n",
" while [idx(current.x), idx(current.y)] != [idx(start[0]), idx(start[1])] :\n",
" path.append(current)\n",
" current = came_from[stack][idx(current.x)][idx(current.y)]\n",
" stack = theta_to_stack_number(current.theta)\n",
" return path\n",
"\n",
"\n",
"###DISPLAY PATH\n",
"def show_path(path, start, goal,vehicle_pt_obj_act):\n",
" X=[start[0]]\n",
" Y=[start[1]]\n",
" Theta=[]\n",
" path.reverse()\n",
" X += [p.x for p in path]\n",
" Y += [p.y for p in path]\n",
" Theta+=[p.theta for p in path]\n",
" for i in range(len(X)-1):\n",
" Xj=[]\n",
" Yj=[]\n",
" vehicle_pt_obj_now=transform_vehicle_co_ordinates(vehicle_pt_obj_act,[X[i],Y[i]], Theta[i])\n",
" rev=vehicle_pt_obj_now.input_co_ordinates\n",
" revI=rev[:4]\n",
" revL=rev[4:]\n",
" revF=np.concatenate([revI,revL[::-1]])\n",
" l=np.append(revF,[revF[0]],axis=0)\n",
" #print(l)\n",
" for i in l:\n",
" Xj.append(i[0])\n",
" Yj.append(i[1])\n",
" plt.plot(Xj,Yj)\n",
" print([p.steer*180/np.pi for p in path])\n",
" plt.plot(X,Y, color='black')\n",
" plt.scatter([start[0]], [start[1]], color='blue')\n",
" plt.scatter([goal[0]], [goal[1]], color='red')\n",
" plt.show()"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "2exSViITSeqc",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"### PUT OBSTACLES:\n",
"def put_obstacles(X_list,Y_list,grid):\n",
" if(len(X_list)>0):\n",
" for i in X_list:\n",
" x_XO=[]\n",
" x_YO=[]\n",
" for k in range(i[1],i[2]):\n",
" x_XO.append(i[0])\n",
" x_YO.append(k)\n",
" grid[i[0]][k]=1\n",
" plt.scatter(x_XO,x_YO)\n",
" if(len(Y_list)>0):\n",
" for i in Y_list:\n",
" y_XO=[]\n",
" y_YO=[]\n",
" for k in range(i[1],i[2]):\n",
" y_XO.append(i[0])\n",
" y_YO.append(k)\n",
" grid[k][i[0]]=1\n",
" plt.scatter(y_YO,y_XO)\n",
" "
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "ZOneuDF-KiZN",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 347
},
"outputId": "5aff0112-5493-423a-88b0-d12e102968da"
},
"cell_type": "code",
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import math\n",
"# Vehicle parameter\n",
"W = 2.5 #[m] width of vehicle\n",
"LF = 3.7 #[m] distance from rear to vehicle front end of vehicle\n",
"LB = 1.0 #[m] distance from rear to vehicle back end of vehicle\n",
"TR = 0.5 # Tyre radius [m] for plot\n",
"TW = 1.2 # Tyre width [m] for plot\n",
"MAX_STEER = 0.6 #[rad] maximum steering angle\n",
"WB = 2.7 #[m] wheel base: rear to front steer\n",
"\n",
"def plot_car(x, y, yaw, steer, retrun_car = False):\n",
" car_color = \"-k\"\n",
"\n",
" LENGTH = LB+LF\n",
"\n",
" car_OutLine = np.array([[-LB, (LENGTH - LB), (LENGTH - LB), (-LB), (-LB)],\n",
" [W / 2, W / 2, - W / 2, - W / 2, W / 2]])\n",
"\n",
"\n",
" rr_wheel = np.array([[TR, - TR, - TR, TR, TR],\n",
" [-W / 12.0 + TW, - W / 12.0 + TW, W / 12.0 + TW, W / 12.0 + TW, - W / 12.0 + TW]])\n",
"\n",
" rl_wheel = np.array([[TR, - TR, - TR, TR, TR],\n",
" [-W / 12.0 - TW, - W / 12.0 - TW, W / 12.0 - TW, W / 12.0 - TW, - W / 12.0 - TW]])\n",
"\n",
" fr_wheel = np.array([[TR, - TR, - TR, TR, TR],\n",
" [- W / 12.0 + TW, - W / 12.0 + TW, W / 12.0 + TW, W / 12.0 + TW, - W / 12.0 + TW]])\n",
"\n",
" fl_wheel = np.array([[TR, - TR, - TR, TR, TR],\n",
" [-W / 12.0 - TW, - W / 12.0 - TW, W / 12.0 - TW, W / 12.0 - TW, - W / 12.0 - TW]])\n",
"\n",
" Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],\n",
" [-math.sin(yaw), math.cos(yaw)]])\n",
" Rot2 = np.array([[math.cos(steer), -math.sin(steer)],\n",
" [math.sin(steer), math.cos(steer)]])\n",
"\n",
"\n",
" fr_wheel = np.dot(fr_wheel.T, Rot2).T\n",
" fl_wheel = np.dot(fl_wheel.T, Rot2).T\n",
" fr_wheel[0,:] += WB\n",
" fl_wheel[0,:] += WB\n",
" fr_wheel = np.dot(fr_wheel.T, Rot1).T\n",
" fl_wheel = np.dot(fl_wheel.T, Rot1).T\n",
"\n",
" car_OutLine = np.dot(car_OutLine.T, Rot1)\n",
"\n",
" rr_wheel = np.dot(rr_wheel.T, Rot1).T\n",
" rl_wheel = np.dot(rl_wheel.T, Rot1).T\n",
"\n",
" car_OutLine = car_OutLine.T\n",
" car_OutLine[0,:] += x\n",
" car_OutLine[1,:] += y\n",
" fr_wheel[0, :] += x\n",
" fr_wheel[1, :] += y\n",
" rr_wheel[0, :] += x\n",
" rr_wheel[1, :] += y\n",
" fl_wheel[0, :] += x\n",
" fl_wheel[1, :] += y\n",
" rl_wheel[0, :] += x\n",
" rl_wheel[1, :] += y\n",
"\n",
" if retrun_car == False:\n",
" plt.plot(x, y, \"*\")\n",
" plt.plot(fr_wheel[0, :], fr_wheel[1, :], car_color)\n",
" plt.plot(rr_wheel[0, :], rr_wheel[1, :], car_color)\n",
" plt.plot(fl_wheel[0, :], fl_wheel[1, :], car_color)\n",
" plt.plot(rl_wheel[0, :], rl_wheel[1, :], car_color)\n",
" plt.plot(car_OutLine[0, :], car_OutLine[1, :], car_color)\n",
" else:\n",
" return car_OutLine[0, :], car_OutLine[1, :]\n",
"\n",
"plot_car(0.0, 0.0, np.pi, 0.0, retrun_car = False)\n"
],
"execution_count": 109,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFKCAYAAAAnj5dkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFhBJREFUeJzt3W9sU/e9x/GPHTcMiBtiyeZP064V\nQoqawkogWrNcoIoSCdFBkZY0yVRUTUzVJG55sHSMtlc3kSCs6NJpEzBNRMCq0MuibF1btqulD5ZO\ntyVS2kaiJVIbUW4hJBOxu5QS8iBl8X2Ami0lCXB8jv099vslVYqxc843v9p5c2zjE0gmk0kBAAAz\ngpkeAAAATEecAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjQpke4Cvx+NVMj+B7RUULNDo6nukxsg7r\n6g3W1TusrTfcXtdoNDzrdSkdOQ8MDKi6ulonTpy46bqqqip9//vf17Zt27Rt2zZdvnw5lV3hNoRC\neZkeISuxrt5gXb3D2nojnevq+Mh5fHxce/bsUUVFxay3aWtr08KFC53uAgCAnOT4yDk/P19tbW2K\nxWJuzgMAQM5zfOQcCoUUCs397c3NzRoaGtKaNWvU1NSkQCDgdHcAAOQMz94QtnPnTq1bt06FhYXa\nsWOHurq6tHHjxllvX1S0gNdJXDDXGwzgHOvqDdbVO6ytN9K1rp7FeevWrVNfr1+/XgMDA3PGmXcW\npi4aDfOudw+wrt5gXb3D2nrD7XX17N3as7l69aq2b9+uiYkJSdK7776rFStWeLErAACyjuMj57Nn\nz2r//v0aGhpSKBRSV1eXqqqqVFxcrJqaGq1fv1719fWaN2+eHnzwwTmPmgEAwD8FrJzPmadgUsdT\nWd5gXb3BunqHtfWG75/WBgAAzhFnAACMMfPZ2rksFrtbknTvvfeltJ1gMKDJSROvUpixefNWtbTs\nzfQY8Dm3HqPp4qffBTxGZ8aRM7LW8PCQTp16LdNjAJgFj9HZceRswFd/G3///bMpbYc3gUy3Zs1D\nmR4BWcKtx2i6+OV3AY/R2XHkDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDA\nGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABgTSCaTJk766eYZVFpa/sNXpyEbHh6SJC1bdk9K2/HT\nOVzTgXW1zU/r6tZ9KV38srZ+W9f6+ie0a9d/ura9aDQ863VZeeR86tRrU//TAQBI1fDwkDo7O9O2\nv6w9n/OyZff45tyrX53TlPM5u4t1tc1P6+rWfSld/LK2flrXdJ97OiuPnAEA8DPiDACAMcQZAABj\niDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhD\nnAEAMIY4AwBgDHEGAMAY4gwAgDEpxXlgYEDV1dU6ceLETdedPn1atbW1qq+v1+HDh1PZDQAAOcVx\nnMfHx7Vnzx5VVFTMeP3evXt18OBBnTx5Uu+8847OnTvneEgAAHKJ4zjn5+erra1NsVjspusGBwdV\nWFiopUuXKhgMasOGDerp6UlpUAAAcoXjOIdCIX3jG9+Y8bp4PK5IJDJ1ORKJKB6PO90VAAA5JZTp\nAb5SVLRAoVCeK9sKBgOSpGg07Mr2vBYMBnTp0iWVl6/M9ChZZXh4SMXFxa7cD/xyX/Ibv6wrj1Fv\nuPkY9Vq6u+JJnGOxmBKJxNTly5cvz/j0978aHR13bf+Tk0lJUjx+1bVteumxxx7XqVOvTc3tVDAY\nSHkb2WTZsnv02GOPp3w/iEbDvrkv+Ymf1tWtx2i6+OV3gVuP0XSYnEwqGAy4OutcofckzsXFxRob\nG9OlS5e0ZMkSdXd368CBA17sKiu0tOxVS8velLfjp192gJ+49RhNF34X+J/jOJ89e1b79+/X0NCQ\nQqGQurq6VFVVpeLiYtXU1KilpUVNTU2SpE2bNumBBx5wbWgAALKZ4zg/9NBDam9vn/X68vJydXR0\nON08AAA5i08IAwDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwA\ngDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAA\njCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBg\nDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwJuT0G/ft26czZ84oEAjo+eef16pV\nq6auq6qq0pIlS5SXlydJOnDggBYvXpz6tAAA5ABHce7t7dWFCxfU0dGhTz75RM8//7w6Ojqm3aat\nrU0LFy50ZUgAAHKJo6e1e3p6VF1dLUlavny5rly5orGxMVcHAwAgVzmKcyKRUFFR0dTlSCSieDw+\n7TbNzc1qbGzUgQMHlEwmU5sSAIAc4vg153/19fju3LlT69atU2FhoXbs2KGuri5t3Lhxzm0UFS1Q\nKJTnxjgKBgOSpGg07Mr2/CQXf+Z0YF29wbp6h7V1V7q74ijOsVhMiURi6vLIyIii0ejU5a1bt059\nvX79eg0MDNwyzqOj405GmdHk5I2/LMTjV13bph9Eo+Gc+5nTgXX1BuvqHdbWfZOTSQWDAVfXda7Q\nO3pau7KyUl1dXZKk/v5+xWIxFRQUSJKuXr2q7du3a2JiQpL07rvvasWKFU52AwBATnJ05FxWVqbS\n0lI1NDQoEAioublZr776qsLhsGpqarR+/XrV19dr3rx5evDBB2951AwAAP7J8WvOzz777LTLJSUl\nU18/9dRTeuqpp5xPBQBADuMTwgAAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAA\nGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDA\nGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADG\nEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAY4zjO+/bt\nU319vRoaGvTBBx9Mu+706dOqra1VfX29Dh8+nPKQAIDb89GFUX14LpHpMZAiR3Hu7e3VhQsX1NHR\nodbWVrW2tk67fu/evTp48KBOnjypd955R+fOnXNlWADA3F5/+//0329+lOkxkCJHce7p6VF1dbUk\nafny5bpy5YrGxsYkSYODgyosLNTSpUsVDAa1YcMG9fT0uDcxAOAmH10Y1f5X+vTx4Oc6+8ln2v9K\nnz66MJrpseBQyMk3JRIJlZaWTl2ORCKKx+MqKChQPB5XJBKZdt3g4OAtt1lUtEChUJ6TcW4SDAYk\nSdFo2JXt+Uku/szpwLp6g3V1TzQa1n3Fi/Tv/9UtSdrZsFr3Lbk7w1Nlj3R3xVGcvy6ZTKa8jdHR\ncRcmuWFy8sY88fhV17bpB9FoOOd+5nRgXb3BurrvzdP/py2V92vhwnl6s+dTPf5vD2R6pKwxOZlU\nMBhw9T47V+gdxTkWiymR+OcbDkZGRhSNRme87vLly4rFYk52AwC4A/dEC1ReElM0Gtb//O8nmR4H\nKXD0mnNlZaW6urokSf39/YrFYiooKJAkFRcXa2xsTJcuXdL169fV3d2tyspK9yYGAMyovCQ249fw\nH0dHzmVlZSotLVVDQ4MCgYCam5v16quvKhwOq6amRi0tLWpqapIkbdq0SQ88wFMrAADcLsevOT/7\n7LPTLpeUlEx9XV5ero6ODudTAQCQw/iEMAAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkA\nAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAA\nGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDA\nGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY0JOvunL\nL7/U7t27NTw8rLy8PP3sZz/TvffeO+02paWlKisrm7r8m9/8Rnl5ealNCwBADnAU5z/+8Y+6++67\n9dJLL+ntt9/WSy+9pF/84hfTblNQUKD29nZXhgQAIJc4elq7p6dHNTU1kqTvfOc76uvrc3UoAABy\nmaM4JxIJRSKRGxsIBhUIBDQxMTHtNhMTE2pqalJDQ4OOHz+e+qQAAOSIWz6t3dnZqc7Ozml/dubM\nmWmXk8nkTd+3a9cubdmyRYFAQE8++aTWrl2rlStXzrqfoqIFCoXceU06GAxIkqLRsCvb85Nc/JnT\ngXX1BuvqHdbWXenuyi3jXFdXp7q6uml/tnv3bsXjcZWUlOjLL79UMplUfn7+tNs0NjZOff3II49o\nYGBgzjiPjo7f6eyzmpy88ZeFePyqa9v0g2g0nHM/czqwrt5gXb3D2rpvcjKpYDDg6rrOFXpHT2tX\nVlbqz3/+sySpu7tb3/72t6ddf/78eTU1NSmZTOr69evq6+vTihUrnOwKAICc4+jd2ps2bdLp06fV\n2Nio/Px8vfjii5KkI0eOqLy8XKtXr9aSJUtUW1urYDCoqqoqrVq1ytXBAQDIVo7i/NW/bf66p59+\neurrn/zkJ86nAgAgh/EJYQAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHO\nAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxhBnAACMIc4AABhDnAEAMIY4AwBgDHEG\nAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMA\nAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxxBgDAGOIMAIAxxBkAAGOIMwAAxjiOc29vryoqKtTd3T3j\n9W+88Ya+973vqa6uTp2dnY4HBAAg14ScfNPFixd1/PhxlZWVzXj9+Pi4Dh8+rN/97ne66667VFtb\nq5qaGi1atCilYQEAyAWO4hyNRnXo0CG98MILM15/5swZrVy5UuFwWJJUVlamvr4+VVVVOZ80i8Vi\nd0uS7r33vpS2EwwGNDmZdGOkrLF581a1tOzN9BjwObceo+nip98FPEZn5uhp7fnz5ysvL2/W6xOJ\nhCKRyNTlSCSieDzuZFeAY8PDQzp16rVMjwFgFjxGZ3fLI+fOzs6bXjN+5plntG7dutveSTJ567/B\nFRUtUCg0e/DvRDAYkCRFo2FXtue1b37zm5KkTz/9NLODZJn7779fkjv3A7/cl/zGL+vKY9Qbbj5G\nvZburtwyznV1daqrq7ujjcZiMSUSianLIyMjevjhh+f8ntHR8Tvax1y+ejonHr/q2ja95Na80WjY\nNz9zOrCutvlpXf32O8Uva+undZ2cTCoYDLg661yh9+SfUn3rW9/Shx9+qC+++ELXrl1TX1+f1q5d\n68WuAADIOo7eEPbWW2/p6NGjOn/+vPr7+9Xe3q5jx47pyJEjKi8v1+rVq9XU1KTt27crEAhox44d\nU28OAwAAc3MU50cffVSPPvroTX/+9NNPT329ceNGbdy40fFgAADkKj4hDAAAY4gzAADGEGcAAIwh\nzgAAGEOcAQAwhjgDAGAMcQYAwBjiDACAMcQZAABjiDMAAMYQZwAAjCHOAAAYQ5wBADCGOAMAYAxx\nBgDAGOIMAIAxxBkAAGOIMwAAxgSSyWQy00NIUjx+1bVtrVnzkIaHh7Rs2T2ubdNLw8NDkpTyvMFg\nQJOTJv53msC62uandXXrvpQufllbP63r4OBFSdLIyBeubTMaDc96XVYeOW/evNUX/7MBAJhJVh45\n+82aNQ9Jkt5//2xK24lGwzm9jl/Hutrmp3V1676ULn5Z21xf15w7cgYAwM+IMwAAxhBnAACMIc4A\nABhDnAEAMIY4AwBgDHEGAMAY4gwAgDHEGQAAY4gzAADGEGcAAIwhzgAAGBPK9AC4YXh4aOpD4J3y\ny2ni0sVPpw2FfW48RtPFL78LeIzOjiNnAzjFpTeWLbtHmzdvzfQYyAI8Rr3BY3R2nDIyi/jlNHF+\nw7p6g3X1DmvrDU4ZCQBADiPOAAAYQ5wBADDGcZx7e3tVUVGh7u7uGa8vLS3Vtm3bpv77xz/+4XhI\nAAByiaN/SnXx4kUdP35cZWVls96moKBA7e3tjgcDACBXOTpyjkajOnTokMLh2d9pBgAAnHEU5/nz\n5ysvL2/O20xMTKipqUkNDQ06fvy4o+EAAMhFt3xau7OzU52dndP+7JlnntG6devm/L5du3Zpy5Yt\nCgQCevLJJ7V27VqtXLly1tsXFS1QKDR38HFrc/27OTjHunqDdfUOa+uNdK3rLeNcV1enurq6O95w\nY2Pj1NePPPKIBgYG5ozz6Oj4He8D0/HBA95gXb3BunqHtfWG7z+E5Pz582pqalIymdT169fV19en\nFStWeLErAACyjqN3a7/11ls6evSozp8/r/7+frW3t+vYsWM6cuSIysvLtXr1ai1ZskS1tbUKBoOq\nqqrSqlWr3J4dAICsxGdrZxGeyvIG6+oN1tU7rK030vm0tpk4AwCAG/j4TgAAjCHOAAAYQ5wBADCG\nOAMAYAxxBgDAGOIMAIAxxDmLfPbZZ/rhD3+obdu2qaGhQWfOnMn0SFnh+vXr+ulPf6rGxkY98cQT\neu+99zI9Uta41XnhcWf27dun+vp6NTQ06IMPPsj0OFllYGBA1dXVOnHiRFr2R5yzyBtvvKHHH39c\n7e3t+vGPf6xf/vKXmR4pK7z++uuaP3++Tp48qdbWVr344ouZHikr3M554XH7ent7deHCBXV0dKi1\ntVWtra2ZHilrjI+Pa8+ePaqoqEjbPolzFvnBD36gzZs3S5L+9re/afHixRmeKDts2bJFzz33nCQp\nEono888/z/BE2YHzwrurp6dH1dXVkqTly5frypUrGhsby/BU2SE/P19tbW2KxWJp26ejz9aGXfF4\nXD/60Y907do1vfzyy5keJyvcddddU1+//PLL+u53v5vBabLH/PnzMz1CVkkkEiotLZ26HIlEFI/H\nVVBQkMGpskMoFFIolN5cEmefmus827///e/117/+Vc8995yOHTuWoQn9aa51feWVV9Tf369f//rX\nGZrOv5yeFx7O8cnM/kacfWqm82z39vbqypUrKiws1IYNG7Rr164MTedfs52/vLOzU3/5y1/0q1/9\natqRNG6P0/PC4/bFYjElEompyyMjI4pGoxmcCKngNecs8uabb+oPf/iDJOnjjz/W0qVLMzxRdhgc\nHNRvf/tbHTp0SPPmzcv0OMCMKisr1dXVJUnq7+9XLBbjKW0f46xUWeTvf/+7du/erWvXrmliYkIv\nvPCCHn744UyP5Xs///nP9ac//UnLli2b+rOjR48qPz8/g1P537+eFz4SiSgajfIyTIoOHDig9957\nT4FAQM3NzSopKcn0SFnh7Nmz2r9/v4aGhhQKhbR48WIdPHhQixYt8myfxBkAAGN4WhsAAGOIMwAA\nxhBnAACMIc4AABhDnAEAMIY4AwBgDHEGAMAY4gwAgDH/DwnGxS+x6VxNAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1232237d10>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"metadata": {
"id": "GnQoKc-BeRXn",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"def show_animation(path, start, goal,vehicle_pt_obj_act):\n",
" x =[]\n",
" y = []\n",
" yaw = []\n",
" steer = []\n",
" path.reverse()\n",
" x += [p.x for p in path]\n",
" y += [p.y for p in path]\n",
" yaw += [p.theta for p in path]\n",
" \n",
" steer =[p.steer*180/np.pi for p in path]\n",
" print(type(steer[0]))\n",
" \n",
" for ii in range(0,len(x),5):\n",
" plt.cla()\n",
" plt.plot(x, y, \"-r\", label=\"Hybrid A* path\")\n",
"\n",
"\n",
" plot_car(x[ii], y[ii], yaw[ii], steer[ii])\n",
" plt.grid(True)\n",
" plt.axis(\"equal\")\n",
" plt.pause(0.01)"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "ZbpDvcJDRw3I",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"START=[40,45]\n",
"SPEED=60\n",
"goal_node = goal( 4,3)\n",
"present_heading=(np.pi/2)\n",
"vehicle_pt_obj_actual = vehicle_points( np.array([[0.5,0.5],[0.5,1.5],[0.5,2.5],[0.5,3.5],[1.5,0.5],[1.5,1.5],[1.5,2.5],[1.5,3.5]]),[0,2] )\n",
"vehicle_pt_obj=transform_vehicle_co_ordinates(vehicle_pt_obj_actual,START,present_heading)\n",
"#print(vehicle_pt_obj.input_co_ordinates)\n",
"current_state = state(vehicle_pt_obj.center[0], vehicle_pt_obj.center[1], present_heading, 0.0, 0.0, 0.0,0.0)"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "vJQLZcriX_il",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 5069
},
"outputId": "91a02610-10bd-4812-f538-421ac7eca3f5"
},
"cell_type": "code",
"source": [
"put_obstacles([[15,0,30],[26,0,30],[27,0,25],[60,15,35]],[],GRID_TEST)\n",
"if(A_Star(state(goal_node.x,goal_node.y,0,0,0,0,0),goal(START[0],START[1]),GRID_TEST)):\n",
" process_further,ret_val=Hybrid_A_Star(GRID_TEST,current_state,goal_node,vehicle_pt_obj,SPEED)\n",
" if(process_further):\n",
" show_animation(reconstruct_path(ret_val.came_from,START,ret_val.final),START,[goal_node.x,goal_node.y],vehicle_pt_obj_actual)\n",
" else:\n",
" print(\"GOAL CANT BE REACHED!!\")\n",
"else:\n",
" print(\"GOAL CANT BE REACHED!!\")\n"
],
"execution_count": 112,
"outputs": [
{
"output_type": "stream",
"text": [
"STARTED A*\n",
"GOAL REACHED BY A*\n",
"STARTED HYBRID A*\n",
"GOAL REACHED BY HYBRID A*\n",
"0.895781040192\n",
"<type 'float'>\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xt4k/X9//Fneidpmh6glBQFOctR\nEFBBQVEQppPffopuinbqPOGBL4j6BQTmcYpyUgFRcSJMZQhaN39uc4PpRNFBERUVlNGCHIUSsEDb\nNG1Ovz9Ki0ygB5LcObwe18UlSZvk9bahr+u+c9+f2xIKhUKIiIhI1KSYHUBERCTZqHxFRESiTOUr\nIiISZSpfERGRKFP5ioiIRJnKV0REJMqs0XgRt7s0Gi9zQtnZTkpKPGbHiLhkmROSZ1bNmViSZU5I\nnlmPN6fLlXncxyTNlq/VapgdISqSZU5Inlk1Z2JJljkheWZtzJxJU74iIiKxQuUrIiISZSpfERGR\nKFP5ioiIRJnKV0REJMpUviIiIlGm8hUREYkyla+IiEiUqXxFRESirM7lJQsKChg7diydOnUCoHPn\nztx2221MmDCBQCCAy+VixowZ2O32iIcVERFJBPVa27lfv37MmTOn9vakSZPIy8vjsssu4+mnnyY/\nP5+8vLyIhRQRiUeBQIB//ONdOnToSLdu3c2OIzGkUbudCwoKGDJkCACDBw9m1apVYQ0lIhLvPvpo\nBUOHXsjNN/+aESOupLy83OxIEkPqteVbVFTEnXfeycGDBxk9ejQVFRW1u5lzcnJwu90nfHx2tjMm\nFtg+0RUmEkmyzAnJM6vmDJPSUvjiC/j8cygpAcOo/pOSUv1fqxW6dIHzzoOcnEa9xMaNGxk/fjx/\n/etfAejRowfr169n0qR7ef311wHIzLRRXFxc+6djx450756YW8Z67x5bneXbrl07Ro8ezWWXXcaO\nHTu48cYbCQQCtV8PhUJ1vkgsXFLK5cqMiUsbRlqyzAnJM6vmbLyULZtJXf53rF+uw/rVOoyiQiz1\n+J0F4D+9E76+5+I/px++8wYQ6NT5hN/v9Xp5+OHJvPLKAoLBIB07duLss89h7do1ACxZsoRPP13L\nvn1uDh48eNRjXa5cNmwoatyQMSzZ37snKuQ6y7dFixYMGzYMgDZt2tC8eXO+/vprvF4vDoeD4uJi\ncnNzTyK2iEgYhULYVvyLtPnzsL+3vLZsg5lZ+AZcgL9XH/y9ehPMbQGBAAQCWILV/6XKh/Wb9dg+\nLcD6+Wekvb4IXl8EQFX/86n4n7upGnpp9Zbyj2zeXMjQoRdRXl521H2bNxfW3rZYLBw8eIA2bdqQ\nnd2c3NxcXK5cli//O5s3F1FeXk56enoU/gdJLKizfN955x3cbje33norbreb/fv3c9VVV7Fs2TKu\nuOIKli9fzsCBA6ORVUTk+MrLcby5hLT587Bu+g8AvnP6UXHjzfj79iPQvuNPSvNYqn5xefVfAgGM\n/2zEtnYNqe/+Bfu/3sO+6hP8XbriGXU3lVddDampAOzdu5fy8jJycpqzf/8+rFYrfr+frKwsbrnl\ndm666VZyc1tgtVp/spW0f/8+Nm8uwu3eS3p6+/D/f5GYVGf5XnzxxYwbN473338fn8/HI488Qrdu\n3bj//vtZunQpLVu2ZPjw4dHIKiJyTPb3l5N59yhS3HsJ2Wx4f3kNFbffhb/P2Y1/UsMg0P0MAt3P\nwHvjzRjfbMD5/BxS//QmWWNHEXjyMcof+h2VvxqBy1W992/IkJ/xyScr2bfPzV13jWHs2PvIympy\nwpepeazbvZd27VS+yaLO8s3IyGDevHk/uX/hwoURCSQiUm8VFaQ/9hDO+S8Sstspv2cc3ltvJ9ji\nlLC/VKD7GZTOfZHySQ+S9uLzpL26kKxRI6n4+CNc9z8AwIEDJfzznx8RCoVwuVz1et7c3BZA9daz\nJI96He0sIhJrjA3rybrrVqwbv8XfuQuHXniZQM8zI/66wVanUf67J6i46Vaybr+ZtMWv0XbtGlLt\ndvbuLaZ58+YNer6akna7Vb7JRMtLikjccSx6hexLB2Hd+C0Vt4ykZPmHUSneHwt26MiBv/0Tz213\nYNv0H1r4fOzburXBz1Oz5avyTS4qXxGJK6n5S8m8bwyhzEwOLlpK2dSnwOk0KUwq5U/M4OCCRbSw\npLD3QAmO3z/foKeo+cxXu52Ti8pXROKG/b1lZN59F8GsJhzI/wtVl1xmdiSg+gjpZgPOpwrwPTAR\n+9/+Uu/H/viAK0keKl8RiQvWgtVk3XojWK0cXPQGgTN6mB3pKK7DRyoXO9KqP4v+tOCE3x8Khfjm\nmw04nU4Mw1D5JhmVr4jEPOPbb2hy/TVQVcWhl1/Ff15/syP9RM1iQ1vGTwSfjyY3jMDYcuxVqzZs\nWM811wxn0KD+jB07iubNXezdWxzNuGIyla+IxDafj6w7bibl4AFKZz9P1c9+bnaiY6rZffx96zaU\nTX+GlB9+oMm1v4QfXVChuLiYkSNHMmTIBXz44Qekp2fw//7fn0hLS6tzjXxJLCpfEYlpaQt+X31U\n8w03U3nNdWbHOa4ff3brveEmPHeOxtj6Hc7n5xAKhZgz5xnOPbc38+fPp3PnLrz88qucc05fALZu\n/Q6Pp5yysrITvYQkEJ3nKyIxy7J3L87pTxJs2pTyyQ+ZHeeEjpwyVL0F65kwCcdbb+B8bjYbLhzE\n448/TGpqKs8//zwej49Jk8bX7mru2rU7Gzd+g9u9l4yMDNNmkOjRlq+IxKz0KY+QUnqI8vsfINTI\nS/xFS81iGTWFGsrIpHzSg1g8Hnr88VX69j2XyspKZs2axbhxYyktPcS4cRPZsuV7hg69BEC7npOI\nyldEYpL1s09Je30R/u498P7mFrPj1OlYpwx5r7sef7czSFu6mMcPz1BYWMiIEXmsXv0FEyZMJiMj\no/ZgLR10lTy021lEYlL6Yw8DUPbkjOqL3Me4zMwsHA7H0acMGQZljzxO0xFXMuiNJbz11l/o2LE1\nLVt2OOqxOtc3+WjLV0RijnVNAfZ/f0zVxUPx9T/f7Dj1YrFYcLlyf7JSlW/wEKr6n4/9ow+4qOPp\n9OrV6yeP1RKTyUflKyIxxznnKQA8Y//X5CQNk5ubi9u9l1AodNT9lZdfCYD9H+/+5DHr1n3OrFnV\n886cOZXx4++NfFAxncpXRGKK8c0GUpf/A1/fc/GdN8DsOPVWWnoIr9eLz+ejRYsmLFr0Su3Xqn4+\nDIDUv//1J497880lrFy5ovb28uV/j3hWMZ/KV0RiinPO0wB47vlfsFhMTlN/f/jDAjZsWF97+777\nxtT+PdjqNHy9+rBx6w98vW7rUY9r2jQbAMMwAOgZ5asziTlUviISM1K2fkfq22/h796DqqGXmh2n\nQVJT7Ufd7tfvvKNuV/18GK/3u5rFf/78qPtrDrbKyMgE9LlvslD5ikjMcM6djSUYxHP3vXG11QtH\nShSqj3zet+/IObsbt5XwSNYA1rfuwfoyg2l//JyN20qAIwdbOZ1OLBYLxcU63SgZqHxFJDbs3o1j\nySICbdvVHqAUT35cvk6n86ijnru2zebXw/vU3r7+0i50bZt9+HHVi3PYbDZCodAxD9iSxKPyFZHY\n8MwzWKqq8Iy5Ny7O6/1vNVuwAHa7nbKyUioqKmrv+3TjXi4/vx3XXdKFtRuPFHNNae/YsR0An89H\nebnWeE50Kl8RMZ3lQAm88AKBFqfgHZFndpxGqdmChSOf2/54xapWrgyGD+xA3qVdadk8vfb+005r\nzaBBF9OsWTMArrnmutrPfyVxqXxFxHRp81+EsjIq7hwNqalmx2mUpk2zOfXUlgB4vV46depMTk7z\n2q/37Zp7zL9brVbeeONtxh4+p/nSS4dFKbGYKf727YhIQkn5fhfOubPA5cL7m5vNjtNoFouFjz/+\nlDPO6Ejnzl14772V+P1+iov3sHfvXtzuYvbu3UtFxSG2bNmO270Xt9uN212M272XH374AYCSkh9M\nnkSiQeUrIqZKf/QBLB4PPPssoTjf3ZqZmYnX6+Wrr76ke/cO7N+/v86Dp5o0aYrL5aJLl260anUa\nQ4b8LEppxUwqXxExje2TlTj+/Ba+s87GdtNNsL/c7Ehh07RpNp06dcHlyiU3NxeXq/pPp07tsNsz\nam+nxuludjk5Kl8RMYffT8bkCQCUPTGD7JTEOARl795DJ/y6y5WJ210apTQSqxLj3S4icSdt4UtY\nv91Axa9vxH/WOWbHEYkqla+IRF3Knt04n3ycYJOmlE9+2Ow4IlGn3c4iEnXpD0wkpayU0pmzCf3o\n/FiRZKEtXxGJKvv7y3G882d85/TDe/1vzI4jYgqVr4hEj8dDxv3jCBkGpTNmQYIcZCXSUHrni0jU\npD8zA2P7ViruHE3gjB5mxxExjcpXRKLC2Pgtac/NJnBaa8rHTTQ7joipVL4iEnnBIJnj78Hi91M2\ndSakp9f9GJEEpvIVkYhzvL4IW8EqKv/P5VRdcpnZcURMp/IVkYiy7NtH+u8eJJieQdmUaWbHEYkJ\nKl8RiaiMRx8gpaQEz8TfEmzZyuw4IjFB5SsiEWP7ZCWOpYvx9exFxa13mB1HJGaofEUkMioryRh/\nDyGLhbKZs8CqBfVEaqh8RSQinM/NxlpUiPeWkfj7nG12HJGYovIVkbBL2bIZ5zMzCLQ4hfJJD5od\nRyTmqHxFJLxCITLvvw9LZSXlj08llNXE7EQiMUflKyJhlfrnfOwffkDV4CFUXn6l2XFEYpLKV0TC\nxnLwABkPTiLkcFA67WmwWMyOJBKTVL4iEjbpjz9KinsvnvsmEGzX3uw4IjFL5SsiYWFduwbHqwvw\nd+mKZ9TdZscRiWkqXxE5eX4/mePuwRIKUTZjFtjtZicSiWkqXxE5aWm/fwHrN+upyLsB33kDzI4j\nEvNUviJyUlJ27iB9+hSCzZpR/uDvzI4jEhfqVb5er5ehQ4fypz/9id27d3PDDTeQl5fH2LFjqaqq\ninRGEYlhGZMnYPF4KHtkCqGcHLPjiMSFepXvCy+8QJMm1SfKz5kzh7y8PBYvXkzbtm3Jz8+PaEAR\niV32v/+N1H/8jaoBF1A5Is/sOCJxo87y3bx5M0VFRQwaNAiAgoIChgwZAsDgwYNZtWpVRAOKSIwq\nKyNj8nhCNlv1QVY6p1ek3uos32nTpjFx4sTa2xUVFdgPH8mYk5OD2+2OXDoRiVnpM57E2LUTz5h7\nCHTqbHYckbhywmt8vf322/Tu3ZvWrVsf8+uhUKheL5Kd7cRqNRqeLsxcrkyzI0RFsswJyTNrzM35\n5Zfw++ehY0fSH3+U9LS0sDxtzM0ZIckyJyTPrA2d84Tlu2LFCnbs2MGKFSvYs2cPdrsdp9OJ1+vF\n4XBQXFxMbm5unS9SUuJpUKhIcLkycbtLzY4RcckyJyTPrDE3ZyBA01tvwxYIcOCJmfjK/FB28vli\nbs4ISZY5IXlmPd6cJyrkE5bvrFmzav/+7LPP0qpVK7744guWLVvGFVdcwfLlyxk4cOBJRBaReON4\ndSG2z9bivfKX+AYPMTuOSFxq8Hm+Y8aM4e233yYvL48DBw4wfPjwSOQSkRhkKS4mfcqjBLOaUPa7\nqWbHEYlbJ9zy/bExY8bU/n3hwoURCSMisS3j4UmkHDpI6dSnCLVoYXYckbilFa5EpF5sH7yP40/5\n+M46G+9vbjE7jkhcU/mKSN0qKsi8/z5ChkHpjNlgmH/2gkg8U/mKSJ2cs2dibP2OipF3Eeh5ptlx\nROKeyldETsgo3ITz2VkEWraifMJks+OIJASVr4gcXyhExvh7sPh8lD0xAzIyzE4kkhBUviJyXKlL\nF2P/98dU/nwYVcN+YXYckYSh8hWRY7L8sJ+MRx8g5Eyv3uoVkbBR+YrIMaX/7iFS9u+nfMJkgqcd\ne313EWkcla+I/IRt9b9JW/wa/u49qBh5p9lxRBKOyldEjlZVRca4sYQsFkpnzgKbzexEIglH5Ssi\nR0l74Vmsm/6D98Zb8J/Tz+w4IglJ5SsitVK2fkf6U9MIunIpf+Bhs+OIJKx6X1hBRBJcKETmxP/F\n4vVSOus5Qk2amp1IJGFpy1dEAEh958/Y//UeVRcNpvLKX5kdRyShqXxFBMuhg6Q/MJFQaiql054G\ni8XsSCIJTeUrIqQ/+RhG8R48944n2KGj2XFEEp7KVyTJWb/4DMeCl/Cf3gnP/4w1O45IUlD5iiQz\nv5+McfdgCYUomzELUlPNTiSSFFS+IkksbcHvsX39Jd5rrsN3/kCz44gkDZWvSJJK+X4XzicfJ5id\nTdkjU8yOI5JUdJ6vSJLK+O39pJSXUfr4XELNm5sdRySpaMtXJAnZl/+d1L+9g6/feXivu97sOCJJ\nR+UrkmzKy8mYNJ6Q1UrpzNmQol8DItGmf3UiSSZ95lSMHdupGHU3ga7dzI4jkpRUviJJxPhmA2nz\n5hJo047y+yaYHUckaal8RZJFMEjmuLFYAgHKps0Ep9PsRCJJS+UrkiQci17BtnYN3suvpGrIJWbH\nEUlqKl+RJGBxu0l/7GGCGZmUPz7V7DgiSU/n+YokgYzfjifl4AFKn5hO8JRTzY4jkvS05SuS4Ox/\n/xuOt/+E75x+eG8eaXYcEUHlK5LQLAcPkDHhXkJ2O6XPzAXDMDuSiKDyFUlo6Y88UH2d3vsmEOjS\n1ew4InKYylckQdlW/Iu0P76K/4yeeMbca3YcEfkRla9IAkrZtpWsu26tXkJy1lyw2cyOJCI/oqOd\nRRKMpayUJjdeS8r+/ZTOmIW/Vx+zI4nIf9GWr0giCQTIvPNWrN9+g+e2O/D+5hazE4nIMWjLVxJf\nZSXG5iKMok1YCzdhbNtKyGYjlJFJKCODUGYmocwsgtnN8PU7L66vbZs+5VFSl/+DqosGU/67J82O\nIyLHofKVxOP3Y//gPVLfXIJt3RekbN+GJRis98N9PXvhu3AQVRcNxnduf0hLi2DYMAkESJ/6OM65\ns/B3PJ1DL/0BrPrnLRKr9K9TEkbKls2kvb6I1KWLMfbsBiCYk4Ov33kEOnUm0Kkz/s5dCLTrgCUY\nxFJWiqX08J+yUoxdO7F9/BG2glXYvv4S53OzCTkcVA28iMqrr6Xy0mExWcSW/fvJuvMW7B9+QKBd\new7+8U1CTbPNjiUiJ6Dylbhn+/fHOKdNwb7qEwCCWU2ouPk2vHk34D+zN1gs9X+ye8eDx4Nt9b+x\nf/gB9hX/IvWfy0j95zKCWU2ovOJKvFdfh//c8xr2vBFi/WodWTdfj7FjO5U/u5TS518i1KSp2bFE\npA4qX4lfhw6RMf4+0l55GYCqgYPw5l1P5bD/e3JbqE4nvouH4rt4KOWA8Z+NON5cQuqbS0h77Q+k\nvfYHAu3a4736WrzXXEewbbuwjNMgPh+ORa+Q8dAkqKqifMJkPPdNgBQdQykSDyyhUCgU6Rdxu0sj\n/RJ1crkyYyJHpCXLnPZ//oMm998HO3fi79ad0mfm4j/rnMi+aCCA7eOPcCxdTOq7f8Hi8QBQdd4A\nKkfkUXn5cEKZWWF/2aN+plVVON54HeespzC2byXYpCmlz/+eqp/9POyvG23J8t5NljkheWY93pwu\nV+ZxH6MtX4krltJDZEy4D8dbb4DNRvn4SXjG/i/Y7ZF/ccPAd9FgfBcNpqysFPtf38HxxuvYP/4I\n++p/kzFpHFUX/4yqiwZTddFggu07hG/XdGUljiV/xDnnaYwd2wnZ7VTcMhLP3fcRbNkqPK8hIlGj\n8pW4YSk9RJMRV2FbuwZfn7OwvfoKnhZtTckSysik8tpfU3ntr0nZsR1H/lJS33id1Hf/Quq7fwEg\n0KZt9RHTFw7C16sPwTZt679bOBQi5bst2D9ZCWtXkfPP90jZ5ybkcOC5/S4q/mcswVNbRnBCEYkk\n7XZOMIk654+L1/vLayh9dh6uU7Nja9ZQiJSt31UfqPXhB9g+/oiUgweOfNnpxN+lK/5uZxDo2o1A\nm3ZYfFVQUYGl9o8HY3MRtk9WYuz+vvaxQVcu3l+NwDPqbkItWpgxXcQl6nv3vyXLnJA8s2q3sySk\nnxTv3Bdj89J4FgvB9h3wtu+A96ZbIRDA+uUX2D5eifWb9Vg3fot1/dfYvvi8zqcKNm+O9/Ir8Z0/\nkMzLL2N/s5YxcXS1iISHyldiWtwU77EYBv6zzjn6QDCfD2PLZqwbvyFl1y5CDgehtDRISyPkSCOU\nlkawxSnVl/87XLaZrkxIgq0HkWSi8pWYljFxXHXxXnV1fBXv8dhsBLp01bV1RZKcTgqUmGV/fzmO\nN5fg690nMYpXROSwOrd8KyoqmDhxIvv376eyspJRo0bRtWtXJkyYQCAQwOVyMWPGDOzRONVDkoal\nrJSMcfdUX4/2mee0TrGIJJQ6t3w/+OADevTowaJFi5g1axZTp05lzpw55OXlsXjxYtq2bUt+fn40\nskoSSX/8EYxdO/HcfR+BM3qYHUdEJKzqLN9hw4YxcuRIAHbv3k2LFi0oKChgyJAhAAwePJhVq1ZF\nNqUkFWvBahwL5+Pv3AXPvePNjiMiEnb13pd37bXXsmfPHubNm8fNN99cu5s5JycHt9sdsYCSfNKn\nT8ESClH6zFxITTU7johI2NW7fJcsWcK3337L+PHj+fG6HPVZoyM724nVav7BMic64TmRxPWc330H\nKz+Eiy4ie9jQOr89rmdtAM2ZWJJlTkieWRs6Z53lu379enJycjj11FPp1q0bgUCA9PR0vF4vDoeD\n4uJicnNzT/gcJSWeBoWKhGRfaSVeOJ97kXTg0K+uo7KOOeJ91vrSnIklWeaE5Jm1MStc1fmZ79q1\na1mwYAEA+/btw+PxMGDAAJYtWwbA8uXLGThwYGMzixwRCOBY8keCGZlU/uIKs9OIiERMneV77bXX\n8sMPP5CXl8ftt9/OQw89xJgxY3j77bfJy8vjwIEDDB8+PBpZJcHZVn6IsWsnlcOvgvR0s+OIiERM\nnbudHQ4HTz311E/uX7hwYUQCSfJyLF0MgPe6601OIiISWVrhSmJDKITtk5UEXbn4z+lndhoRkYhS\n+UpMSNm1E2PPbnx9z9XVe0Qk4al8JSbY1q4BwKetXhFJAipfiQnWmvLte67JSUREIk/lKzHB9mkB\nIZsNf6/eZkcREYk4la+Yz+fDuv5r/D16gsNhdhoRkYhT+YrpjK3fYfH58Hc7w+woIiJRofIV0xmF\nmwAIdOxkchIRkehQ+YrpjKLD5dups8lJRESiQ+UrprMWFQIQ6KQtXxFJDipfMZ1RuImQ1UqgTTuz\no4iIRIXKV8wVCmEUFRJo1x5sNrPTiIhEhcpXTGVxu0k5eIDA6fq8V0SSh8pXTGXdXPN5r8pXRJKH\nyldMVXOakV/lKyJJROUrpjJqjnTueLrJSUREokflK6aqPcf3dJ1mJCLJQ+UrprIWbiLYvDmh7GZm\nRxERiRqVr5jH6yVlx3b8nbqYnUREJKpUvmIa47stWIJB7XIWkaSj8hXTHPm8V0c6i0hyUfmKabSm\ns4gkK5WvmKb2HF9dSlBEkozKV0xjbC4klJpKsE1bs6OIiESVylfMEQphFBYS6NARDMPsNCIiUaXy\nFVOkFO8hpaxUB1uJSFJS+Yopaj/vPV3LSopI8lH5iilqyldbviKSjFS+Ygqj5lKCWmBDRJKQyldM\nYS3UBRVEJHmpfMUURlEhgVNOJZSZZXYUEZGoU/lK9JWXY+zcoa1eEUlaKl+JOmPLZkC7nEUkeal8\nJeqsNRdU6KQjnUUkOal8JeqsG9YD6Dq+IpK0VL4Sdda1awhZLPjPOtvsKCIiplD5SnT5/djWfU6g\nazdCWU3MTiMiYgqVr0SV9Zv1WDwefOeca3YUERHTqHwlqqyfFgDg69vP5CQiIuZR+UpU2T5dA4Bf\n5SsiSUzlK1FlXfc5wSZNCXTQ1YxEJHmpfCVqLAcPYN2yGX+vPmCxmB1HRMQ0Kl+JGutXXwLg79Xb\n5CQiIuZS+UrUWL9cB4Cvdx+Tk4iImEvlK1Fj/fILgOrdziIiSUzlK1Fj/Wodwexsgq3bmB1FRMRU\nKl+JDq8XY9tW/F2762ArEUl6Kl+JCuO7LViCQQKn60pGIiIqX4kKo/YygrqGr4iItT7fNH36dD77\n7DP8fj933HEHPXv2ZMKECQQCAVwuFzNmzMBut0c6q8Qxa6Gu4SsiUqPO8l29ejWFhYUsXbqUkpIS\nrrzySvr3709eXh6XXXYZTz/9NPn5+eTl5UUjr8Qp43D5+rXbWUSk7t3Offv2Zfbs2QBkZWVRUVFB\nQUEBQ4YMAWDw4MGsWrUqsikl7hlFhYRSUwme1trsKCIipquzfA3DwOl0ApCfn8+FF15IRUVF7W7m\nnJwc3G53ZFNKfAuFsBZuItCxExiG2WlERExXr898Ad577z3y8/NZsGABl1xySe39oVCozsdmZzux\nWs3/petyZZodISpibs6dO8FTjrVH97Bni7lZI0RzJpZkmROSZ9aGzlmv8l25ciXz5s1j/vz5ZGZm\n4nQ68Xq9OBwOiouLyc3NPeHjS0o8DQoVCS5XJm53qdkxIi4W57St/pymQPlp7fCEMVsszhoJmjOx\nJMuckDyzHm/OExVynbudS0tLmT59Oi+++CJNmzYFYMCAASxbtgyA5cuXM3DgwMZmliRw5DQjHWwl\nIgL12PJ99913KSkp4Z577qm9b+rUqTzwwAMsXbqUli1bMnz48IiGlPim04xERI5WZ/mOGDGCESNG\n/OT+hQsXRiSQJB6jsBAAf4fTTU4iIhIbtMKVRJxRtIlAq9MgI8PsKCIiMUHlKxFlKSvF2P09gdO1\nrKSISA2Vr0SUUXR4l7M+7xURqaXylYiqWVZSVzMSETlC5SsRZWyu3vLVkc4iIkeofCWirIePdNZn\nviIiR6h8JaKMok0EMzIJnnKq2VFERGKGylciJxDA2FxEoFMnsFjMTiMiEjNUvhIxKdu3Yamq0sFW\nIiL/ReUrEWPVms4iIsek8pWIMf7zHwD8HXWwlYjIj6l8JWKsX68DwN+jp8lJRERii8pXIsb65TqC\nTZoSbNfe7CgiIjFF5SsRYTl0EOuWzfjP7K0jnUVE/ovKVyLC+tWXAPh79zE5iYhI7FH5SkRY130B\ngK9Xb5OTiIjEHpWvRIR1/VdiTxA0AAAMF0lEQVQA+Hv2MjmJiEjsUflKRBhFhYQcDoJt25kdRUQk\n5qh8JfyCQaxFmwh0OB1S9BYTEflv+s0oYZey+3ssHg9+rWwlInJMKl8JO6Pw8LKSuoygiMgxqXwl\n7Ayt6SwickIqXwk7q7Z8RUROSOUrYWcUFQK6oIKIyPGofCXsjMJNBE5rDenpZkcREYlJKl8JK0vp\nIYw9u7XLWUTkBFS+ElbG5iIAnWYkInICKl8JqyOnGal8RUSOR+UrYVV7mpF2O4uIHJfKV8LKWlh9\npHOgcxeTk4iIxC6Vr4SVUbSJYGYWwdwWZkcREYlZKl8JH78fY8tmAp06gcVidhoRkZil8pWwSdm+\nDUtVlQ62EhGpg8pXwsaqg61EROpF5SthYxw+2MrfSQdbiYiciMpXwkZXMxIRqR+Vr4SNtXATIcMg\n0K692VFERGKaylfCxijaRKBtO7DbzY4iIhLTVL4SFpb9+0n54QftchYRqQeVr4RF7ZrOuoaviEid\nVL4SFrWnGWlZSRGROql8JSxqtnz9WmBDRKROKl8JiyNXMzrd5CQiIrFP5SthYS3cRLB5c0LNcsyO\nIiIS81S+cvIqK0nZvk27nEVE6knlKyfN+s16LMEggS7dzI4iIhIXVL5y0myfFgDg69vP5CQiIvFB\n5Ssnzbp2DQC+c1S+IiL1ofKVk2b7dA3B5s0Jtu9gdhQRkbig8pWTkvL9LoxdO/Gdcy5YLGbHERGJ\nC/Uq302bNjF06FAWLVoEwO7du7nhhhvIy8tj7NixVFVVRTSkxK7aXc59zzU5iYhI/KizfD0eD489\n9hj9+/evvW/OnDnk5eWxePFi2rZtS35+fkRDSuyyffE5AP6zzjY5iYhI/KizfO12Oy+99BK5ubm1\n9xUUFDBkyBAABg8ezKpVqyKXUGKa9at1APjP7GVyEhGR+GGt8xusVqzWo7+toqIC++Frtubk5OB2\nu0/4HNnZTqxW4yRihofLlWl2hKiI2pzBIHy1Drp0oXmHVtF5zf+in2li0ZyJJ1lmbeicdZZvXUKh\nUJ3fU1LiOdmXOWkuVyZud6nZMSIumnMaW4podvAg3qGXUmrC/1v9TBOL5kw8yTLr8eY8USE36mhn\np9OJ1+sFoLi4+Khd0pI8rOu+AMDfu4/JSURE4kujynfAgAEsW7YMgOXLlzNw4MCwhpL4YP36KwD8\nZ/Y2OYmISHypc7fz+vXrmTZtGrt27cJqtbJs2TJmzpzJxIkTWbp0KS1btmT48OHRyCoxxvhuCwD+\njp1MTiIiEl/qLN8ePXrw2muv/eT+hQsXRiSQxA9j21ZCznRCLpfZUURE4opWuJLGCYVI2baVQNt2\nWtlKRKSBVL7SKJYffiClrLS6fEVEpEFUvtIoxtbqz3tVviIiDafylUYxdmwHINC2rclJRETij8pX\nGiVl1y4Agi1PMzmJiEj8UflKo6TsPly+rcxZVlJEJJ6pfKVRjMNbvoFTVb4iIg2l8pVGSdm9i5Dd\nTqh5c7OjiIjEHZWvNErKrl0ET2kJKXoLiYg0lH5zSsN5vaTsLSZwmg62EhFpDJWvNJixcweWUIhA\nu/ZmRxERiUsqX2mwmgU2glpgQ0SkUVS+0mAp27YCWt1KRKSxVL7SYMbWrQDa7Swi0kgqX2kwo2bL\nt007U3OIiMQrla80WMrOHYScTkI5OWZHERGJSypfaTBj9y4CLVvpOr4iIo2k8pWGqaggZf9+glpW\nUkSk0VS+0iApu78HdEEFEZGTofKVBjG+P3xBhZYtTU4iIhK/VL7SICm7dgK6jq+IyMlQ+UqDGNu3\nARBo09bkJCIi8UvlKw1iaHUrEZGTpvKVBjG2bSVkGARPa212FBGRuKXylQZJ2fodwVatwWYzO4qI\nSNxS+Ur9eTwYxXu0y1lE5CSpfKXejJ07AAi01cFWIiInQ+Ur9VZ7mlErnWYkInIyVL5Sb8bh1a0C\nLbW6lYjIyVD5Sr0dWWBD5SsicjJUvlJvKYeXllT5ioicHJWv1Fvtus6nal1nEZGTofKVegu6cvF3\n7wEZGWZHERGJa1azA0j8KJ3zAoRCZscQEYl7Kl+pvxTtKBERCQf9NhUREYkyla+IiEiUqXxFRESi\nTOUrIiISZSpfERGRKFP5ioiIRJnKV0REJMpUviIiIlGm8hUREYkyla+IiEiUqXxFRESizBIKaaV8\nERGRaNKWr4iISJSpfEVERKJM5SsiIhJlKl8REZEoU/mKiIhEmcpXREQkyqxmB4i0NWvWMHbsWJ54\n4gkGDx4MwMaNG3nkkUcA6NKlC48++qiJCcPniSee4Msvv8RisTB58mTOPPNMsyOF1aZNmxg1ahQ3\n3XQT119/Pbt372bChAkEAgFcLhczZszAbrebHfOkTZ8+nc8++wy/388dd9xBz549E27OiooKJk6c\nyP79+6msrGTUqFF07do14eas4fV6+cUvfsGoUaPo379/ws1ZUFDA2LFj6dSpEwCdO3fmtttuS7g5\na7zzzjvMnz8fq9XK3XffTZcuXRo8a0Jv+W7fvp2FCxdy1llnHXX/lClTmDx5MkuWLKGsrIwPP/zQ\npIThs2bNGrZt28bSpUuZMmUKU6ZMMTtSWHk8Hh577DH69+9fe9+cOXPIy8tj8eLFtG3blvz8fBMT\nhsfq1aspLCxk6dKlzJ8/nyeeeCIh5/zggw/o0aMHixYtYtasWUydOjUh56zxwgsv0KRJEyAx37cA\n/fr147XXXuO1117jwQcfTNg5S0pKeO6551i8eDHz5s3j/fffb9SsCV2+LpeLuXPnkpmZWXtfVVUV\nu3btqt0qHDx4MKtWrTIrYtisWrWKoUOHAtCxY0cOHjxIWVmZyanCx26389JLL5Gbm1t7X0FBAUOG\nDAES5+fYt29fZs+eDUBWVhYVFRUJOeewYcMYOXIkALt376ZFixYJOSfA5s2bKSoqYtCgQUBivm+P\nJVHnXLVqFf379ycjI4Pc3Fwee+yxRs2a0OWblpaGYRhH3VdSUkJWVlbt7ZycHNxud7Sjhd2+ffvI\nzs6uvd2sWbOEmKuG1WrF4XAcdV9FRUXtrp1E+TkahoHT6QQgPz+fCy+8MCHnrHHttdcybtw4Jk+e\nnLBzTps2jYkTJ9beTtQ5i4qKuPPOO7nuuuv45JNPEnbOnTt34vV6ufPOO8nLy2PVqlWNmjVhPvN9\n8803efPNN4+6b8yYMQwcOPCEj0vU1TUTda7jSbR533vvPfLz81mwYAGXXHJJ7f2JNueSJUv49ttv\nGT9+/FGzJcqcb7/9Nr1796Z169bH/HqizNmuXTtGjx7NZZddxo4dO7jxxhsJBAK1X0+UOWscOHCA\nuXPn8v3333PjjTc26r2bMOV79dVXc/XVV9f5fc2aNePAgQO1t4uLi4/alRmvcnNz2bdvX+3tvXv3\n4nK5TEwUeU6nE6/Xi8PhSJifI8DKlSuZN28e8+fPJzMzMyHnXL9+PTk5OZx66ql069aNQCBAenp6\nws25YsUKduzYwYoVK9izZw92uz0hf54tWrRg2LBhALRp04bmzZvz9ddfJ9ycUL1l26dPH6xWK23a\ntCE9PR3DMBo8a0Lvdj4Wm81Ghw4dWLt2LQDLly+vc+s4Hpx//vksW7YMgA0bNpCbm0tGRobJqSJr\nwIABtTMnys+xtLSU6dOn8+KLL9K0aVMgMedcu3YtCxYsAKo/MvF4PAk556xZs3jrrbd44403uPrq\nqxk1alRCzvnOO+/w8ssvA+B2u9m/fz9XXXVVws0JcMEFF7B69WqCwSAlJSWNfu8m9FWNVqxYwcsv\nv8yWLVto1qwZLpeLBQsWUFRUxEMPPUQwGKRXr15MmjTJ7KhhMXPmTNauXYvFYuHhhx+ma9euZkcK\nm/Xr1zNt2jR27dqF1WqlRYsWzJw5k4kTJ1JZWUnLli158sknsdlsZkc9KUuXLuXZZ5+lffv2tfdN\nnTqVBx54IKHm9Hq9/Pa3v2X37t14vV5Gjx5Njx49uP/++xNqzh979tlnadWqFRdccEHCzVlWVsa4\nceM4dOgQPp+P0aNH061bt4Sbs8aSJUtqj2i+66676NmzZ4NnTejyFRERiUVJt9tZRETEbCpfERGR\nKFP5ioiIRJnKV0REJMpUviIiIlGm8hUREYkyla+IiEiUqXxFRESi7P8DQFGBmm5Pfl0AAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1232068850>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl0VPX9//HnzJ0ZJhtbTBCQfdWC\nIoIKiiVibbG0UhSVqLgrIogLm4iCX0TZVFaBilAFETS1aOsCP62oYAiCiuCWBGUxxBAgQLZJMjP3\n9wcStSIBMzN3ltfjnJ6aO5mZ19vk+Mq9c+/n2kzTNBEREZGQsVsdQEREJNaofEVEREJM5SsiIhJi\nKl8REZEQU/mKiIiEmMpXREQkxByheJPCwuJQvE3ANWgQT1FRmdUxgiKaZwPNF8mieTbQfJHsZGdL\nSUn61ce053scDodhdYSgiebZQPNFsmieDTRfJAvkbCpfERGREFP5ioiIhJjKV0REJMRUviIiIiGm\n8hUREQkxla+IiEiIqXxFRERCTOUrIiISYipfERGREFP5ioiIhJjKV0Si3uefb+Pf/36VgwcPYpqm\n1XFEQnNjBRERq1RUVHDFFf04cOAAAJdccikLFy4mKamuxckklmnPV0SiUnl5OS+88DznndelungB\n3n57DWeffQaPPjqRgoLvLcsnsU3lKyJRZ/fuXXTr1pl77x3Gnj152Gw2Jk58tPrxyspKZs9+knPO\n6cS99w4jJyfbwrQSi1S+IhJ1qqoqKSzcS/36DQBITU1l4sTx1Y/PmDGLGTNmcdppzXjhhee54IJu\nDB58DVlZG6yKLDFG5SsiUad167ZcdFEaBw8WAVBQUEDPnhfyj38sJz+/iKuuGsTgwTexfv0mFi9e\nxjnndOOtt97gL3+5lD//+Q+8+ebr+P1+i6eQaKbyFZGo1K/f5QA0btyEd95Zx6pVb3DZZf0wjB9v\niG4YBv36/ZU33niH1157i0sv/RMffZTFDTcM4sILu7Ns2XN4PB6rRpAopvIVkaj03nv/BWDevL/T\nufOZx/1em83G+ef3ZNmyl/jgg40MGnQdO3fu4L77htOtW2cmThxPampd/vKXP1JQUBCK+BLlVL4i\nEnW++SaXN974N126nM0FF/Q6qed26NCRWbOeZtOmrdx11wjKy8t5+unZAGRlZdK16xncf//d5Obm\nBCO6xAiVr4hEnaefnotpmtx11whsNttveo3GjZswYcIk1q/fhNvtrt5eVVXF0qX/oGfPc7jhhnTy\n8r4LVGyJITUuspGVlcWIESNo164dAO3bt+fWW29l9OjR+Hw+UlJSmD59Oi6XK+hhRURqsnfvXlau\nfIEWLVry5z//tdavV6eOC7fbjcfjIT4+Hrc7jgMH9gPw5pv/ITExkblzF/7mkpfYdEJ7vueeey5L\nly5l6dKlPPTQQ8yePZv09HSWL19OixYtyMjICHZOEZETsnjxQioqKhgyZBgOR+0X8WvQoCEffvgx\nI0eOxe12c+DAfpxOJ06nE4CXX17BH//Ym02bNtb6vSR2/KbDzllZWfTp0weAtLQ0MjMzAxpKROS3\nKCkpYfHiZ2jYsCGDBl0XsNc95ZRTGD16HB9//AWPPz6Dxo2bUlVVxXnn9aBXr958+uknLFz4dMDe\nT6LfCZVvbm4uQ4YMYdCgQaxfv57y8vLqw8zJyckUFhYGNaSIyIl46aUXOXjwIBde+PsaPwrz+/28\n/fZqrrvuKh5+eNxxv/ernUV8tbOI+Ph4brnldjZs+JiMjNdYunQFTZs2BWDAgIEBm0Oin82s4RYf\nBQUFbN68mb59+7J7924GDx5MWVkZGzceOcSyc+dOxowZw4oVK371NbxeHw6H8auPi4gEwgsvvMDg\nwYPx+/20atWK++67j5tuuomEhATw+yE7m5L16/nHCy8wZ8MGssvLq5+7rXNnfpeUBHFx0KUL9OwJ\nPXpA48Y88PQ6AB4feuHP3i8vL49WrVrRunVrvvjiC+x2ncMqJ6bG8v1fV155JVu3bmXLli243W42\nbtzIsmXLmD179q8+p7CwuNZBrZCSkhSx2WsSzbOB5otktZ3tm2+2s2DBXFaseAGPx0PD+ASGJicz\n7MB+ni8tZTJwCHABgxxOyk2Tl3xe3ECZYWDz+apfa+tpnXgh7QY+TzlywmmH0+pxea/WdGxxZNnK\nRx55iHnzZvHUU3O59trBIZkv3EXzfCc7W0pK0q8+VuOfaa+99hrPPvssAIWFhezfv58BAwawevVq\nANasWUOvXid3HZ2ISLC0bt2GGSPu58vrbuQhtxvKSnl09y5alpXxiOHgEDB8wEAmTZrC192685LP\nC4AH2JdfROG3+Rz81+uUPDiB9mecxpD1z1W/9rBFYzh7zQooLeXw4UM899xiUlMbceWVV1szrESs\nGvd8S0pKGDlyJIcPH6aqqophw4Zx+umnM2bMGCoqKmjSpAmPP/549Zl/xxKpfwXpL7jIpfkiV21m\nM3KyiZ86mTqvv4bN58OfnMy+QdeyOCGJ+S8uY9eunQA4HE683ioA0tL6cPvtd5KWdskxDxuv+uAb\n7Pv34fj0Y5xbPyP9g2X4GzTgsU6deeiD9xk/fiJ3331fSOaLBNE8XyD3fGs8Dz8xMZEFCxb8YvuS\nJUtOOICISFCZJu5/PEvihHHYPB68v+tM2e13UtH/CmxxcdwC3DDifp5/fgkPPDCyuni7du3G7bff\nycUX/+FXr9NtmpJI916tof+5bPpoO6XnN8O+aAHzP3ifRODWFi1DNqZED50dICIRzVZYSN3rryZp\nzH2YcXEcevZ5iv67jopB1x05eeoHDoeDm2++jU8++YLnnltO794X8/HHmxg06Ep69+7JypXLqays\nZPDgQbRs2bh6L7l7x9Tq1+jWvQ1lox7gmQceZg9wm2HQ4rYbSXjkIaiqCvXoEsFUviISsZz//X80\n7N2DOmveorJXb4rWZlL5l/5wnNWmmjRpSt++/XjppVW88846rrjiKrKzv2L48CF069aZt956nbKy\nUs47rwtDhtzM1q1bfvZ8v9/PvEULcDgc3LTsJbyt2xA/bxb1L++L/bvdwR5ZooTKV0Qikuvfr1Iv\nfSC2g0WUTJzMoZdX4W/c5KReo3PnM5k/fxEbN27h9tvvZP/+fQDY7Xbq12/AK69k0KdPL6688nI2\nbswC4O23V5Od/TUDBgzk1D5/4ODb7+MZcCXOTRtpcPEFOD79OOCzSvRR+YpIxHG+v5a6d96CGRfP\nwVffpHzocKjFNbbNmjXn0Uen8sc/XgaA32+yf/8+DMOgUaNTef/9d7nxxkEAzJ07C4ChQ+8GwExM\nonj+sxRPn4nt8GHqpQ/EvnNH7QaUqKfyFZGI4vj0Y+rekA7A4edfxNvt3IC99uzZTzNhwqM0atQI\nAJ/PR0HB9wA4nS7mz5/Lhg0f0qfPHzjjjN/9+ESbDc8NN1MyeRr2fYXUG3QFth9uviByLCpfEYkY\nRk72kWIrL+PwgsVU9fp9QF8/MTGJu+66m82btzF79nzat+9Q/Vh+/h4mTDiyDOWwYfcc8/meW26n\n7K4ROHJzqDd4EHg8Ac0n0aP2t/wQEQmFigrqXn819v37KX5iNpX9an+7wF/jcrm45pprueqqQbz7\n7tuUlZWTkpLCX//6JwB69rzwV59b+tAj2L/bjfvVV0gacSfFCxYf9wQwiU0qXxGJCHEL5uL4Zjvl\nt9yO5/obQ/KedrudPn0urf56797DJ/IkiucswMj7Dve//knFVYOo/MlriIAOO4tIBLDvySPhqen4\nTzmF0rHjrY5TM7eb4hmzMO12EiY8CF6v1YkkzKh8RSTsJTwyHltZGaXjH8GsV9/qOCfEd8bv8KRf\njyP7a9zLnqv5CRJTVL4iEtacH67D/a9/UtX1HDzXXGt1nJNSOmY8ZnwCCdMmYys+gUPWEjNUviIS\nvkyThEkPA1Dy2PRaXctrBbNRI8ruvhf7vn3EzZ1pdRwJI5H1mywiMcW57n2cmzdR0bcf3q7drI7z\nm5QNGYa/Xn3cL62Ak7t9ukQxla+IhK34WU8CUDbixG/ZF3bi46m85FKMvO9w/M860RK7VL4iEpYc\nn2zG9f67VPbqHbF7vUdVXNYPANebr1ucRMKFyldEwlJU7PX+oCqtD6bLRZ233rA6ioQJla+IhB0j\n+2tcb/6HqrO7BnwJSSuYiUlUXtQbx+db4dtvrY4jYUDlKyJhJ37OU9hMk7K774+apRkr/nblkX/Y\nudPaIBIWVL4iEl527aLOP1/C274DlX3/bHWagKm48moObPgYeve2OoqEAZWviISXGTOweb2UDb83\n4q7rPS6bDV/rtlankDARRb/ZIhLpbIWFsGgRvmbNqRgw0Oo4IkGj8hWRsBE/+wkoL6ds6HBwOq2O\nIxI0Kl8RCQvGV18St2ghtG2L57obrY4jElQqXxGxnmmSOG4UNp8PZs6EOnWsTiQSVCpfEbGc69+r\ncK17n4o//BH+HD1nOIv8GpWviFirrIzECQ9iulyUTJpidRqRkFD5ioilEp6YipH3HeV3Dsffuo3V\ncURCQuUrIpYxvvyCuPlz8DVvQem9o6yOIxIyKl8RsYbfT9LIEdi8XkqmzID4eKsTiYSMyldELOF+\n4XmcH2VR0e9yKi/5o9VxREJK5SsiIWcrLCRh0sP4E5MomTzV6jgiIeewOoCIxJ7EiQ9iP3iQkslT\n8TduYnUckZDTnq+IhJTzg/dwv7yCqrPOpvzm262OI2IJla+IhE5FBYmj78W02ymZMRMMw+pEIpZQ\n+YpIyMTPeQrH9lzKb74N71lnWx1HxDIqXxEJCeObXOJnPYHv1MaUPfCQ1XFELKXyFZHgM00SR9+P\nraKCkslTMZPqWp1IxFIqXxEJujqvvIzr/XepuORSKvtdbnUcEcupfEUkqGwHi0h86AHMuDhKHp8B\nNpvVkUQsp/IVkaBKePQR7PsKKb1/DP4WLa2OIxIWVL4iEjSOj7KIe34x3o6nU37ncKvjiIQNla+I\nBEdVFUmj7gWgeNpMcDotDiQSPlS+IhIUcX+fj+OLbZRfOxjv+T2sjiMSVlS+IhJw9t27SJj+GP7k\nZEofesTqOCJhRzdWEJHAMk0Sx43CVlZG8ZQnMBsmW51IJOxoz1dEAsr1xn+os/pNKi/oRcXV6VbH\nEQlLKl8RCRhbSTGJ40ZhOp2UTHtK1/SK/IoTKl+Px8Mll1zCK6+8Qn5+Ptdffz3p6emMGDGCysrK\nYGcUkQgRP3UyRv4eyobfi69de6vjiIStEyrf+fPnU69ePQBmz55Neno6y5cvp0WLFmRkZAQ1oIhE\nBsfWLcQ9swBvq9aU3TPS6jgiYa3G8t2+fTu5ubn07t0bgKysLPr06QNAWloamZmZQQ0oIhHA5yNx\n5Ahsfj8lU58Et9vqRCJhrcbynTp1KmPHjq3+ury8HJfLBUBycjKFhYXBSyciEcH9j2dxfvIxngFX\nUtX7YqvjiIS9415qtGrVKrp06UKzZs2O+bhpmif0Jg0axONwGCefLgykpCRZHSFoonk20Hwhk58P\nj/8f1KuHe94c3AHIFTazBYnmi1yBmu245bt27Vp2797N2rVr+f7773G5XMTHx+PxeHC73RQUFJCa\nmlrjmxQVlQUkbKilpCRRWFhsdYygiObZQPOFUtLQYbgPH6Z42lN4jASoZa5wmi0YNF/kOtnZjlfU\nxy3fmTNnVv/znDlzaNq0KZ988gmrV6/m8ssvZ82aNfTq1euEg4hIdHH+923cq16h6pzueAbfZHUc\nkYhx0tf5Dh8+nFWrVpGens7Bgwfp379/MHKJSLgrLydpzH2YhkHx9Jlg17IBIifqhJeXHD78x9uB\nLVmyJChhRCRyxM+cjrFzB2V3DsfXqbPVcUQiiv5UFZGTZmR/TfzcWfiankbpqAesjiMScVS+InJy\nTJPEUfdgq6qi5PEZkJhodSKRiKPyFZGTUmflclyZ66no24/KP11mdRyRiKTyFZETZtu/n8SJD2LG\nJ1Dy2DSr44hELJWviJywhP97CPuBA5SOfRB/09OsjiMSsVS+InJCnJnriXtxGVWdzqT81iFWxxGJ\naCpfEalZZSWJo+7BtNkomTETHCd8laKIHIPKV0RqFD9vFo7sr/HceAvert2sjiMS8VS+InJc9m+/\nIf6p6fhSG1H64ASr44hEBR07EpFfZ5okjbkPm8dD6aynMevWszqRSFTQnq+I/Ko6r76Ca+1/qex9\nMRX9r7A6jkjUUPmKyDHZDh0kYfxYTLeb4qlPgs1mdSSRqKHyFZFjSnjs/zD2FlB27yj8rVpbHUck\nqqh8ReQXHB9vwv2PZ/G270DZXSOsjiMSdVS+IvJzXi+JI+/BZpqUTJ8JLpfViUSijspXRH4mbtEC\nnNs+w3PNtVT1uMDqOCJRSeUrItXsed+RMGUy/oYNKZnwqNVxRKKWrvMVkWqJ40ZjKyul+PHpmMnJ\nVscRiVra8xURAFxvvUGdN/9D5fk9qbjmWqvjiEQ1la+IQEkJiQ+MxHQ6j5xkpWt6RYJK5SsiJMyY\ngpH3HeVD78bXoaPVcUSinspXJMYZ27YSt3AevuYtKb13lNVxRGKCylcklvn9JI26B5vPR/G0JyA+\n3upEIjFB5SsSw9zPL8G5+SM8lw+g6uI/WB1HJGaofEVilG3vXhIenYg/qS6lj06xOo5ITNF1viIx\nKvHhB7AfPkTx4zPwNzrV6jgiMUV7viIxyLn2v7hfeZmqs7viufEWq+OIxByVr0isKS0laeQ9mIZB\nyYxZYBhWJxKJOSpfkRiTMGUSxq4dlN81Am/ns6yOIxKTVL4iMcTxURZxf5+Pt01bSu8fY3UckZil\n8hWJFRUVJN07DJtpUvzUPIiLszqRSMxS+YrEiIRHJ+LI/prym2/De34Pq+OIxDSVr0gMqPPiMuIX\nzsPbrj2l4ydaHUck5ql8RaKcc8OHJI0cgb9BAw4tXYmZmGR1JJGYp0U2RADKyjC252I/sB8zMREz\nqe4P/5+EmZAI9sj8O9W+cwd1b7oWTJPDzy7F37qN1ZFEBJWvxCDbwSJcb76O44ttOHKyMXJzsO/e\nhc00j/n9ps2G7/TfUfn7NCp/n0bV+T0j4gYE9j151Lv+auz791M87SmqLrzI6kgi8gOVr8QGvx/n\nuvdxL19KnTf+jc3jqX7I1+hUqi7oha9tO/ypjbCVlmIrLsZWcuR/9gMHcGzdQvwX24ifPwfT5aLq\n3POp7HMpFVcMxH9qYwsHOzbnh+uoe+sN2PcVUnbHUK1iJRJmVL4S1WyHDhK3aCHuF5dh7NoJgLdN\nWzyDrqsuXLNe/ZpfqLwcZ1Ymrvfexfn+Wlzr3se17n0SJj1M1e/T8Fw1iIq+/azfIzZN4hbOI+GR\nh8Bmo/jx6Xhuvt3aTCLyCypfiVqut94gcfS9GN/nY8YnUJ5+PZ5B1+M99zyw2U7uxeLiqOp9MVW9\nLwbAVlhInddfw71yOa5338H17jv4E5Oo+Gt/Kq5Op+q8HiH/nNh2+BCJo+/F/UoGvtRGHF70vC4p\nEglTKl+JOrbCQhh+G/VWrsR0uSgdO57y2+8M6Fm+ZkoKnhtvwXPjLRjbc6jz0ou4X15J3PKlxC1f\niq95SzwDr8Zz1SD8rVoH7H2PxXboIHF/n0/c3+djP3SQqu7ncfjZ58PycLiIHGEzzV85yySACguL\ng/0WQZGSkhSx2WsSrbPV+VcGiQ+MxH7gAFXndKd45jx8HTqG5s39fpwfrsP90ovUeW0VtrJSAKrO\nPZ+KS/tS1TsNb6czA7JHnJKSxL7sncQtfJq4ZxZgLz6Mv2FDyobeTfmQYeBy1fo9rBKtv5tHab7I\ndbKzpaT8+h/8Kt/j0C9RZImbP5fECeMw4+OxPfYYhVffYN0de0pLjxyWfmkFzg/WVp9J7W/YkMpe\nvan6fRpV556Pr3UbcJzgASjTxMjJxrnufZI2ZeJ/8y3spSX4TzmFsqEjKL/xFkhMDOJQoRGNv5s/\npfkiVyDLV4edJSocLV7fqY059Mp/aNijK1j5H4CEBCquGkTFVYOwFRbi+mAtzvfexfXeu7hffQX3\nq68AYNapg7ddB3wdT8fb8Qx8bdqC34etrAxbeTk2Tzm2sjKMr77AtX4d9sK91W9hNmtOyZhxlA++\n2foTvUTkpKh8JeL9rHhXvY6vdVurI/2MmZJCxYCBVAwYeGTvNTcH53v/xfnZFowvv8CR/RXObZ/V\n+Dq+RqfiGTCQqgsvIukvf+JA3dSTP3FMRMKCylciWtzCeWFdvL9gs+Fr1x5fu/ZUX2ns82Hs/Bbj\nyy8xdu7AdDkhLh4zLg4zLh7T7cbfrPmRveIfyjYpJcnaPXsRqRWVr0QsR9YGEh6OoOL9NYaBr3Xb\nyM0vIictMhesFfF4SLpvGACHn3lOxSUiEaXGPd/y8nLGjh3L/v37qaioYOjQoXTs2JHRo0fj8/lI\nSUlh+vTpuCL40gaJPPFPTcORk03ZrXfgPe98q+OIiJyUGsv33XffpVOnTtx2223k5eVx880307Vr\nV9LT0+nbty9PPvkkGRkZpKenhyKvCMbWz4ifMxPfac0oHTfB6jgiIietxsPOl112GbfddhsA+fn5\nNGrUiKysLPr06QNAWloamZmZwU0pcpTfT9J9w7F5vRTPmBUV17WKSOw54ROurrnmGr7//nsWLFjA\nTTfdVH2YOTk5mcLCwuM+t0GDeBwOixY7qKXjXSQd6SJytrVrYcsncNVV1L/6b8f91oic7yRE83zR\nPBtovkgWqNlOuHxXrFjBl19+yahRo/jpolgnskBWUVHZb0tnMa3UEn6Snl6IGzh43c1UHSd/pM53\noqJ5vmieDTRfJAvkClc1Hnbetm0b+fn5AJx++un4fD4SEhLw/HA/1IKCAlJTU084jMhvZTt8iDr/\neRVvq9ZH7hokIhKhaizfTZs2sXjxYgD27dtHWVkZPXv2ZPXq1QCsWbOGXr16BTelCFBn1SvYysup\nGHSdVnYSkYhW42Hna665hgcffJD09HQ8Hg8PP/wwnTp1YsyYMaxcuZImTZrQv3//UGSVGOd+cSmm\n3Y7nqkFWRxERqZUay9ftdvPEE0/8YvuSJUuCEkjkWGwFBTg3b6LyojT8TZpaHUdEpFa0wpVEBOem\njQBUXaiPOEQk8ql8JSJUl2+3cy1OIiJSeypfiQjOj7IwDYOqLl2tjiIiUmsqXwl/lZU4tnyC94xO\nWtFKRKKCylfCnuPzrdgqKvB26251FBGRgFD5Stgzvv4KAG+nMy1OIiISGCpfCXuO3BwAfG3bWZxE\nRCQwVL4S9oycbAC8bdtbnEREJDBUvhL2jNxs/PXrY55yitVRREQCQuUr4a2qCmPHt/jatNN6ziIS\nNVS+EtaMXTuwVVXp814RiSoqXwlrRs6Rk6287fR5r4hED5WvhDWj+kxnla+IRA+Vr4Q1I/fImc4+\n7fmKSBRR+UpYc+RkYxoGvhYtrY4iIhIwKl8JX6aJkZt9pHhdLqvTiIgEjMpXwpZt/37sRUU65Cwi\nUUflK2FLJ1uJSLRS+UrYcuhkKxGJUipfCVtH93y9bbTAhohEF5WvhK0fLzNS+YpIdFH5StgycrLx\nN2yI2TDZ6igiIgGl8pXwVFGBsWunTrYSkaik8pWwZOz4FpvPpzWdRSQqqXwlLOkyIxGJZipfCUs6\n2UpEopnKV8KSI+eH8tV9fEUkCql8JSwZ23MwnU58zVtaHUVEJOBUvhJ+TBMjJwdf6zbgcFidRkQk\n4FS+EnZse/diP3wIn1a2EpEopfKVsKM1nUUk2ql8Jez8uKZzW4uTiIgEh8pXwo5j21YAfB06WpxE\nRCQ4VL4SdpybNmK63Xh/19nqKCIiQaHylbBiKynG+PJzvGedDS6X1XFERIJC5SthxfHxZmx+P1Xd\nz7M6iohI0Kh8Jaw4N20EoKrbuRYnEREJHpWvhBWHyldEYoDKV8KHaeL89BN8zZpjpqZanUZEJGhU\nvhI27HvysO8rxHtmF6ujiIgElcpXwoZjy6cAVHU52+IkIiLBpfKVsOHY8jHAkcuMRESimMpXwobz\n008A8J55lsVJRESCS+UrYcP48gt8pzXDbJhsdRQRkaBS+UpYsBUfxvg+X3cyEpGYoPKVsFB9JyOV\nr4jEAJWvhAUj54d7+LZV+YpI9HOcyDdNmzaNzZs34/V6ueOOO+jcuTOjR4/G5/ORkpLC9OnTcWkR\nfKmFo3u+OuwsIrGgxvLdsGEDOTk5rFy5kqKiIv72t7/Ro0cP0tPT6du3L08++SQZGRmkp6eHIq9E\nKcfR8m3bzuIkIiLBV+Nh5+7duzNr1iwA6tatS3l5OVlZWfTp0weAtLQ0MjMzg5tSop6Rm40/qS7+\n1EZWRxERCboa93wNwyA+Ph6AjIwMLrroItatW1d9mDk5OZnCwsLjvkaDBvE4HEYA4oZeSkqS1RGC\nJmxm83rhm+3QpQspqXUD9rJhM1+QRPN80TwbaL5IFqjZTugzX4C3336bjIwMFi9ezKWXXlq93TTN\nGp9bVFT229JZLCUlicLCYqtjBEU4zWb/ZjvJlZV4WrahOECZwmm+YIjm+aJ5NtB8kexkZzteUZ/Q\n2c4ffPABCxYs4JlnniEpKYn4+Hg8Hg8ABQUFpOoONFILjtwjZzrrMiMRiRU1lm9xcTHTpk1j4cKF\n1K9fH4CePXuyevVqANasWUOvXr2Cm1KimpFz9GQrla+IxIYaDzu/8cYbFBUVcc8991RvmzJlCuPH\nj2flypU0adKE/v37BzWkRDcj9+g1vjrTWURiQ43le/XVV3P11Vf/YvuSJUuCEkhijyMnG9Mw8LVq\nbXUUEZGQ0ApXYjkjNxtfy1aghVpEJEaofMVStv37sR84oJWtRCSmqHzFUtVrOrfR570iEjtUvmIp\nh062EpEYpPIVSx3d8/W262BxEhGR0FH5iqV+vMyorcVJRERCR+UrlnLkZOM/5RTMhslWRxERCRmV\nr1jH48G+ayderWwlIjFG5SuWMb79Bpvfr8uMRCTmqHzFMo4vtgHga6+TrUQktqh8xTKOLZ8CUHVW\nV4uTiIiElspXLOPY8gmmzYa3U2ero4iIhJTKV6zh9+P4bMuRQ86JiVanEREJKZWvWMLYnou9tATv\nWWdbHUVEJORUvmIJx2dHPu8owmoxAAAL2klEQVT1ntXF4iQiIqGn8hVLGDlfA+DteIbFSUREQk/l\nK5Zw5OQA6BpfEYlJKl+xhJGbjT8xCX+jU62OIiIScipfCT2fD2N7Lr527cBmszqNiEjIqXwl5Oy7\ndmKrrMSnNZ1FJEapfCXkHNt/+Ly3bTuLk4iIWEPlKyFn/HCyle5mJCKxSuUrIWfkZgM601lEYpfK\nV0LOyMnGtNvxtWptdRQREUuofCXkHLnZ+Fq0hDp1rI4iImIJla+ElK3oAPZ9+3SylYjENJWvhNTR\nk610mZGIxDKVr4SUQydbiYiofCW0jJwj5avLjEQklql8JaR0mZGIiMpXQszIycbfsCFmcrLVUURE\nLKPyldCpqMDYuQNfG53pLCKxTeUrIWPs+Babz4e3fQero4iIWErlKyFz9GQrXWYkIrFO5Ssh8+Nl\nRjrsLCKxTeUrIaPLjEREjlD5SsgYudmYLhf+5i2sjiIiYimVr4SGaWLk5OBr3QYcDqvTiIhYSuUr\nIWEv+B57SbFOthIRQeUrIVL9ea9OthIRUflKaBi5upuRiMhRKl8JCa3pLCLyI5WvhIRj62eYdrsu\nMxIRQeUroVBZifPTj/Ge0QkSE61OIyJiOZWvBJ1j22fYPB683c+1OoqISFhQ+UrQOT/KAqCq+3kW\nJxERCQ8nVL7Z2dlccsklLFu2DID8/Hyuv/560tPTGTFiBJWVlUENKZHN8dFGAKq6ac9XRAROoHzL\nysqYNGkSPXr0qN42e/Zs0tPTWb58OS1atCAjIyOoISWyOTdtxH9KCv4WLa2OIiISFmosX5fLxTPP\nPENqamr1tqysLPr06QNAWloamZmZwUsoEc22dy/Gnjyqup4DNpvVcUREwkKNi+w6HA4c/7MWb3l5\nOS6XC4Dk5GQKCwuDk04invOzTwDwnnW2xUlERMJHrVe4N02zxu9p0CAeh8Oo7VtZIiUlyeoIQROS\n2XK+ACDh9xeQEOJ/l9H8s4Poni+aZwPNF8kCNdtvKt/4+Hg8Hg9ut5uCgoKfHZI+lqKist8Uzmop\nKUkUFhZbHSMoQjVb3Q83UAfY16IDZgj/XUbzzw6ie75ong00XyQ72dmOV9S/6VKjnj17snr1agDW\nrFlDr169fsvLSAxwfPoJviZNMRs1sjqKiEjYqHHPd9u2bUydOpW8vDwcDgerV69mxowZjB07lpUr\nV9KkSRP69+8fiqwSYWyHDmIUfE9Fnz9YHUVEJKzUWL6dOnVi6dKlv9i+ZMmSoASS6GHs2gmAv2Ur\ni5OIiIQXrXAlQWPf8S0APl3fKyLyMypfCRpjxw4AfC205ysi8lMqXwkaY+cOAHw67Cwi8jMqXwka\nY9cOAHzNmlsbREQkzKh8JWjsed/hb9BA9/AVEfkfKl8JDtPEyMvD3+Q0q5OIiIQdla8Ehe3wIWxl\npfiaNLE6iohI2FH5SlDY9+wB0J6viMgxqHwlKIw93wHg156viMgvqHwlKOy7dwPga6o9XxGR/6Xy\nlaD48Rrf1tYGEREJQypfCYrq8tXSkiIiv6DylaCw7/gWMy4Os4Z7PYuIxCKVrwSeaWLs3HFkr9dm\nszqNiEjYUflKwNmKDmAvPqxDziIiv0LlKwFnz8sDwK8znUVEjknlKwFn7DlSvj4tsCEickwqXwk4\n+w/lqwU2RESOTeUrAXd0z1eHnUVEjk3lKwF3dM/X11h7viIix6LylYCzf7cb02bDr/IVETkmla8E\nnLFzx5FDznXqWB1FRCQsqXwlsDwe7Pl7dI2viMhxqHwloIzdu7CZpspXROQ4VL4SUMbObwHwt2xl\ncRIRkfCl8pWAsh+9m1HzFtYGEREJYypfCSjjh6Ulfac1tziJiEj4UvlKQNn3fAdodSsRkeNR+UpA\n2ffswbTb8Z/a2OooIiJhS+UrAWXsycPf6FRwOKyOIiIStlS+Ejh+P/b8PTrkLCJSA5WvBI5p4k9t\nRFX3861OIiIS1nRsUALHMDiwcQs4nVYnEREJa9rzlcBS8YqI1EjlKyIiEmIqXxERkRBT+YqIiISY\nyldERCTEVL4iIiIhpvIVEREJMZWviIhIiKl8RUREQkzlKyIiEmIqXxERkRBT+YqIiISYzTRN0+oQ\nIiIisUR7viIiIiGm8hUREQkxla+IiEiIqXxFRERCTOUrIiISYipfERGREHNYHSDcbNy4kREjRvDY\nY4+RlpYGwFdffcXEiRMB6NChA4888oiFCWvvscceY8uWLdhsNsaNG8eZZ55pdaRay87OZujQodx4\n441cd9115OfnM3r0aHw+HykpKUyfPh2Xy2V1zN9s2rRpbN68Ga/Xyx133EHnzp2jYr7y8nLGjh3L\n/v37qaioYOjQoXTs2DEqZvspj8dDv379GDp0KD169IiK+bKyshgxYgTt2rUDoH379tx6661RMdtR\nr732GosWLcLhcHD33XfToUOHgM2nPd+f2LVrF0uWLKFr164/2z558mTGjRvHihUrKCkp4b333rMo\nYe1t3LiRnTt3snLlSiZPnszkyZOtjlRrZWVlTJo0iR49elRvmz17Nunp6SxfvpwWLVqQkZFhYcLa\n2bBhAzk5OaxcuZJFixbx2GOPRc187777Lp06dWLZsmXMnDmTKVOmRM1sPzV//nzq1asHRNfv5rnn\nnsvSpUtZunQpDz30UFTNVlRUxLx581i+fDkLFizgnXfeCeh8Kt+fSElJYe7cuSQlJVVvq6ysJC8v\nr3rvMC0tjczMTKsi1lpmZiaXXHIJAG3atOHQoUOUlJRYnKp2XC4XzzzzDKmpqdXbsrKy6NOnDxD5\nP7Pu3bsza9YsAOrWrUt5eXnUzHfZZZdx2223AZCfn0+jRo2iZrajtm/fTm5uLr179wai63fzf0XT\nbJmZmfTo0YPExERSU1OZNGlSQOdT+f5EXFwchmH8bFtRURF169at/jo5OZnCwsJQRwuYffv20aBB\ng+qvGzZsGNHzADgcDtxu98+2lZeXVx8OivSfmWEYxMfHA5CRkcFFF10UVfMBXHPNNYwcOZJx48ZF\n3WxTp05l7Nix1V9H03y5ubkMGTKEQYMGsX79+qia7bvvvsPj8TBkyBDS09PJzMwM6Hwx+5nvyy+/\nzMsvv/yzbcOHD6dXr17HfV60rcYZbfMcS7TM+Pbbb5ORkcHixYu59NJLq7dHw3wrVqzgyy+/ZNSo\nUT+bJ9JnW7VqFV26dKFZs2bHfDyS52vZsiXDhg2jb9++7N69m8GDB+Pz+aofj+TZjjp48CBz585l\nz549DB48OKC/mzFbvgMHDmTgwIE1fl/Dhg05ePBg9dcFBQU/O7wZaVJTU9m3b1/113v37iUlJcXC\nRMERHx+Px+PB7XZH/M8M4IMPPmDBggUsWrSIpKSkqJlv27ZtJCcn07hxY04//XR8Ph8JCQlRMRvA\n2rVr2b17N2vXruX777/H5XJFzc+uUaNGXHbZZQA0b96cU045ha1bt0bFbHBkz/bss8/G4XDQvHlz\nEhISMAwjYPPpsHMNnE4nrVu3ZtOmTQCsWbOmxr3jcHbBBRewevVqAD7//HNSU1NJTEy0OFXg9ezZ\ns3rOSP+ZFRcXM23aNBYuXEj9+vWB6Jlv06ZNLF68GDjykUhZWVnUzAYwc+ZM/vnPf/LSSy8xcOBA\nhg4dGjXzvfbaazz77LMAFBYWsn//fgYMGBAVswFceOGFbNiwAb/fT1FRUcB/N3VXo59Yu3Ytzz77\nLN988w0NGzYkJSWFxYsXk5uby8MPP4zf7+ess87igQcesDpqrcyYMYNNmzZhs9mYMGECHTt2tDpS\nrWzbto2pU6eSl5eHw+GgUaNGzJgxg7Fjx1JRUUGTJk14/PHHcTqdVkf9TVauXMmcOXNo1apV9bYp\nU6Ywfvz4iJ/P4/Hw4IMPkp+fj8fjYdiwYXTq1IkxY8ZE/Gz/a86cOTRt2pQLL7wwKuYrKSlh5MiR\nHD58mKqqKoYNG8bpp58eFbMdtWLFiuozmu+88046d+4csPlUviIiIiGmw84iIiIhpvIVEREJMZWv\niIhIiKl8RUREQkzlKyIiEmIqXxERkRBT+YqIiISYyldERCTE/j9sQYW7qo+DogAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1234816510>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAFKCAYAAADBplwgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4lOXdxfHvLJnsbDFhk01ZKyCi\noKAoFEqLtUqpC8Z9oSKCaMuugJYqsqgsLlAR+hZF0aiULjaIGhCNQaylgmASUAgIIQkBsk2SmXne\nP5AIVUlIMnNPZs7nunqVTDIz52dGjs92PzbLsixERETECLvpACIiIuFMRSwiImKQilhERMQgFbGI\niIhBKmIRERGDVMQiIiIGOQPxJnl5RYF4mzPWtGkMhYWlpmP4neYMLZoztGjO0HNi1sTE+Br9fFhv\nETudDtMRAkJzhhbNGVo0Z+g501nDuohFRERMUxGLiIgYpCIWERExSEUsIiJikIpYRETEIBWxiIiI\nQSpiERERg1TEIiIiBqmIRUREDKp2icuMjAzGjx9Pp06dAOjcuTN33303kyZNwuv1kpiYyLx583C5\nXH4PKyIiEmpqtEXct29fVq5cycqVK5k+fTqLFi0iOTmZVatW0a5dO1JSUvydU0TkR3k8Ht5883X2\n7csxHUXkjNVq13RGRgaDBw8GYNCgQaSnp9drKBGR6ni9Xl555SX+9a9/MHz4lYwefRfXXXcNJSUl\npqOJnJEa3X0pOzub0aNHc/ToUcaOHUtZWVnVruiEhATy8vL8GlJE5GR79+7hvvt+S0bGdxsBHTqc\nw65d2cyYMY0nn1xoMJ3Imam2iNu3b8/YsWMZNmwYOTk53HrrrXi93qrvW5ZV7Zs0bRoTtHfeqOlt\nqho6zRlawnnOl19+mXvvvZeiou9ur9qtWzf+/e9/c8kll7By5QpGjLia4cOH//CLWhbk5MCnn8KW\nLcf//9NPoaAA7HZwOL77n9MJ554L/fpB//7H/9e2Ldhsfp8zFIXLnHBms9qsmjTpSa699lo+//xz\ntm7dSlRUFJs3b+all15i0aJFP/qcYL0fcWJifNBmq0+aM7SE65wFBQU88MAYUlPfxmazYVkWLVq0\n5ODBA0RHR/PFF7vZty+Hn/3scmJiYkhLS6dFi5ZVz3dkfkn0siVE/v2v2PPzT3kvb9v2+Fq2BJ8P\nfF7wesHrw1ZZgWP3LmwVFd/9bPMWVF7cD/fNt1F5xaA6l3K4/j5D2YlZa1rG1W4Rr127lry8PO66\n6y7y8vIoKChgxIgRpKamcs0117Bu3ToGDBhQ5+AiIqfTrVuHk76y0aJFcw4ePEDbtu149tkXiI2N\npUuXrjzyyGNMmfJ7xo0bzepX3iDq/fVEv7AEV9p7wPEiLb/qGirP74Xn/Avw9Dwfq1nCj7+x243z\nv1uJ2LKZiE8ycH6SQdTat4ha+xaV3XtSdt/9lF8z4vjWs0gtVLtFXFxczIQJEzh27BiVlZWMHTuW\nbt26MXnyZMrLy2nVqhWzZ88mIiLiR18jWP8rKFz+C01zhpZwnHP37l0MGzaYwsLDOJ1OHA4n5eVu\nrr32Bp54Yj6NGjWuep5lWdx80/W8sz6Vec0SmHC4AICK/pdRdvdoKn5xZd1K07Jwbv2M6OcWEbl2\nDTafD2+btpTdM4aym2+HmJhazxnKwmVOOPMt4jPeNV0bwfoPP1w+GJoztITTnIcOHePVV19m6tSJ\nlJaW0KpVa775Zj+NGjVm7tynGDHiuu89z3boEKX33kWfDzZwBNj4i1/SaeJUvD161ntG+9dfEbP0\nWaJWrcRWVoanU2eO/enPeM/rXuPXCKffZzjMCWdexFpZS0SC0uHDh7n77tsYP34MTqeTJUteZMOG\ndKZP/wPvv//hKSW8c08hO/cU4nrnXzQbeAltP9jAn3r0pAK47atdFHfs5JeMvvYdKJ49n4J/f0Hp\nqNE4szJpOuynRP1lxfGTwkRqQEUsIkHngw820LNnT/72tzVcckn/quJt3LgJ48Y9QJs2bU/5+b9u\n3MXfV66n8U3XYzt2jOJZs+n/zkbuuuu3fPnlTv7wh+l+zWslJFDy2FyOrlyNFRVF/ITxxI++E1vR\nMb++r4QGFbGIBI2KigoefXQ61157Nbm5uUybNoO33vrH94r3hJ17Cpmzcgtf7j/GF84Eptz2FB+9\nvI6ye+4Du50ZM2bRpUtXXnzxT6xfn+r//D8fRuF7H1J5UV+i3nqDJj+7AvvePX5/X2nYVMQiEhSy\nsjIZNmwwzz67kPbtO/Dhhx/ywAMTcDh+fA2Crq3jGb3xxaqvR47/NZ2v6F31dXR0NM8//yIul4v7\n7x/DoUOH/DoDgO/sNhz569uU3jce5+5dNL7xN9gKD/v9faXhUhGLiFGWZfHnP7/IkCED+Pzzrdx0\n0628++4m+vbtW90Tif/dODYf8nL9Nx9z9SVt2PL1qbuCS0pK6NixEw8//Aj5+Xl0797Rj5OcJCKC\nkpmzKL13HM6sTBrdfhOUlwfmvaXBURGLiDH5+fnceutIJk16kMjISF58cSVPP/0McXFx1T439tHp\nRL36Mq3jHfzi8fsZPrATrc6Krfr+G2+8Rs+eXfj5zwexZcsnVY/7fD6/zPJDSmbOwn31r3Glf0j8\nuHuOLxgi8j90BbqIGPHee+u5//57OXQolwEDrmDx4iW0atW6Rs+NWrGMmOcW4enUmfMW/hHr2+Lu\n0zWJY8eOMnny73njjdcA2LFjOzt2bKdXrwtYuPB57PYAbn/Y7RQ9sxRH7kGi1ryJr3UbSmbOCtz7\nS4OgIhaRgNq/fz9DhgygoOD4MpMdO3bi9df/WuOCtOXmEjtrJr6mTTm6+i2shO9Wxfr443Tuu28U\nOTl7admyJQcPHqxaD3/Zsr/Qtm27+h+oOlFRHP3LKzT55c+IeXYhFYN/RuVllwc+hwQt7ZoWkYDJ\nz8/nV78aWlXCANnZWTUqYY/HQ1rae3z+wBj2FRdRNOkhfGe3qfr+LbfcwNVX/5ycnL20aNGSAwcO\nVH3v+utv5OyTfjbQrKbNKHruBQBiZz6kXdRyChWxiATMjh3b2bcvB4CFC58DoFevC2r03LVr3+L6\n64fz03ffoR3QZOqEU75/4paINpuNgwePl3BsbBzPP7+MZ55ZGthd0j/A06s37mtvIOLzrUS+9orR\nLBJcVMQiEjCXXXY5HTqcC8DGjRsAaNeuw+meUiUr80sAhv7A944cKeTSS4/ffObEruiLL+5HWtpH\n/OY319cxdf0peWgmVlQUsbNnQUmJ6TgSJFTEIhIwNpuNbt26AbBmTQpAjU/Qyt20EYDbL+kPwB13\n3A3Ahx9+wMCB/fnHP/5Gjx496dixM1OnTmfNmn+aOSZ8Gr7WZ1N671gcB74h5vnFpuNIkFARi0hA\n5efnY7PZ8Hq9AJx11lnVP8nj4cB//wOA+9rjW7jNm7dg1qyZjBhxFbm5B5k6dTrr1m3go4+28OCD\nE0+7EIhJZeMexHdWItHPLQa323QcCQIqYhEJqPz8PCzLwmazAbBxY1q1z4lc8wb73W4SIiPJ9x3f\n9fzyy39h8eKnadeuPX//+7qgLt+TWXHxuK8bib24CNemDabjSBBQEYtIQD344ESGDv0F3bqdR2Rk\nJBs2vM/bb//jx5/g8xG96ClyAFtMDH/+8zIAcnL2kpx8C++9t4kLL+wTmPD1pHzYVQC4Tje3hA1d\nRywiAXXDDcnccEMyADt37mDo0Ct48MH76N37Qpo3b/G9n3e9k4pj5w5cERHkFxaSX1gIwNy5T3H7\n7XcHNHt98fTpi++ss3Clvq1LmURbxCJiTteu3Zg5848cPnyYceNGf3/5ScsiZsF81gPOb1fP6tix\nM/PmLWywJQyAw0H5z36B41AubN5sOo0YpiIWEaPuvHMUQ4YMJS3tPV544flTvudNe4/Jn37Cz4Ej\nxcXMmDGLTZs2c9ttd5gJW48qfvHL439Yu9ZsEDFORSwiRtlsNhYseI6zzkpk1qyZbN++DYDt27cz\n9M5beBrodHYb3n77XcaOHW98YY76UjHwp1T2OB9qcta4hLTQ+ESLSIOWlJTEokXPUVFRwb333sXS\npc9y0YUX8nlJMaNatOSdTZ/Qs2cv0zHrV3Q0R979AH73O9NJxDAVsYgEhSFDfs5dd/2WnTt3MH36\nVOIsi78Ccxc9T0xMjOl4In6js6ZFJGjMmDGLzMxM4m2wbGMaZ51/AUeuGGQ6lohfaYtYRIJGdHQ0\nb7yxljeaNKUlUHr/7+DbhT9EQpWKWESCSsQHG4ha+xZccgkVv/yV6TgifqciFpHgUVlJ3LSJWDYb\nPPMMhMgZ0iKno0+5iASN6OV/wvnlTtw33w4XXmg6jkhAqIhFJCjYDh0iZu5sfE2aUDJthuk4IgGj\ns6ZFJCjEPfow9qJjFM2ej5WQYDqOSMBoi1hEjIvYtJGo11+l8vwLcN9+l+k4IgGlIhYRs8rLiZv4\nAJbdTvG8p6EB3FNYpD6piEXEqJjFT+PclU3ZnaPw9OptOo5IwKmIRcQYx+5sYhY+ibd5C0qnTjcd\nR8QIFbGImGFZxE38Hbbycoofm4MV38h0IhEjVMQiYkTkm6/j+iCN8sE/o+JXw03HETFGRSwiAWc7\nUkjc9KlY0dEUP/Gk1pOWsKYiFpGAi/3jo9jz8yj5/WR87dqbjiNilIpYRALK+UkG0X9ZjqdrN8ru\nHWc6johxKmIRCZzKSuInPABA0dwFEBFhOJCIeSpiEQmY6KXP4dyxnbKbbsVzST/TcUSCgopYRALC\nnrOX2Pmz8SUkUDL9UdNxRIKGbvogIv5nWcRNm4ittJSiOU9hNdNNHURO0BaxiPid659/JzL1bSou\nu5zy6280HUckqKiIRcSvbMVFxE2biBURQfGcp3TNsMj/UBGLiF/FzHkcx4FvKB33IN5OnU3HEQk6\nKmIR8Rvn51uJfuF5PB3OofSBCabjiAQlFbGI+IfXS9yE8dh8PornPg1RUaYTiQQlFbGI+EXUn18k\n4rN/4x5xHZVXDDIdRyRoqYhFpN7ZDx4g9vE/4GvUmOJHHzcdRySo6TpiEal3sTOmYi86RtHcp7Ga\nNzcdRySo1WiL2O12M2TIEN58800OHDjALbfcQnJyMuPHj6eiosLfGUWkAYl4bz1Ra96k8sI+uG+9\nw3QckaBXoyJ+/vnnady4MQCLFi0iOTmZVatW0a5dO1JSUvwaUEQakLIy4if/DsvhoGj+QrDr6JdI\ndar9t2TXrl1kZ2czcOBAADIyMhg8eDAAgwYNIj093a8BRaThiFkwD8eerym75z6853U3HUekQai2\niOfMmcOUKVOqvi4rK8PlcgGQkJBAXl6e/9KJSIPhyPySmGcW4m19NiUTplT/BBEBqjlZa82aNfTq\n1Ys2bdr84Pcty6rRmzRtGoPT6TjzdAGQmBhvOkJAaM7QEnRzWhZc+3uorMTx3LMkdmhZLy8bdHP6\nieYMPWcy62mLOC0tjZycHNLS0jh48CAul4uYmBjcbjdRUVHk5uaSlJRU7ZsUFpbWOFAgJSbGk5dX\nZDqG32nO0BKMc0a+8hKNNm6kfNhVHOs3COohXzDO6Q+aM/ScmLWmZXzaIl6wYEHVnxcvXkzr1q35\n7LPPSE1N5ZprrmHdunUMGDCgbolFpEGzFRQQ9+jDWDGxFD8+13QckQbnjE9pHDduHGvWrCE5OZkj\nR44wfPhwf+QSkQYi9g/TsR8+TMnkh/C1Ptt0HJEGp8YLeowbN67qzytWrPBLGBFpWCLSPyT6lZfw\nnNeDslGjTccRaZB0kZ+I1E5FBXETH8Cy2SiavwCcWqhPpDZUxCJSKzHPLcKZ+SXu2+7Ec2Ef03FE\nGiwVsYicMftXu4l5ai7epOaUPDTTdByRBk37kkTkzFgW8VN+j83tpmThc1iNm5hOJNKgaYtYRM5I\n5F/fxPX+u1QM/Cnlw39jOo5Ig6ciFpEasx09QuzDU7Cioiia8xTYbKYjiTR4KmIRqbHY2bNwHMql\n9MGJ+DqcYzqOSEhQEYtIjTj/vYWoFcvwdO5C6X3jTccRCRkqYhGpnsdD3MQHsVkWxfMWwLd3YBOR\nulMRi0i1opctIeLzrbhH3kRlv0tNxxEJKSpiETkt+/59xD7xGL5mzSie+UfTcURCjq4jFpHTinto\nMrbSEopmz8NKSDAdRyTkaItYRH6UK/VtIv/5Nyr6XUr5yJtMxxEJSSpiEflhJSXETZ2AFRFx/AQt\nXTMs4hcqYhH5QbHzZuPYl0PpfePxdu5iOo5IyFIRi8j3OLZvI3rps3jbtaf0wYmm44iENBWxiJzK\n5yN+wnhsXu/xZSyjo00nEglpKmIROUXUyj8T8eknuIePoPKnQ0zHEQl5KmIRqWI7dIjYPz6CL74R\nJbOeMB1HJCzoOmIRqRI3Yyr2o0comj0fX/MWpuOIhAVtEYsIABFp7xH15utUXtAb9+13mY4jEjZU\nxCICbjdxk3+HZbdTPH8hOBymE4mEDRWxiBCzYD7Or3ZTNmo0nh7nm44jElZUxCJhzpGVSczip/G2\nak3p5IdMxxEJOypikXBmWcRNehBbZSXFf5yDFRdvOpFI2FERi4SxyNdewfXhB5QP/QUVv/yV6Tgi\nYUlFLBKmbIWHiXvkIayYGIpnz9dNHUQMURGLhKnYWTOxFxRQMmEqvjZtTccRCVsqYpEwFPHxR0S/\n9H94up1H2T1jTMcRCWsqYpFwU1ZG3AP3YdlsFD25ECIiTCcSCWsqYpEwEzv/CZy7d1H223vxXNTX\ndByRsKciFgkjzq2fEf3cIrzt2lMyZbrpOCKCilgkfFRUED/+vuP3GX5qMcTGmk4kIqiIRcJG7KwZ\nOL/YRtnNt1E54ArTcUTkWypikTAQ9dL/EbP0OTxdulLy6GOm44jISVTEIiEu4qNNxE16EF+zZhxd\nuRorvpHpSCJyEqfpACLGWBb2/ftwZGViq6zAiovHio/HFxdf9WeiokynrBP711/R6M6bATi2/CV8\n7TsYTiQi/0tFLOHBsnB+shnXpg04sjJxZGXizM7CVlpy2qd5OnWm4opBVA78KZX9L2tQN0Ww78uh\n8c3XYz98mKKnFlPZ/zLTkUTkB6iIJaTZcnOJeu0Vol5ZiTM7q+pxKzIS77md8HTujLdjZ6yYWGzF\nx7AVF2MrKsJeXIztcAERn31KzLKlsGwpltOJ58I+VPx0CO5fXxvUW5cRG9NodM8d2AsKKB1zP+6b\nbzMdSUR+hIpYQo9l4VqfStRfVuBavw6b14sVGYl7xLWUX/MbPN1+cnxtZYej+tcqLydiy2YiNryP\na8N7ODd/TERGOrGzZ1F5cT/cNyRTfvVwrEaN/T9XTVgW0c8uIvaPM8HhoGju07hvu9N0KhE5DRWx\nhBT7/n3ETXqQyHdSAag8/wLcN95M+YhrsZo0PfMXjIyk8tIBVF46gNJpM7AVHsaV+jZRr79KxKaN\nxGekEzdtIuXDfkn59TdSccVPwWnmXytbcRHx4+8j8m9r8LZoybEX/4Knz8VGsohIzamIJTT4fLB0\nKU0nTMReXETFgIEUP/JHvD161uvbWE2bUT7yJspH3oR9Xw5RKauJXL2KqLfeIOqtN/AmNaf82htw\nX38j3p+cV6/v/aOKi4lesYyY5xdhz8+not+lHPvTn7GaNw/M+4tInejyJWnw7Lt30XjEVTB6NNjt\nFC14lqMpf633Ev5fvrPbUPrABAo/+pTCt9+l7I67sVWUE/PcIpoN7EeTwQOIfm4xjh1fgGXV+/vb\nio4RvfBJEi7qTtysGVBeQcnEqRxNWasSFmlAbJblh78h/kdeXpG/36JWEhPjgzZbfQrlOZ2bM2g8\ncgT24iK45hoKZs3F16KluUDl5bjeSSXqtVdwrU/F5vEA4G3egsrLBx4/A/uKQfiat6jd6xcXk/jl\nVkrX/pOoV1ZiP3IEX+MmlN0zhrJRo7EaN6nHYcwK5c/tyTRn6Dkxa2Jiza6y0K5pabBOlLCtrJRj\ni5fQ6L7f4ssvNhsqMpKKq66m4qqrseXn41qfiivtPVwb04h6/VWiXn8VAG/bdni6dsPb9Sd4uv0E\nT9ef4O3YCex2bGWl2MrKoLQUm9uN/eABXB9tImLTRpz/+Td4vcQAvqZNKZk2g7K7fqtFOkQaMBWx\nNEjOT04q4T+toOJXw8FmMx3rFNZZZ1UdT8bnw/HFdlwb03BtfB/Hts+JXPcvWPevmr+ew4GnV28i\nhg7hSK++VF7cD2Ji/DiBiASCilgaHOcnGTS+4X9KONjZ7Xi796Csew/KxowDwFZQgHPnFzh2foHz\niy9w7M4GuwMrJhorOhorOgaio/E1boyn7yVUXtwPKy6exMR4KsNkF59IOFARS4Ni37uHxiN/c7yE\nly5vGCX8I6yEhKpLo0QkfKmIpeGwLOJ/fz/2omMUPf0MFVf/2nQiEZE6q7aIy8rKmDJlCgUFBZSX\nlzNmzBi6du3KpEmT8Hq9JCYmMm/ePFwuVyDyShiLXL0K14b3KR/8M9zJt5iOIyJSL6ot4vfff5/u\n3bszatQo9u/fz5133knv3r1JTk5m2LBhPPXUU6SkpJCcnByIvBKmbLm5xE2fii82juJ5C4LuxCwR\nkdqqdkGPK6+8klGjRgFw4MABmjdvTkZGBoMHDwZg0KBBpKen+zelhL34qROwHz1CyfRH8Z3dxnQc\nEZF6U+NjxCNHjuTgwYMsWbKEO+64o2pXdEJCAnl5eX4LKBKxaSORf//r8Zss3H6X6TgiIvWqxkX8\n6quvsmPHDiZOnMjJi3HVZGGupk1jcDprcKcbA2q68klD16DnfP1lACKenEdi89Pf5ahBz3kGNGdo\n0Zyh50xmrbaIt23bRkJCAi1btqRbt254vV5iY2Nxu91ERUWRm5tLUlLSaV+jsLC0xoECKVyWXGvI\nc9qOFJLw5pt4O3aisFMPOM0cDXnOM6E5Q4vmDD1nusRltceIt2zZwvLlywHIz8+ntLSU/v37k5p6\n/DZz69atY8AAXQcp/hH51hvYystx33iLTtASkZBU7RbxyJEjeeihh0hOTsbtdjNjxgy6d+/O5MmT\nWb16Na1atWL48Ia7qIIEt6hXVmI5HJRfP9J0FBERv6i2iKOionjyySe/9/iKFSv8EkjkBMcX24n4\nz2eUD/1F7e9WJCIS5HQ/YglarnffAaB8xHWGk4iI+I+KWIJWxCcZAFRe0t9wEhER/1ERS3CyLCK2\nbMbbqjW+Vq1NpxER8RsVsQQl+56vsefnUdnnYtNRRET8SkUsQenEbmnPRX0MJxER8S8VsQSliE8/\nAaDyor6Gk4iI+JeKWIKS48udWDYbnp90Nx1FRMSvVMQSlBxZmfjatIXoaNNRRET8SkUsQcd27CiO\nQ7l4O3YyHUVExO9UxBJ0HNlZAHhUxCISBlTEEnQcWZkAeDt2NpxERMT/VMQSdJzfbhFr17SIhAMV\nsQSdE7umvZ20RSwioU9FLEHHkZ2JL74RvqTmpqOIiPidiliCi8eDY/cuvJ06gc1mOo2IiN+piCWo\n2PfuwVZZifdcHR8WkfCgIpag4sz+9oxpHR8WkTChIpag4sj69hpibRGLSJhQEUtQcezSGdMiEl5U\nxBJUnFmZWHY73g7nmI4iIhIQKmIJKo7sTLzt2kNkpOkoIiIBoSKWoGE7XIC9oEC7pUUkrKiIJWg4\nsrMBdOmSiIQVFbEEjapLl7TGtIiEERWxBI0Td13ydOpiOImISOCoiCVoVF26pC1iEQkjKmIJGo6s\nTHxNm2IlJJiOIiISMCpiCQ6VlTj2fI23Y2fd7EFEwoqKWIKC4+uvsHk8eLRbWkTCjIpYgoIj+8Tx\nYV1DLCLhRUUsQeHEGdNazENEwo2KWILCd7c/1K5pEQkvKmIJCo7sLCynE2/b9qajiIgElIpYzLOs\n4zd76HAORESYTiMiElAqYjHOnnsQ+5EjOlFLRMKSiliMc275BIDK3hcaTiIiEngqYjEu4pMMADwX\n9TWcREQk8FTEYlzEls1YDgeVvXqbjiIiEnAqYjGrvBzn1s/wnNcDYmNNpxERCTgVsRjl/HwrtooK\nPBf1MR1FRMQIFbEYFfHvLQBUXqgiFpHwpCIWo5xb/wOAR8eHRSRMqYjFKOfWz/DFxuE9t6PpKCIi\nRqiIxZziYhxZmXjO7wV2fRRFJDzpbz8xJmLbf7FZFp6evUxHERExRkUsxji3fgaAp9cFhpOIiJij\nIhZjHF/uBMDT7TzDSUREzFERizHOrEwsux3vOeeajiIiYoyKWIxxZGfibdceIiNNRxERMUZFLEbY\nDhdgLyjA20m3PhSR8OasyQ/NnTuXTz/9FI/Hwz333EOPHj2YNGkSXq+XxMRE5s2bh8vl8ndWCSGO\n7GwA3YNYRMJetUX88ccfk5WVxerVqyksLOTXv/41/fr1Izk5mWHDhvHUU0+RkpJCcnJyIPJKiHBm\nZwLg7djJcBIREbOq3TXdp08fFi5cCECjRo0oKysjIyODwYMHAzBo0CDS09P9m1JCjiPreBF7OnUx\nnERExKxqt4gdDgcxMTEApKSkcPnll7Np06aqXdEJCQnk5eWd9jWaNo3B6XTUQ9z6l5gYbzpCQATd\nnHt3A9C0X29IqL9sQTenn2jO0KI5Q8+ZzFqjY8QA69evJyUlheXLlzN06NCqxy3Lqva5hYWlNQ4U\nSImJ8eTlFZmO4XfBOGfT7V9gT0igwOeCesoWjHP6g+YMLZoz9JyYtaZlXKOzpj/44AOWLFnCCy+8\nQHx8PDExMbjdbgByc3NJSkqqfWIJP+XlOPZ8rRO1RESoQREXFRUxd+5cli5dSpMmTQDo378/qamp\nAKxbt44BAwb4N6WEFMfXX2HzevHo0iURkep3Tf/zn/+ksLCQBx54oOqxJ554gocffpjVq1fTqlUr\nhg8f7teQElpOnKjlPVdnTIuIVFvEN9xwAzfccMP3Hl+xYoVfAknoq7p0qbO2iEVEtLKWBFzVpUs6\nRiwioiKWwHNkZ2K5XPjatjMdRUTEOBWxBJZl4cjKOn7HJUdwXlsuIhJIKmIJKHvuQezFRbp0SUTk\nWypiCajvjg/rjGkREVARS4BVXbqka4hFRAAVsQSYI1tFLCJyMhWxBJQzS7c/FBE5mYpYAsqxKxtv\ny1ZYceFzFxYRkdNREUvgFBcxBF8kAAAMbUlEQVTj2JejrWERkZOoiCVgnNu3AeD5SXfDSUREgoeK\nWAIm4r+fAeA5v5fhJCIiwUNFLAHj/M+3Rdyrt+EkIiLBQ0UsAePc+hm+uPjjy1uKiAigIpZAKS7G\nkZWJp+f5YNfHTkTkBP2NKAHh3L4Nm2Xh6anjwyIiJ1MRS0A4T6yo1bWb4SQiIsFFRSwB8d3NHrS0\npYjIyVTEEhBVa0x37Gg4iYhIcFERS0A4sjLxJSRgNUswHUVEJKioiMX/ystx7Pkar3ZLi4h8j4pY\n/M7x1W5sPh8erTEtIvI9KmLxuxMnank7dTGcREQk+KiIxe+qLl3qpC1iEZH/pSIWv9OlSyIiP05F\nLH7n2JWF5XLha9vOdBQRkaCjIhb/siwcWVl4z+0IDofpNCIiQUdFLH5lzz2IvbgI77k6Piwi8kNU\nxOJXVceHO+v4sIjID1ERi19VXbqkE7VERH6Qilj8qmqN6U4qYhGRH6IiFr9yntg1rWPEIiI/SEUs\nfuXIzsLbshXExZmOIiISlFTE4j/FxTj279PSliIip6EiFr9x7s4GdA9iEZHTURGL31RduqQTtURE\nfpSKWPxGly6JiFRPRSx+48jOAnTpkojI6aiIxW+cWZlYMbH4WrYyHUVEJGipiMU/vF4cu7OPHx+2\n2UynEREJWipi8Qt7zl5s5eV4O2ohDxGR01ERi184tbSliEiNqIjFLxxZx0/U0qVLIiKnpyIWv6g6\nY1qXLomInJaKWPzCuf2/WBEReDucYzqKiEhQUxFL/Ssrw/nfrXh69ISoKNNpRESCmopY6p1z63+w\neTxU9rnYdBQRkaCnIpZ6F/FJBoCKWESkBlTEUu9OFLHnor6Gk4iIBL8aFXFmZiZDhgzhpZdeAuDA\ngQPccsstJCcnM378eCoqKvwaUhoQyyJiy2a8rc/G16q16TQiIkGv2iIuLS1l1qxZ9OvXr+qxRYsW\nkZyczKpVq2jXrh0pKSl+DSkNh31fDvb8PDy9LzIdRUSkQai2iF0uFy+88AJJSUlVj2VkZDB48GAA\nBg0aRHp6uv8SSoPi/M9nAFT26m04iYhIw+Cs9gecTpzOU3+srKwMl8sFQEJCAnl5ead9jaZNY3A6\nHXWI6T+JifGmIwREwObM2g5A3MBLiTPwz1a/z9CiOUNLuMwJZzZrtUVcHcuyqv2ZwsLSur6NXyQm\nxpOXV2Q6ht8Fcs7GH2XgAvLbdsIK8D9b/T5Di+YMLeEyJ3w3a03LuFZnTcfExOB2uwHIzc09Zbe1\nhDHLwrn1MzznnIvVuInpNCIiDUKtirh///6kpqYCsG7dOgYMGFCvoaRhsufsxX70CJ6e55uOIiLS\nYFS7a3rbtm3MmTOH/fv343Q6SU1NZf78+UyZMoXVq1fTqlUrhg8fHoisEuQcX+0GdKMHEZEzUW0R\nd+/enZUrV37v8RUrVvglkDRcjj1fA+Bt195oDhGRhkQra0m9+a6IO5gNIiLSgKiIpd44vv4KAF/7\n9maDiIg0ICpiqTf2PV9jRUXhS2puOoqISIOhIpZ649j7Nd42bcGuj5WISE3pb0ypHyUl2I8cwdf6\nbNNJREQaFBWx1AvHgW8A8OqOSyIiZ0RFLPXC/s1+AN36UETkDKmIpV6oiEVEakdFLPXC8W0Ra9e0\niMiZURFLvbDn7AXQyVoiImdIRSz1ompVrbbtzAYREWlgVMRSLxx7vsbboiVER5uOIiLSoKiIpe4q\nKrDv34e3vdaYFhE5UypiqTP7vhxsPh8+3XVJROSMqYilznT7QxGR2lMRS5059uUA4D27jeEkIiIN\nj4pY6sy+fx+gS5dERGpDRSx1Zv92nWlfq1aGk4iINDwqYqkzx/5vV9VqqVW1RETOlIpY6sx+YD++\nZs0gJsZ0FBGRBkdFLHVjWTj278enrWERkVpREUud2AoKsJWWaGlLEZFaUhFLnTi+3g3oGmIRkdpS\nEUudaDEPEZG6URFLnVQVcQetMy0iUhsqYqkT+7dFrHWmRURqR0UsdeLYuwcA79ltDScREWmYVMRS\nJ479+/AmNYfISNNRREQaJBWx1J5lYT/wjZa2FBGpAxWx1JqtoABbeTm+VrrZg4hIbamIpdYc3xy/\n65JXW8QiIrWmIpZas39z4q5L2iIWEaktFbHUmq9pM6zISDwXXmQ6iohIg+U0HUAaLs/Fl5C/+xuI\niDAdRUSkwdIWsdSNSlhEpE5UxCIiIgapiEVERAxSEYuIiBikIhYRETFIRSwiImKQilhERMQgFbGI\niIhBKmIRERGDVMQiIiIGqYhFREQMUhGLiIgYZLMsyzIdQkREJFxpi1hERMQgFbGIiIhBKmIRERGD\nVMQiIiIGqYhFREQMUhGLiIgY5DQdwITNmzczfvx4Hn/8cQYNGgTAzp07eeSRRwDo0qULjz76qMGE\n9ePxxx9n69at2Gw2pk2bRs+ePU1HqleZmZmMGTOG22+/nZtvvpkDBw4wadIkvF4viYmJzJs3D5fL\nZTpmnc2dO5dPP/0Uj8fDPffcQ48ePUJuzrKyMqZMmUJBQQHl5eWMGTOGrl27htycJ7jdbq666irG\njBlDv379Qm7OjIwMxo8fT6dOnQDo3Lkzd999d8jNCbB27VqWLVuG0+nk/vvvp0uXLmc8Z9htEe/d\nu5cVK1bQu3fvUx5/7LHHmDZtGq+++irFxcVs2LDBUML6sXnzZvbs2cPq1at57LHHeOyxx0xHqlel\npaXMmjWLfv36VT22aNEikpOTWbVqFe3atSMlJcVgwvrx8ccfk5WVxerVq1m2bBmPP/54SM75/vvv\n0717d1566SUWLFjAE088EZJznvD888/TuHFjIDQ/twB9+/Zl5cqVrFy5kunTp4fknIWFhTz77LOs\nWrWKJUuW8O6779ZqzrAr4sTERJ555hni4+OrHquoqGD//v1VW4yDBg0iPT3dVMR6kZ6ezpAhQwA4\n99xzOXr0KMXFxYZT1R+Xy8ULL7xAUlJS1WMZGRkMHjwYCI3fIUCfPn1YuHAhAI0aNaKsrCwk57zy\nyisZNWoUAAcOHKB58+YhOSfArl27yM7OZuDAgUBofm5/SCjOmZ6eTr9+/YiLiyMpKYlZs2bVas6w\nK+Lo6GgcDscpjxUWFtKoUaOqrxMSEsjLywt0tHqVn59P06ZNq75u1qxZg5/pZE6nk6ioqFMeKysr\nq9oFFAq/QwCHw0FMTAwAKSkpXH755SE55wkjR45kwoQJTJs2LWTnnDNnDlOmTKn6OlTnzM7OZvTo\n0dx44418+OGHITnnvn37cLvdjB49muTkZNLT02s1Z0gfI3799dd5/fXXT3ls3LhxDBgw4LTPC8VV\nP0NxptMJtXnXr19PSkoKy5cvZ+jQoVWPh9qcr776Kjt27GDixImnzBYqc65Zs4ZevXrRpk2bH/x+\nqMzZvn17xo4dy7Bhw8jJyeHWW2/F6/VWfT9U5gQ4cuQIzzzzDN988w233nprrT63IV3E1113Hddd\nd121P9esWTOOHDlS9XVubu4puzwboqSkJPLz86u+PnToEImJiQYT+V9MTAxut5uoqKiQ+B2e8MEH\nH7BkyRKWLVtGfHx8SM65bds2EhISaNmyJd26dcPr9RIbGxtyc6alpZGTk0NaWhoHDx7E5XKF5O+z\nefPmXHnllQC0bduWs846i88//zzk5kxISOCCCy7A6XTStm1bYmNjcTgcZzxn2O2a/iERERGcc845\nbNmyBYB169ZVu9Uc7C699FJSU1MB2L59O0lJScTFxRlO5V/9+/evmjkUfocARUVFzJ07l6VLl9Kk\nSRMgNOfcsmULy5cvB44fViktLQ3JORcsWMAbb7zBa6+9xnXXXceYMWNCcs61a9fy4osvApCXl0dB\nQQEjRowIuTkvu+wyPv74Y3w+H4WFhbX+3Ibd3ZfS0tJ48cUX2b17N82aNSMxMZHly5eTnZ3NjBkz\n8Pl8nH/++UydOtV01DqbP38+W7ZswWazMXPmTLp27Wo6Ur3Ztm0bc+bMYf/+/TidTpo3b878+fOZ\nMmUK5eXltGrVitmzZxMREWE6ap2sXr2axYsX06FDh6rHnnjiCR5++OGQmtPtdvPQQw9x4MAB3G43\nY8eOpXv37kyePDmk5jzZ4sWLad26NZdddlnIzVlcXMyECRM4duwYlZWVjB07lm7duoXcnHD8cMqJ\nM6PvvfdeevToccZzhl0Ri4iIBBPtmhYRETFIRSwiImKQilhERMQgFbGIiIhBKmIRERGDVMQiIiIG\nqYhFREQMUhGLiIgY9P9GQMYjQp6nVgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f12320da9d0>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VPXd/vH3rNnDEhMEZBFkq6JA\nBQUBS6FWaPsTeeQBg1KrUgFBsLIJuCCyI7KooCLYahEQW4u2PqBVXEMQEBUFIajIEkJCAyRkJpnl\n/P4AohQlZJk5Z2bu13VxlcycJPeHjLl7zpzzPTbDMAxERETEVHazA4iIiIgKWURExBJUyCIiIhag\nQhYREbEAFbKIiIgFqJBFREQswBmOb5KfXxSOb3Pe6tRJpLCwxOwYYRErs8bKnKBZo1GszAmxNWt6\nekqlto/JPWSn02F2hLCJlVljZU7QrNEoVuaE2Jq1smKykEVERKxGhSwiImIBKmQRERELUCGLiIhY\ngApZRETEAlTIIiIiFqBCFhERsYAKFwbJzs5m1KhRtGjRAoCWLVty5513Mm7cOAKBAOnp6cyZMwe3\n2x3ysCIiItHqvFbq6tSpEwsXLiz/+P777yczM5PevXszb9481qxZQ2ZmZshCioiIRLsqHbLOzs6m\nZ8+eAPTo0YOsrKwaDSUiIhJrzmsPOScnh6FDh3Ls2DFGjBiBx+MpP0SdlpZGfn7+OT+/Tp1Eyy2X\nVtk1RiNZrMwaK3OCZq1Rx4/D1q3w6adQWgoOx5l/4uLg8suhXTtwuUIWQz9TqbCQmzZtyogRI+jd\nuzf79u1j8ODBBAKB8ucNw6jwm1htIfH09BTL3fAiVGJl1liZEzRrdTk/24brww9wfroV56fbcO7J\nOa/PMxIS8F3RHn/Hq/Cd+mOkpdVIJv1Mo1Nl/49HhYVcr149+vTpA0Djxo254IIL+Pzzz/F6vcTH\nx5OXl0dGRkbV0oqIhIPPR9zr/yDhmcW4tnxc/nAwtRZl3a7Ff0V7/G0vx0hOhkAQAgEIBrAFAthO\nnMC57RNcH2fjys7CvfEjAAynk9J+/SkZfg+Bn11q1mQSRSos5LVr15Kfn88dd9xBfn4+R44coV+/\nfqxbt44bbriB9evX061bt3BkFRGpFFtBAQkvLCd++VIch3IxbDZKr7ue0n798bXrQPDiZmCzVfyF\nBg0++fWKjuPcugXXx9nEvfoK8atfIn71S5T2/BWeEaPxdel6fl9P5EfYjAqOORcXFzNmzBiOHz+O\nz+djxIgRtGnThvHjx1NaWkqDBg2YMWMGrnO8t2K1wxOxdsgkFmaNlTlBs56XYJCEp58iacYj2Lxe\ngskpeG8ehOeOuwg2a14z4YJB3G+tI+GJBeV7zb72HSieNhv/lZ0q9aX0M41OlT1kXWEh1wSr/ePH\n2gsiFmaNlTlBs1bEfiiXlBFDcb/3DsEL0im5dwzegYMwUlJDlBKcmzeR+ORC3P96DRwOTkx6GM+w\nEWA/vwtZ9DONTpUtZK3UJSJRw/2v16lz7dW433uH0l/9mv+8uxHPkGEhLWMA/5WdOL78RY698hrB\numkkT5lM6q0DsP3nSEi/r0QXFbKIRD6/n+Qxo6l1WyY2j4eimY9x/MXVGOnpYY3h69qdwrc/pOza\nHsS9uY46v+yKc6PWaZDzo0IWkchmGKT8aSQJf1mG/9K2FL75Ht7bh5h2cpWRkcGxVX/nxMQHsR/K\npXa/3+B6+y1TskhkUSGLSERLmvIA8Sv/iq99B46+9n8EWrU2OxLY7ZSMHsOxl/8BDgepdwzG+fmn\nZqcSi1Mhi0jESlg0n8SnFuJv0ZJjK17BSLbWClC+btdy/Kml2EpOkJrZH/v+fWZHEgtTIYtIRIr/\n619InvoggQYNObbq7zW2alZNK/vdDZyYMg1H3iFq3fw/2I4Wmh1JLEqFLCIRx/HFdpLHjCJYty7H\nVr9K8KJGZkc6J8/QEZT8cRjOr3aSevutEAyaHUksSIUsIpHFMEieOBZbIEDRk88QaNnK7ETn5cSU\n6ZRedz3uD94j7uWVZscRC1Ihi0hEiXv1FdxZH1J6fR/Kel5ndpzz53BQPPMxjPh4kqY/AiXWuumO\nmE+FLCKRo7iYpIcnY8TFUfzIDLPTVFrwokZ47robR+5BEpc8YXYcsRgVsohEjKQFj+HIPUjJ3fcQ\nbHqx2XGqpOSeewlekE7iwsex5x0yO45YiApZRCKC/eABEhYvItDwIkruuc/sOFVmpKRyYvwkbCUn\nSJw1zew4YiEqZBGJCAmLF2ErK6Nk7P2QmGh2nGrxDhqMv1lz4l9eCcXFZscRi1Ahi4jl2Y4cIeGF\n5wk0aIj3pgFmx6k+p5PSvv+DrbQU9zv/NjuNWIQKWUQsL2HpEmwlJXiGjwS32+w4NaKs928AiHvj\ndZOTiFWokEXE0mzFRSQ89zTBunXxDPq92XFqjP/ydgQaNMT91jrw+cyOIxagQhYRS4v/83LsR4/i\nGTIMkpLMjlNzbDbKru+D/ehReP99s9OIBaiQRcQ0gUCADz54j9LS0h/foLSUhCVPEExKxnPHH8Mb\nLgxKrz952Jp168wNIpagQhYR08yaNY1+/X5Lt26dWL/+jbM3+POfceQdwnvbHRi164Q/YIj5unan\nZMhQuP56s6OIBaiQRSTsioqO8/bbb/HUUwtJTa3Fvn3fccstA8jMvImvv845uZHfD7NnY8TF4Rl6\nt7mBQ8Xp5MS02dCjh9lJxAJUyCISVsFgkJtvvomBA/tRVlbGpEkP8vbbH9K1a3feems93btfzbRp\nU/C9vBL27ME7YBDBeheaHVsk5FTIIhJWL7+8kk2bNpZ/PG3aIzRs2JBXXnmNpUv/THp6BgsWPEan\n++5hpc3GibvvMTGtSPiokEUkbI4fP8aUKQ9gs9mw20/++klNTSUhIRGbzcb/+3838sEHHzP2170p\n8Pu52TC44d4RfPHFdpOTi4SeCllEwmbu3FkUFORjGAYNGjQE4JFHZuByucq3SQ74mbl1C9vj4vhd\nr1589NEH9OzZlYkTx3L0aKFZ0UVCToUsImHx2WfbWLLkCWw2GykpKezfv4/u3Xvwm9/8rnybnXsL\n+WbeM9jzD1P/3rGsffNNXnppDU2bXszSpU/TuXMHXnzxzwSDQRMnEQkNFbKIhEWvXt0BMAwDt9uN\n0+lk+vTZ2Gy28m3WvvkFfyuIJ9CkKSXDT7533LPndbz77kYmT56Cx+PlT38ayYUX1jZlBpFQUiGL\nSFiMGzex/O9HjhzhzjuH0rJlK+DknvGsv25lZ0EZ2y+6lAmD57Ezz1O+vdvt5vbb72TRosVhzy0S\nLk6zA4hI9PP7/bz22j+w2WzcffcoCgryGTt2QvnzrZvUIW3jBsZTC4BBA6+mYXpy+fNTpz7Ek08u\noG7dNABef/3N8A4gEgYqZBEJueefX8qOHV8waNBgHnzwkbOetx07ytZ/vMfA0lI8t93B5q/yywv5\nyy+/YPHiRRiGwZEjBcTFxdGoUaNwjyAScjpkLSIhVVBQwKxZ00lNrcXEiQ/96DZJ0x+h6d4d9O16\nMTf87uc0uODkTSQMw2DixLEEAgGSkk4WdCAQwDCMsOUXCRcVsoiE1PTpUzh27Cjjx08kPT39rOed\nWzcT//xzXG07QsndowDo2DoDgNWrV/PRRx/QqFFjTpwoBmDYsJHll0yJRBMdshaRkNm2bSt//etf\naNPmZ/zhD0PO3sDvJ3nMaGyGQfGc+eB2lz9VXFzM6NGjcblc7N+/H5vNRkZGPe69d2wYJxAJHxWy\niIREMBjk/vvHYBgG06fPwek8+9dNwrNLMLZ/RsnAQfg6X3PGc3379uHQoUNnPPbww4+SnJyMSDTS\nIWsRCYnVq19iy5bN9O3bj2uu6XbW87Z937Fq2sNcANxaVHTW+8JD/+sOT1df3YV+/fqHMrKIqVTI\nIlLjjh8/xiOPPEhiYiIPPzztrOcNw2DU737NnWVlFAF/++daVqx44Yxtrr/+N9SvXx+n00mrVm2Y\nPfvxMxYREYk2KmQRqXFz5sygoCCf0aPH/OgJWM43/sn6gwcAmP/4E6Sm1mLSpHHf3wsZePzxOeTm\n5jJ69Bjefz+b1q3bhC2/iBlUyCJSo3bu3MHSpU/TtOnFDBs28uwNioupNWkcTzgcADz/5+eYMWMO\nJSUlDBt2Jz6fjz17drNkyRM0adKEkSPvDfMEIubQSV0iUmMMw2DSpHEEAgEefXQmcXFxZ22TNGcG\njgP7+e3oMQzIPciqVSvYvXsX/fsP5OWXVzJnznQ+++xTfD4f8+bNIyEhwYRJRMJPhSwiNeb11//B\n+++/S69e13Hddb3Pet6x/XMSnnnq5M0j7h3LdL+PrKyPWLDgMW6++RYAnnxyIT6fj+7de3DjjTdS\nUFAc7jFETKFD1iJSI0pKSnjooUm43W4efXTm2RsEg6SMHYUtEKBo1jxISCAlJZXFi5/FMAxWrHiB\nuLg4UlNr/eidoESinQpZRGrEwoXz2L9/H8OGjaRZs0vOej7+L8txbdmMt28/fL/sVf54x45XcdVV\nnQG45ZbbOHKkgCFDhpXfCUokVqiQRaTavvtuL08+uYALL6zPsWNH6dq14xlnTNvy8kh69GGCKamc\nmHr23vNrr61j69YvWLHiL2Rk1GPMmPFhTC9iDSpkEam2b775mtLSUg4dyuX5559j166vys+YBkh+\n6H7sx49xYuKDBOtd+KNf4+GHJ+PxeHjggSmkpKSGM76IJaiQRaTarr22B5mZt5Z/HBcXxyefbGXO\nnOm4NrxN/N/W4GvfAe9td/zo57///rusXft3rryyE/37DwxXbBFLUSGLSI2YOnUGjRs3BihfBnP+\n/MdYNexODLud4rkL4NS1xz/k8/mYNGkcNpuNmTPnYrfr15LEJr3yRaRGnDxj+jkcDgd16tQtP1Fr\n6JECbr2kBXkNLvrRz1u27Bl27tzBLbfcxuWXtwtnZBFLUSGLSI3p2PEq7r13LHl5h8hISKDtqcf/\nuusrrr66Pc899zR+v798+8OHDzN79gxq167NxIkPmhNaxCJUyCJSo/70p3FccUU7XtvwNp8DjdIu\n4J57/nTqdoxj6dWrO1lZHwIwbdrDFBUdZ/z4yaSlpZkbXMRkKmQRqVFOp5PFfX5X/vE7G7cyefLD\nbNz4CZmZt/Lll9u54YbeDBrUn5deepFLL23L739/u4mJRazhvArZ6/XSq1cv/va3v5Gbm8utt95K\nZmYmo0aNoqysLNQZRSSC2P5zhKueeYpgYiIFW7aTWqs2AOnp6cyf/yRvvPFv2rfvwJtvrgNgxow5\nOJ1axVfkvAp58eLF1KpVC4CFCxeSmZnJihUraNKkCWvWrAlpQBGJLElTH8J+5Agnxk4k2KjxWc//\n/OcdeeONt3nyyWdYuHAxV1/dxYSUItZTYSHv2bOHnJwcfvGLXwCQnZ1Nz549AejRowdZWVkhDSgi\nkcO5MYuEv/4Ff5tL8fxx2E9uZ7fb6d9/IAMHDgpjOhFrq7CQZ82axYQJE8o/9ng8uN1uANLS0sjP\nzw9dOhGJHGVlpIwbjWGzUTR3PrhcZicSiSjnfOPm1VdfpV27djRq1OhHnz998X9F6tRJxOk8e0EA\nM6Wnp5gdIWxiZdZYmRMsOuvMmbBzB9x1F3X69Kp4+/NkyVlDIFbmhNiatTLOWcgbNmxg3759bNiw\ngUOHDuF2u0lMTMTr9RIfH09eXh4ZGRkVfpPCwpIaC1wT0tNTyM8vMjtGWMTKrLEyJ1hzVvveb6n7\nyCMYF6Tzn/smYtRQPivOGgqxMifE3qyVcc5Cnj9/fvnfFy1aRMOGDfnkk09Yt24dN9xwA+vXr6db\nt25VSyoi0cEwSJ5wHzaPh6LHFmLUrmN2IpGIVOnrkEeOHMmrr75KZmYmR48epW/fvqHIJSIRwv3a\nq8T9+03Kuveg9H/+1+w4IhHrvC/+GzlyZPnfly9fHpIwIhJZbEXHSZ40HiMujuLZj4HNZnYkkYil\nlbpEpMoSZ0zFkXeIklH3EWh2idlxRCKaCllEqsS5bSsJy57F3/wSSkbea3YckYinQhaRygsESB57\nL7ZgkOI58yEuzuxEIhFPhSwilZaw7Blcn36Ct/9AfF27mx1HJCqokEWkUuy5B0mc8SjB2rUpfnia\n2XFEooZusSIilZI8aTz24qKT1xynp5sdRyRqaA9ZRM6b+83/I+71f+DrdDXeQYPNjiMSVVTIInJ+\nTpwgecIYDKeTojnzwa5fHyI1Sf9Fich5SZo3G8e+7/AMG0mgzc/MjiMSdVTIIlIhx44vSVi8iEDj\nJpy4b7zZcUSikgpZRM4tGCRl7Ghsfj/FM+ZAYqLZiUSikgpZRM4pfsULuDZtpPS3N1D2q+vNjiMS\ntVTIIvKTbPn5JD3yAMHkFIqnzTI7jkhU03XIIvKTkqdMxn70KMXTZhGs38DsOCJRTXvIIvKjXB+8\nR/zql/Bd0R7P7X80O45I1FMhi8jZSktJHjsaw26neO58cDjMTiQS9VTIInKWxEWP49yTg+f2Ifiv\naG92HJGYoEIWkTM4vs4hccFjBC6sT8n9D5gdRyRmqJBF5HuGQfK4+7CVllI8bRZGSqrZiURihgpZ\nRMrFvbIa93vvUNrrOsp+e4PZcURiigpZRACwHS0k+cGJGAkJFM+YCzab2ZFEYooKWUQASHp0CvaC\nfE7cN55gk6ZmxxGJOSpkEcH5cTYJf1mGv3UbPMNGmh1HJCapkEVinc9HypjRABTNng8ul8mBRGKT\nClkkxiU8/RTOHV/gGTQY/9WdzY4jErNUyCIxzL7vO5LmziCYlsaJB6aYHUckpunmEiKxyjBInjgW\nW0kJRbPmYdRNMzuRSEzTHrJIjHL/63Xi1r1BWdfulP7vzWbHEYl5KmSRGGQrLiJ50jgMt5vi2Y/r\nmmMRC1Ahi8SgpKkP4Th4gJKR9xK4pIXZcUQEFbJIzHFt/IiE5Uvxt2pNyegxZscRkVNUyCKxxOMh\nefTdGDYbRY8/AXFxZicSkVNUyCIxJGnODJxf78Hzx+H4r+xkdhwR+QEVskiMcH6cTcJTCwk0acqJ\nCZPNjiMi/0WFLBID7Af2U+u2QQAUzX8SkpJMTiQi/00Lg4hEuxMnSL11IPb8wxRPm4Xvmm5mJxKR\nH6E9ZJFoFgySOuIuXNs/w3PrH/DcOdTsRCLyE7SHLLEjGMR+8ACOXV/hzNmFY9cuHDm7cBzYj5GY\niJGUjJGSQjAlFSM5mWBGPXxduuK7qjMkJJidvkoSZ08j7p9rKevSleIZc7QAiIiFqZAluhkGzs2b\niH/pReLWvor9+LEzn7bZCGbUw37sKLaiImyBwJmfP38uRnw8vk6dKbu2B75f9MB/aVuwW/zgUlkZ\nyZPHk/D8cwSaNOX4shfA7TY7lYicgwpZopLt8GHiX15J/Esv4Nz1FQCBBg3x/rIngRatCLRoib9F\nKwLNmn+/92sY4PWeLObiIhzffo373Q24330H93sn/zAVAg0vovSmAXgHZFpylSt77kFS7xiMa/Mm\n/G0u5difV+jGESIRQIUsUcVW+B+SpjxA/OqXsPn9GG433r798GYOxtftWnA4zvHJNkhIwEhIwMjI\nINisOb5f/ooTnCx493vv4N7wNu43/knigsdIXPAYvp9fibf/zZTe+D8YdeqGa8yf5Mr6kNQ7f489\n/zDefv0pemyhzqgWiRAqZIka7tf+QcqE+7DnH8bfqjWe2+6gtF//GilKIyOD0psGUHrTAPB4iPu/\nfxK/agWuDW+TsmUzyQ/eT9mvrsc7IJOynr8Cl6sGJjp/tmNHSVjyJIkLHgPDoPjRmXiGDNN7xiIR\nRIUsEc+WlwfD/kCtV17BiIujePIUPMNHgjNEL++EBEpvvInSG2/CnneIuDWriV+9grh/riXun2sJ\npqXh7def0v+9Gf/l7UJairbC/5DwzGISnl2C/fgxgukZHH/2eXxduobse4pIaNgMwzBC/U3y84tC\n/S0qJT09xXKZQiXaZ3X/63VSRg/HfvQovqs6U/T4E+a8r2sYOLd/Rtzql4h/ZTX2ggIAAk2aUnbt\nL0+eENatO0btOtX+VunpKRTs+IaEZ54iYenT2IuLCKalUTLsHry334mRnFLt72EV0f76PS1W5oTY\nm7UyVMhRLppnda/9O6l33Q5x8dhmzyL/pluscfazz4f7nbeIW70S9zv/xl50HADDbsffrj1l3Xvg\nv6I9gTZtCDS5+Nzva59iKzqOa+NHuD54n8TsDzE++QSbYRBMz6Dk7lF4fn97VL5XHM2v3x+KlTkh\n9matDB2yloh0uoyNhESOrfobdfr0Aqv8R+5yUXZdb8qu6w1+P85PtuB+9x1c723AtXkTrq1byjc1\nEhLwt2xNoM3PCDS9GHw+bB4PNk8JNo8HPB4c+/bi/HTb95dkuVz4rupM2e9uwDPo95CYaNKgIlKT\nVMgScf67jP0drzI70k9zOvF3vOpkxjETsBUX4dy0EeeXX+Lc8QWOnTtw7vwS16ef/OSXMJxO/B2u\npKxrN3zXdKd2754cOxH4ye1FJDKpkCWiuF9fGzll/COM5BR8v/wVvl/+6vsH/X4c336D/bu9EB9/\n8rKrhESM+PiT/1urFsTHf799YiKcsMjRABGpMSpkiRj2fd+RMnIoRnxCRJbxT3I6CVzSwpKLjIhI\n+KiQJTIYBiljR2M/UczxhYujp4xFRE6psJA9Hg8TJkzgyJEjlJaWMnz4cFq3bs24ceMIBAKkp6cz\nZ84c3FonV0Io7uWVuN9+i7Jf/JLSAZlmxxERqXEVFvI777zDZZddxpAhQzhw4AC33347HTp0IDMz\nk969ezNv3jzWrFlDZqZ+SUpo2PLzSX5gAkZiEkVzF2j1KRGJShVetNmnTx+GDBkCQG5uLvXq1SM7\nO5uePXsC0KNHD7KyskKbUmJa8uRx2AsLOTHpQYKNm5gdR0QkJM77PeSBAwdy6NAhlixZwh/+8Ify\nQ9RpaWnk5+eHLKDENsfXOcT//RV87Tvguf2PZscREQmZ8y7klStXsmPHDsaOHcsPF/c6n4W+6tRJ\nxOmseDWicKrsCiqRLKJnnb8GANeY+0i/sPY5N43oOStJs0afWJkTYmvWyqiwkLdv305aWhr169en\nTZs2BAIBkpKS8Hq9xMfHk5eXR0ZGxjm/RmFhSY0FrgmxtnRbxM4aCFB32XJsqbU40vXcK3FF9JyV\npFmjT6zMCbE3a2VU+B7y5s2bWbZsGQAFBQWUlJTQpUsX1q1bB8D69evp1q1bFaKKnJt7w79xHMql\ntN9NkJBgdhwRkZCqcA954MCBTJo0iczMTLxeLw8++CCXXXYZ48ePZ9WqVTRo0IC+ffuGI6vEmPgV\nLwLgvfkWk5OIiIRehYUcHx/PY489dtbjy5cvD0kgEQDb8WO4/++f+Nv8DH+7DmbHEREJOQvcq07k\nbM7NH2Pz+Sj9dR9ddywiMUGFLJbk+jgbAH/HTiYnEREJDxWyWJJr8yYAfD/vaHISEZHwUCGL9QQC\nOLdsxn9JC4y6aWanEREJCxWyWI7jq53Yi4vwX6nD1SISO1TIYjmubVsBHa4WkdiiQhbLcez6CgB/\n65+ZnEREJHxUyGI5jj27AQi0aGFyEhGR8FEhi+U4du8iWLeuTugSkZiiQhZrKSvDsfdbApe0NDuJ\niEhYqZDFUhzffoMtEMB/iQ5Xi0hsUSGLpTh27wIg0FyFLCKxRYUsluLIOVXILVuZnEREJLxUyGIp\nzpxTZ1hfconJSUREwkuFLJbiyNmF4XIRaNzU7CgiImGlQhbrMAwcu3cTuLgZuFxmpxERCSsVsliG\nLT8f+/FjOqFLRGKSClksw3n6hC5d8iQiMUiFLJZx+pInfwstCiIisUeFLJbhKD/DWnvIIhJ7VMhi\nGQ4dshaRGKZCFstw7t5NMD0Do3Yds6OIiISdClmswevFvm+v1rAWkZilQhZLcHy9B5th6C5PIhKz\nVMhiCeXvH7fQHrKIxCYVsliC8/RdnnTJk4jEKBWyWMLpS578WqVLRGKUClkswZGzGyMujmCjxmZH\nERExhQpZzGcYOHJ2E2jWHBwOs9OIiJhChSymsx/KxX6iWGdYi0hMUyGL6b5fw1rvH4tI7FIhi+m+\nX8Nae8giErtUyGI6rWEtIqJCFgtw6i5PIiIqZDGZYeDYuYNA/QYYySlmpxERMY0KWUxlP7Afx6Fc\n/B2uNDuKiIipVMhiKtfH2QD4ruxkchIREXOpkMVUzs2bAPB1vMrkJCIi5lIhi6lcH2djuFz4L7/C\n7CgiIqZSIYt5Skpwbv8c/+XtID7e7DQiIqZSIYtpnJ9/hs3vx3dlR7OjiIiYToUspnF99gkA/iva\nm5xERMR8KmQxjXPbqUJu18HkJCIi5lMhi2mcn20jmJxy8raLIiIxToUs5iguxrHrq5NnV9v1MhQR\n0W9CMYVr+2fYDOPkGdYiIqJCFnM4du4AwP+zS01OIiJiDSpkMYVjz6k7PLVsZXISERFrUCGLKZy7\ndQ9kEZEfUiGLKRw5uwnUuxAjtZbZUURELMF5PhvNnj2bLVu24Pf7ueuuu2jbti3jxo0jEAiQnp7O\nnDlzcLvdoc4q0aKkBPu+7/Bd083sJCIillFhIW/cuJHdu3ezatUqCgsLufHGG+ncuTOZmZn07t2b\nefPmsWbNGjIzM8ORV6KA4+s92AyDQHMdrhYROa3CQ9YdO3ZkwYIFAKSmpuLxeMjOzqZnz54A9OjR\ng6ysrNCmlKjizDn1/nHLliYnERGxjgr3kB0OB4mJiQCsWbOG7t2788EHH5Qfok5LSyM/P/+cX6NO\nnUScTkcNxK056ekpZkcIG8vNenAvAMlXtiO5BrNZbs4Q0qzRJ1bmhNiatTLO6z1kgLfeeos1a9aw\nbNkyrrvuuvLHDcOo8HMLC0uqli5E0tNTyM8vMjtGWFhx1pRPPyceOJJ+EcEaymbFOUNFs0afWJkT\nYm/Wyjivs6zff/99lixZwrPPPktKSgqJiYl4vV4A8vLyyMjIqHxSiVmO3bsxEhMJNmhodhQREcuo\nsJCLioqYPXs2Tz/9NLVr1wagS5curFu3DoD169fTrZvOlpXzFAzi3LMbf/MWWsNaROQHKjxk/a9/\n/YvCwkJGjx5d/tjMmTOZPHlkjkFIAAANZklEQVQyq1atokGDBvTt2zekISV62A/sx+bxELjkErOj\niIhYSoWFPGDAAAYMGHDW48uXLw9JIIlujvIVunSGtYjID+mYoYRV+SVPLVTIIiI/pEKWsHLsPnlT\nCb/2kEVEzqBClrBy5OzCsNkINGtudhQREUtRIUtYOXbvItioMZxabEZERE5SIUvY2I4fw3E4j0Bz\nnWEtIvLfVMgSNqfPsPa3bGVyEhER61EhS9jokicRkZ+mQpawceacPMNalzyJiJxNhSxhU37IWnvI\nIiJnUSFL2DhydhGsVRsjPd3sKCIilqNClvAoKcHx9R4CrVqDzWZ2GhERy1EhS1g4v/gcWyCA74p2\nZkcREbEkFbKEhfOzbQD4r2hvchIREWtSIUtYuLZ9AqiQRUR+igpZwsL52TaMxCQCl7QwO4qIiCWp\nkCX0SkpwfLUTf9vLweEwO42IiCWpkCXknHt2YwsG8bf5mdlRREQsS4UsIac1rEVEKqZClpBznF4y\nUyt0iYj8JBWyhJwj59RNJbSGtYjIT1IhS8g5d+/GSEwiWL+B2VFERCxLhSyhFQzi2LMbf/NLwK6X\nm4jIT9FvSAkp+/592LxeHa4WEamACllCSu8fi4icHxWyhJTz9CVPKmQRkXNSIUtIOXbrkicRkfOh\nQpaQcuTswrDZCDRrbnYUERFLUyFLSDl37yLYqAnEx5sdRUTE0lTIEjK2o4XY8w/jb6nD1SIiFVEh\nS8hoyUwRkfOnQpaQKS9knWEtIlIhFbKEzOlLnlTIIiIVUyFLyJTfdlGHrEVEKqRClpBx5OwiWLs2\nRlqa2VFERCxPhSyh4fPh+PYbAi1agc1mdhoREctTIUtIOL79Bpvfj/+SFmZHERGJCCpkCYnT7x/r\nkicRkfOjQpaQ0F2eREQqR4UsIfH9JU86ZC0icj5UyBISjpxdGC4XgcZNzY4iIhIRVMhS8wwDx+7d\nBC5uBi6X2WlERCKCCllqnO3wYezHj+mELhGRSlAhS41z6oQuEZFKUyFLjTt9Uwldgywicv5UyFLj\nHLu/AiCgQhYROW8qZKlxrq1bMBwO/G0uNTuKiEjEUCFLzfJ6cX62DX/byyEx0ew0IiIRQ4UsNcr5\n2afYysrwXdnJ7CgiIhFFhSw1yrV5EwD+jleZnEREJLKcVyHv2rWLXr168eKLLwKQm5vLrbfeSmZm\nJqNGjaKsrCykISVyuD7OBsCnQhYRqZQKC7mkpISpU6fSuXPn8scWLlxIZmYmK1asoEmTJqxZsyak\nISVyODdvInBhfYINLzI7iohIRKmwkN1uN88++ywZGRnlj2VnZ9OzZ08AevToQVZWVugSSsSwH8rF\nkXcIf/ufg81mdhwRkYjirHADpxOn88zNPB4PbrcbgLS0NPLz80OTTiKKc9snAPjbtTc5iYhI5Kmw\nkCtiGEaF29Spk4jT6ajut6pR6ekpZkcIm7DNmvMlAEndu5Bkwr+vfqbRKVZmjZU5IbZmrYwqFXJi\nYiJer5f4+Hjy8vLOOJz9YwoLS6oULlTS01PIzy8yO0ZYhHPW1I82EgcUNGmFEeZ/X/1Mo1OszBor\nc0LszVoZVbrsqUuXLqxbtw6A9evX061bt6p8GYkmhoFr2ycEGjXGuOACs9OIiEScCveQt2/fzqxZ\nszhw4ABOp5N169Yxd+5cJkyYwKpVq2jQoAF9+/YNR1axMFt+PvaCfEqv/43ZUUREIlKFhXzZZZfx\nwgsvnPX48uXLQxJIIpNj7zcABJo1NzmJiEhk0kpdUiMce78FINCkqak5REQilQpZakR5ITe92Nwg\nIiIRSoUsNUJ7yCIi1aNClhph//YbDLud4EWNzI4iIhKRVMhSIxz79xGs3wBOreAmIiKVo0KW6gsE\nsOceJNigodlJREQilgpZqs1+OA9bIECgoQpZRKSqVMhSbfaDBwAI1lchi4hUlQpZqq28kLWHLCJS\nZSpkqTbHgf0ABLSHLCJSZSpkqTb7vu8ACDbSJU8iIlWlQpZq0ypdIiLVp0KWanPs/ZZgrdoYteuY\nHUVEJGKpkKV6DAPH3m+1ZKaISDWpkKVa7HmHsHm9BFXIIiLVokKWarF/+y2gm0qIiFSXClmqxXHw\n1CVPuqmEiEi1qJClWuwHTi0KonWsRUSqRYUs1WLP1SpdIiI1QYUs1eI4tYesVbpERKpHhSzVYs89\ngBEXh5GWZnYUEZGIpkKWanHs30+wfgOw2cyOIiIS0VTIUnUnTmAvyNclTyIiNUCFLFXm+G4vAIEm\nWsNaRKS6VMhSZY5vvwG0KIiISE1QIUuVOfaeKuSmTc0NIiISBVTIUmWnb7sY1G0XRUSqTYUsVWY/\n/R5yo8YmJxERiXwqZKkyx8GDBJOSMWrVNjuKiEjEUyFLldkP7j+5ZKauQRYRqTYVslRNSQn2wsKT\ni4KIiEi1qZClShynbioRaHiRyUlERKKDClmqxH7wIID2kEVEaogKWarEqF0bIz4e/5UdzY4iIhIV\nnGYHkMjkb3sFBXsOgMtldhQRkaigPWSpOpWxiEiNUSGLiIhYgApZRETEAlTIIiIiFqBCFhERsQAV\nsoiIiAWokEVERCxAhSwiImIBKmQRERELUCGLiIhYgApZRETEAlTIIiIiFmAzDMMwO4SIiEis0x6y\niIiIBaiQRURELECFLCIiYgEqZBEREQtQIYuIiFiACllERMQCnGYHCKdNmzYxatQopk+fTo8ePQDY\nuXMnDz/8MACtWrViypQpJiasOdOnT+fTTz/FZrMxceJELr/8crMj1ahdu3YxfPhwbrvtNm655RZy\nc3MZN24cgUCA9PR05syZg9vtNjtmjZg9ezZbtmzB7/dz11130bZt26ib1ePxMGHCBI4cOUJpaSnD\nhw+ndevWUTfnD3m9Xn77298yfPhwOnfuHJWzZmdnM2rUKFq0aAFAy5YtufPOO6Ny1rVr17J06VKc\nTif33HMPrVq1qvScMbOH/N1337F8+XI6dOhwxuPTpk1j4sSJrFy5kuLiYt59912TEtacTZs2sXfv\nXlatWsW0adOYNm2a2ZFqVElJCVOnTqVz587ljy1cuJDMzExWrFhBkyZNWLNmjYkJa87GjRvZvXs3\nq1atYunSpUyfPj0qZ33nnXe47LLLePHFF5k/fz4zZ86Myjl/aPHixdSqVQuI3tcvQKdOnXjhhRd4\n4YUXeOCBB6Jy1sLCQp588klWrFjBkiVL+Pe//12lOWOmkNPT03niiSdISUkpf6ysrIwDBw6U7z32\n6NGDrKwssyLWmKysLHr16gVA8+bNOXbsGMXFxSanqjlut5tnn32WjIyM8seys7Pp2bMnED0/R4CO\nHTuyYMECAFJTU/F4PFE5a58+fRgyZAgAubm51KtXLyrnPG3Pnj3k5OTwi1/8Aoje1++PicZZs7Ky\n6Ny5M8nJyWRkZDB16tQqzRkzhZyQkIDD4TjjscLCQlJTU8s/TktLIz8/P9zRalxBQQF16tQp/7hu\n3bpRMddpTqeT+Pj4Mx7zeDzlh4Oi5ecI4HA4SExMBGDNmjV07949amcFGDhwIGPGjGHixIlRPees\nWbOYMGFC+cfRPGtOTg5Dhw7l5ptv5sMPP4zKWffv34/X62Xo0KFkZmaSlZVVpTmj8j3kl19+mZdf\nfvmMx0aOHEm3bt3O+XnRuopotM71U6Jx3rfeeos1a9awbNkyrrvuuvLHo23WlStXsmPHDsaOHXvG\nbNE056uvvkq7du1o1KjRjz4fTbM2bdqUESNG0Lt3b/bt28fgwYMJBALlz0fTrEePHuWJJ57g4MGD\nDB48uEqv36gs5P79+9O/f/8Kt6tbty5Hjx4t/zgvL++Mw6CRKiMjg4KCgvKPDx8+THp6uomJQi8x\nMRGv10t8fHzU/BxPe//991myZAlLly4lJSUlKmfdvn07aWlp1K9fnzZt2hAIBEhKSoq6OQE2bNjA\nvn372LBhA4cOHcLtdkflzxSgXr169OnTB4DGjRtzwQUX8Pnnn0fdrGlpabRv3x6n00njxo1JSkrC\n4XBUes6YOWT9Y1wuF82aNWPz5s0ArF+/vsK96EhwzTXXsG7dOgC++OILMjIySE5ONjlVaHXp0qV8\n5mj5OQIUFRUxe/Zsnn76aWrXrg1E56ybN29m2bJlwMm3XEpKSqJyToD58+fzyiuvsHr1avr378/w\n4cOjdta1a9fy3HPPAZCfn8+RI0fo169f1M3atWtXNm7cSDAYpLCwsMqv35i529OGDRt47rnn+Prr\nr6lbty7p6eksW7aMnJwcHnzwQYLBIFdccQX333+/2VFrxNy5c9m8eTM2m42HHnqI1q1bmx2pxmzf\nvp1Zs2Zx4MABnE4n9erVY+7cuUyYMIHS0lIaNGjAjBkzcLlcZkettlWrVrFo0SIuvvji8sdmzpzJ\n5MmTo2pWr9fLpEmTyM3Nxev1MmLECC677DLGjx8fVXP+t0WLFtGwYUO6du0albMWFxczZswYjh8/\njs/nY8SIEbRp0yYqZ125cmX5mdTDhg2jbdu2lZ4zZgpZRETEymL6kLWIiIhVqJBFREQsQIUsIiJi\nASpkERERC1Ahi4iIWIAKWURExAJUyCIiIhagQhYREbGA/w/uARO0LWb4DgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1234998990>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW9xvHPrJlsEIgJArIIsiko\noGBBQBH1CvXW5cpF4lKrokhB8MomIlUpIKssKlgRrFoEjZbSagUXqBsEcceiJCAYIISAAbLMJJmZ\nc/8AohQkZJk5Z2ae9+vlq2ZyMvN8ncDTc+ac37EZhmEgIiIiprKbHUBERERUyCIiIpagQhYREbEA\nFbKIiIgFqJBFREQsQIUsIiJiAc5wvEhBQVE4Xua0NWiQQGFhqdkxwiJWZo2VOUGzRqNYmRNia9a0\ntORqbR+Te8hOp8PsCGETK7PGypygWaNRrMwJsTVrdcVkIYuIiFiNCllERMQCVMgiIiIWoEIWERGx\nABWyiIiIBaiQRURELECFLCIiYgFVLgySlZXFyJEjadOmDQBt27blrrvuYuzYsQQCAdLS0pg5cyZu\ntzvkYUVERKLVaa3U1b17d+bPn1/59YMPPkhGRgb9+/dnzpw5ZGZmkpGREbKQIiIi0a5Gh6yzsrLo\n168fAH379mX9+vV1GkpERCTWnNYeck5ODkOHDuXQoUMMHz4cr9dbeYg6NTWVgoKCU/58gwYJllsu\nrbprjEayWJk1VuYEzVqnDh+Gzz6DL7+EsjJwOI7/Jy4Ozj8fOncGlytkMfSeSpWF3LJlS4YPH07/\n/v3Jzc3ltttuIxAIVH7fMIwqX8RqC4mnpSVb7oYXoRIrs8bKnKBZa8v51Re4PvoQ55ef4fzyC5zb\nck7r54z4eCou6IK/28VUHP3HSE2tk0x6T6NTdf+PR5WF3KhRIwYMGABA8+bNOeOMM/j666/x+Xx4\nPB7y8/NJT0+vWVoRkXCoqCDuH38j/k8LcX36SeXDwXr1Ke99Kf4LuuDvdD5GUhIEghAIQDCALRDA\nVlKC84vPcX2ShStrPe4NHwNgOJ2U3TCQ0mH3ETj3PLMmkyhSZSGvWrWKgoIC7rzzTgoKCjhw4AA3\n3HADq1ev5tprr2XNmjX07t07HFlFRKrFtn8/8S8uxbN0MY69eRg2G2VXXU3ZDQOp6NyV4NmtwGar\n+oluvu3I8xUdxvnZp7g+ySJu5Wt4XnkZzysvU9bvSrzDR1HRs9fpPZ/ISdiMKo45FxcXM3r0aA4f\nPkxFRQXDhw+nQ4cOjBs3jrKyMpo0acK0adNwneKzFasdnoi1QyaxMGuszAma9bQEg8Q/8zSJ0x7D\n5vMRTErGN/hmvHfeQ7BV67oJFwzifmc18U/Oq9xrrujSleIpM/Bf1L1aT6X3NDpV95B1lYVcF6z2\nHz/WfiFiYdZYmRM0a1Xse/NIHj4U9/trCZ6RRun9o/HddDNGcr0QpQTnpo0kPDUf95t/B4eDkoce\nwXvvcLCf3oUsek+jU3ULWSt1iUjUcL/5Dxpc+ivc76+l7Mr/4sd/bcA75N6QljGA/6LuHF76Eode\n+zvBhqkkPTqRercOwvbjgZC+rkQXFbKIRD6/n6TRo6h/ewY2r5eix2dz+KVXMNLSwhqjolcfCt/7\niPJL+xL39moaXN4L5wat0yCnR4UsIpHNMEj+vxHEv7AE/3mdKHz7fXx3DDHt5CojPZ1DK/5KyYRJ\n2PfmkXLDr3G9944pWSSyqJBFJKIlPvownuV/oaJLVw7+/S0C7dqbHQnsdkpHjebQq38Dh4N6d96G\n8+svzU4lFqdCFpGIFb9gLglPz8ffpi2Hlr2GkWStFaAqel/K4acXYystoV7GQOy7cs2OJBamQhaR\niOT5ywskTZ5EoElTDq34a52tmlXXyv/7WkoenYIjfy/1B/8PtoOFZkcSi1Ihi0jEcXyzmaTRIwk2\nbMihV1YSPKuZ2ZFOyTt0OKV334vzu2+pd8etEAyaHUksSIUsIpHFMEiaMAZbIEDRU38i0Lad2YlO\nS8mjUym76mrcH75P3KvLzY4jFqRCFpGIErfyNdzrP6Ls6gGU97vK7Dinz+Gg+PHZGB4PiVMfg1Jr\n3XRHzKdCFpHIUVxM4iMTMeLiKH5smtlpqi14VjO89/weR94eEhY9aXYcsRgVsohEjMR5s3Hk7aH0\n9/cRbHm22XFqpPS++wmekUbC/Cew5+81O45YiApZRCKCfc9u4hcuIND0LErve8DsODVmJNejZNxD\n2EpLSJg+xew4YiEqZBGJCPELF2ArL6d0zIOQkGB2nFrx3Xwb/lat8by6HIqLzY4jFqFCFhHLsx04\nQPyLzxNo0hTfjYPMjlN7Tidl1/0PtrIy3GvfNTuNWIQKWUQsL37xImylpXiHjQC32+w4daK8/68B\niPvnP0xOIlahQhYRS7MVFxH/3DMEGzbEe/NvzY5TZ/zndybQpCnud1ZDRYXZccQCVMgiYmmePy/F\nfvAg3iH3QmKi2XHqjs1G+dUDsB88CB98YHYasQAVsohYV1kZ8YueJJiYhPfOu81OU+fKrj5y2JrV\nq80NIpagQhYR6/rzn3Hk78V3+50YKQ3MTlPnKnr1oXTIULj6arOjiAU4zQ4gInJSfj/MmIERF4d3\n6O/NThMaTiclU2aQkJYMBUVmpxGTaQ9ZRCwp7u8rYds2fINuJtjoTLPjiIScCllErCcYJGHeHLDb\nKR0+0uw0ImGhQhYRy4l75WWc/94MgwdH7JrVItWlQhYRS7EdPkTS5D9gxMfD1KlmxxEJGxWyiFhK\nwqzp2Av2UTryAWje3Ow4ImGjQhYRy3Bs/Y74xYsItGhJ6bD7zI4jElYqZBGxBsMgacJYbH4/xZMf\nB4/H7EQiYaVCFhFLiPvb67jfX0v55VdQ/l/9zY4jEnYqZBExne3QQRInjsfweCiaNgtsNrMjiYSd\nCllETJc49TEc+/IpvX8MwbNbmR1HxBQqZBExlfOzTXiefw5/23aU/l6LgEjsUiGLiHn8fpJGj8Jm\nGBTPnAtut9mJREyjQhYR08Q/uwjX5q/wDr6Fih6XmB1HxFQqZBExhX1XLonTpxBs2JCSSZPNjiNi\nOt1+UURMkfTQOGylJRRNm4mRmmp2HBHTaQ9ZRMLO/dabxP3zH5T3uISym242O46IJaiQRSS8iotJ\nenA0hstF8YwndM2xyFEqZBEJq8SZ03Ds3kXp70cSaNfe7DgilqFCFpGwcWz+mvg/PX3k5hH3jzE7\njoilqJBFJDyCQZLHjMQWCFA0fQ7Ex5udSMRSVMgiEhaeF5bi+nQTvutuoOLyK8yOI2I5KmQRCTlb\nfj6Jf3yEYHI9SiY/bnYcEUtSIYtIrWzbls3y5X+hvLz8F7dJ+sOD2A8fomTCJIKNzgxjOpHIoUIW\nkRrzer0MHnwj9913L/369WLDho9P2Ma17j08r2dS0aUrvtvvNCGlSGRQIYtIjaxZ80/GjBnFjh3f\nc+65Hdm69Tt+85urGTlyGAcOHDiykc9H0rj/w7DbKZ41DxwOc0OLWJiWzhSRasvK2sAttwwCID4+\nnuef/wsHDuxnzJj7efnll1i9+k0eeWQKv/t+O87vt1N6z+/xd7rA5NQi1qY9ZBGploqKCsaM+em+\nxV6vlwcfHM2FF3ZjzZp1PPbYVHy+Mu67715+PXcWm9PSKR03wcTEIpFBhSwi1bJw4ZN8++0WAJo1\naw5Aj6O3TnQ6nQwdOpyPPtzIbxo25H3DoOuPB5i64Am8Xq9pmUUigQpZRE7bzp07mDVrGjabjbg4\nD7m5P9CuXXuGDh1+3HatPvqAv/34I5ldupJ+ZmOeeGIWl176K9aufdek5CLWd1qF7PP5uOKKK3j9\n9dfJy8vj1ltvJSMjg5EjR57yUgcRiS7dup2Pz+fDMAxSUlIAmDlzLm63G4Bvdxby3eadJD3yEEZC\nApctfoEPPtjIsGH3kZv7A4MGXc/dd99Ofv5eM8cQsaTTKuSFCxdSv359AObPn09GRgbLli2jRYsW\nZGZmhjSgiFhDWVlZ5b/Hx8eTn7+XjIxb+dWvelY+/rcPv+fvr2/AfuAAJWMmEGzWnKSkJB555I+8\n/fb7XHhhN1aufJ1Ondoyf/4cM8YQsawqC3nbtm3k5ORw2WWXAZCVlUW/fv0A6Nu3L+vXrw9pQBGx\nBpvNRuPGTYAjJ3KlpqYyadJjwJE94+l/+Yzvcg/yb3ca4387h8/7Dz7u5zt0OJc33ni78uuPP/4w\nfOFFIkCVlz1Nnz6dhx9+mJUrVwJH/iAeOzyVmppKQUFBaBOKiCUsXLiAvLw93Hrr7XTrdjHt2rWn\nYcNUANq3aECyCx5+4XMAbhlwHo1apVX+7P79+7nyyj7ExXkA6NDhPF58cUX4hxCxsFMW8sqVK+nc\nuTPNmjU76fcNwzitF2nQIAGn01oLAqSlJZsdIWxiZdZYmRPCP+v27duZPXs6jRo1Yv78Jyo/P/65\nt+evYPD6d+HCC/m6/jV0/FnG0aOHs3v3rsqv+/XrS5MmDU/rtWPlfY2VOSG2Zq2OUxbyunXryM3N\nZd26dezduxe3201CQgI+nw+Px0N+fj7p6elVvkhhYWmdBa4LaWnJFBQUmR0jLGJl1liZE8I/q2EY\nDBlyDz6fj7lzn6KiwnHC69t37qDZX//CJfnf8OOfp7Nxb0XlNh9++D4vvPACZ57ZmL178wAoKPjx\ntGaIlfc1VuaE2Ju1Ok5ZyHPnzq389wULFtC0aVM+//xzVq9ezbXXXsuaNWvo3bt3zZKKSERYteqv\nvPfeO1x6aV+uv/7GEzcwDJLGP0Dvb9Zx+OlnMVIa0O3oDnRZWRljx94PwI8/HsBms+HxeBg7VguF\niPynal+HPGLECFauXElGRgYHDx7kuuuuC0UuEbGAw4cPMXHieOLi4pg+fQ42m+2Ebdx/X0ncu29T\n3qcvZf/zv8d974knZpKTk02zZs0oLy/HMAzGjn2ockEREfnJaa9lPWLEiMp/X7p0aUjCiIh1GIbB\ntGmTyc/fy7hxD9GqVesTtrEVHSbpoXEYcXEUz5gNPyvsgwcLmTNnBgC5ubnAkZO57r773vAMIBJh\ndHMJETnBunXvcfvtN1NaWsLZZ7di+PBRJ90uYdpkHPl7KRk7gUCrc477XnJyvRO2nz17Hi6XKySZ\nRSKdls4UkeOUlpbywAP3UVpaAsCBA/vJzt56wnbOLz4jfsmz+FufQ+mI+0/4vsPhqNwbTk9vxP/9\n31guuqh7aMOLRDDtIYvIcebMmUFu7g8A1K+fwqFDB9m+PYeOHTv9tFEgQNKY+7EFgxTPnAtxcSc8\nz1dffcHixc/QuvU5rFu3nriTbCMiP1Ehi0ilLVv+zVNPzcNms5GQkMihQwe58MKLuOaaa4/bLn7J\nn3B9+Tm+gTdR0avPCc8TCAQYPXokwWCQGTOeUBmLnAYdshYRAILBIGPGjCIQCGAYBh6PB4fDwcyZ\n87Dbf/qrwp63h4RpfySYkkLxI1NO+lzPP7+YL774nBtvHETv3peGawSRiKZCFhEAHnlkIhs3bgDg\nzDMbc+DAfu6+e9jxh6qBpIfGYS8uouThxzDS0k54nr1785gy5TFSUlJ49NGpYckuEg1UyCICwGWX\nXV7573v35tG06VmMGfPgcdu4336LuH/8jYruv8J3820nfZ6JE8dTXFzEww8/RtpJCltETk6fIYsI\nAB988C8Aunf/Fbm5PzB79nySkpJ+2qCkhKTxozGcTopmzoWfHcbet28ff/rT0zRteharVv2Vbt0u\n5uZfKGwROTkVsojw448HWLToSex2O9Onz+G88zqesE3inBk4cn+gdMT9BDqce9z3Ro8eyVtvvQGA\n3W5n6tSZx33uLCJV058YESE5uR5XXvlfBINBrr66L7NnT6esrKzy+44t/yZ+4QICzVtQ8sC44372\nn/98g7feeoO0tCM3mgkGg2zblh3W/CLRQIUsIrhcLv7855dZvPjPpKQ0YPr0KfTt25OPPvoAgkGS\nx4zC5vdTPG0mJCRU/lxxcTETJozB6XRW3jwiJSWFPn36mjiNSGRSIYsIADabjd/85no+/ngTd911\nD9u25XD99b9m1H9fxcGNGyi75lrKr7z6uJ+ZOXMau3fvolGjRpWXS/3hD3/kjDPOMGkKkcilQhaR\n4yQn12Pq1JmsXr2W8889j2WfbKQ9sOjCbgSDwcrt3n77LRYuXADA7t27gSMnhA0efIsZsUUingpZ\nRE6qc+eufHRuR+YC5W43ox6dyLXX9ufbb7cAsHLl68dt73A4mDVrnk7mEqkh/ckRkZNyffg+SZkr\nGHZBFz7a8DnXXHMtWVnrufzyS/jjHx9hxown+NWvelRuP2zYfbRv38G0vCKRToUsIicqKyNpzCgM\nu53iWXNpfFYzlix5kb/85RUaN27C/PlzuOSSi9iwYT3nndeJ559fxoMPPmx2apGIpkIWkRMkLHgC\n57YcvHcMwX9Bl8rHr7zyat5/P4vhw0exb18+NpuNJ55YwIAB1+B0alkDkdrQnyAROY5jew4J82YT\nOLMxpSfZ601MTGTSpMfIyLiVwsIf6dy5qwkpRaKPCllEfmIYJI19AFtZGcVTpmMk1/vFTc85p00Y\ng4lEPx2yFpFKca+9gvv9tZRdcRXl/3EPZBEJLRWyiABgO1hI0qQJGPHxFE+bBTab2ZFEYooKWUQA\nSPzjo9j3F1DywDiCLVqaHUck5qiQRQTnJ1nEv7AEf/sOeO8dYXYckZikQhaJdRUVJI8eBUDRjLng\ncpkcSCQ2qZBFYlz8M0/j3PIN3ptvw/+zlbdEJLxUyCIxzJ77A4mzphFMTaXk4UfNjiMS03Qdskis\nMgySJozBVlpK0fQ5GA1TzU4kEtO0hywSo9xv/oO41f+kvFcfyv53sNlxRGKeClkkBtmKi0h6aCyG\n203xjCd0zbGIBaiQRWJQ4uQ/4Nizm9IR9xPQEpgilqBCFokxrg0fE790Mf527SkdNdrsOCJylApZ\nJJZ4vSSN+j2GzUbRE09CXJzZiUTkKBWySAxJnDkN5/ZteO8ehv+i7mbHEZGfUSGLxAjnJ1nEPz2f\nQIuWlIyfaHYcEfkPKmSRGGDfvYv6t98MQNHcpyAx0eREIvKftDCISLQrKaHerTdhL9hH8ZTpVFzS\n2+xEInIS2kMWiWbBIPWG34Nr81d4b/0d3ruGmp1IRH6B9pAldgSD2PfsxrH1O5w5W3Fs3YojZyuO\n3bswEhIwEpMwkpMJJtfDSEoimN6Iip69qLi4B8THm52+RhJmTCHujVWU9+xF8bSZWgBExMJUyBLd\nDAPnpo14Xn6JuFUrsR8+dPy3bTaC6Y2wHzqIragIWyBw/M/PnYXh8VDRvQfll/al4rK++M/rBHaL\nH1wqLydp4jjin3+OQIuWHF7yIrjdZqcSkVNQIUtUsu3bh+fV5XhefhHn1u8ACDRpiu/yfgTatCPQ\npi3+Nu0ItGr9096vYYDPd6SYi4tw7NiO+1/rcP9rLe73j/zDZAg0PYuyGwfhG5RhyVWu7Hl7qHfn\nbbg2bcTf4TwO/XmZbhwhEgFUyBJVbIU/kvjow3heeRmb34/hduO77gZ8GbdR0ftScDhO8cM2iI/H\niI/HSE8n2Ko1FZdfSQlHCt79/lrc697D/c83SJg3m4R5s6m48CJ8AwdTdv3/YDRoGK4xf5Fr/UfU\nu+u32Av24bthIEWz5+uMapEIoUKWqOH++99IHv8A9oJ9+Nu1x3v7nZTdMLBOitJIT6fsxkGU3TgI\nvF7i3noDz4pluNa9R/Knm0ia9CDlV16Nb1AG5f2uBJerDiY6fbZDB4lf9BQJ82aDYVD8x8fxDrlX\nnxmLRBAVskQ8W34+3Ps76r/2GkZcHMUTH8U7bAQ4Q/TrHR9P2fU3Unb9jdjz9xKX+QqeV5YR98Yq\n4t5YRTA1Fd8NAyn738H4z+8c0lK0Ff5I/J8WEv/sIuyHDxFMS+fws89T0bNXyF5TRELDZhiGEeoX\nKSgoCvVLVEtaWrLlMoVKtM/qfvMfJI8ahv3gQSou7kHRE0+a87muYeDc/BVxr7yM57VXsO/fD0Cg\nRUvKL738yAlhvftgpDSo9UulpSWzf8v3xP/paeIXP4O9uIhgaiql996H7467MJKSa/0aVhHtv7/H\nxMqcEHuzVocKOcpF86zuVX+l3j13QJwH24zpFNx4izXOfq6owL32HeJeWY577bvYiw4DYNjt+Dt3\nobxPX/wXdCHQoQOBFmef+nPto2xFh3Ft+BjXhx+QkPURxuefYzMMgmnplP5+JN7f3hGVnxVH8+/v\nz8XKnBB7s1aHDllLRDpWxkZ8AodWvE6DAVeAVf6Qu1yUX9Wf8qv6g9+P8/NPcf9rLa731+HatBHX\nZ59WbmrEx+Nv255Ah3MJtDwbKiqweb3YvKXYvF7wenHk7sT55Rc/XZLlclFxcQ/K//tavDf/FhIS\nTBpUROqSClkizn+Wsb/bxWZH+mVOJ/5uFx/JOHo8tuIinBs34Pz3v3Fu+QbHt1twfvtvXF9+/otP\nYTid+LteRHmv3lRc0oeU/v04VBL4xe1FJDKpkCWiuP+xKnLK+CSMpGQqLr+Sisuv/OlBvx/Hju+x\n/7ATPJ4jl13FJ2B4PEf+t3598Hh+2j4hAUoscjRAROqMClkihj33B5JHDMXwxEdkGf8ip5PAOW0s\nuciIiISPClkig2GQPGYU9pJiDs9fGD1lLCJyVJWF7PV6GT9+PAcOHKCsrIxhw4bRvn17xo4dSyAQ\nIC0tjZkzZ+LWOrkSQnGvLsf93juUX3Y5ZYMyzI4jIlLnqizktWvX0rFjR4YMGcLu3bu544476Nq1\nKxkZGfTv3585c+aQmZlJRob+kpTQsBUUkPTweIyERIpmzdPqUyISlaq8aHPAgAEMGTIEgLy8PBo1\nakRWVhb9+vUDoG/fvqxfvz60KSWmJU0ci72wkJKHJhFs3sLsOCIiIXHanyHfdNNN7N27l0WLFvG7\n3/2u8hB1amoqBQUFIQsosc2xPQfPX1+joktXvHfcbXYcEZGQOe1CXr58OVu2bGHMmDH8fHGv01no\nq0GDBJzOqlcjCqfqrqASySJ61rmZALhGP0DamSmn3DSi56wmzRp9YmVOiK1Zq6PKQt68eTOpqak0\nbtyYDh06EAgESExMxOfz4fF4yM/PJz09/ZTPUVhYWmeB60KsLd0WsbMGAjRcshRbvfoc6HXqlbgi\nes5q0qzRJ1bmhNibtTqq/Ax506ZNLFmyBID9+/dTWlpKz549Wb16NQBr1qyhd+/eNYgqcmrude/i\n2JtH2Q03Qny82XFEREKqyj3km266iYceeoiMjAx8Ph+TJk2iY8eOjBs3jhUrVtCkSROuu+66cGSV\nGONZ9hIAvsG3mJxERCT0qixkj8fD7NmzT3h86dKlIQkkAmA7fAj3W2/g73Au/s5dzY4jIhJyFrhX\nnciJnJs+wVZRQdl/DdB1xyISE1TIYkmuT7IA8HfrbnISEZHwUCGLJbk2bQSg4sJuJicREQkPFbJY\nTyCA89NN+M9pg9Ew1ew0IiJhoUIWy3F89y324iL8F+lwtYjEDhWyWI7ri88AHa4WkdiiQhbLcWz9\nDgB/+3NNTiIiEj4qZLEcx7ZsAAJt2picREQkfFTIYjmO7K0EGzbUCV0iElNUyGIt5eU4du4gcE5b\ns5OIiISVClksxbHje2yBAP5zdLhaRGKLClksxZG9FYBAaxWyiMQWFbJYiiPnaCG3bWdyEhGR8FIh\ni6U4c46eYX3OOSYnEREJLxWyWIojZyuGy0WgeUuzo4iIhJUKWazDMHBkZxM4uxW4XGanEREJKxWy\nWIatoAD74UM6oUtEYpIKWSzDeeyELl3yJCIxSIUslnHskid/Gy0KIiKxR4UsluGoPMNae8giEntU\nyGIZDh2yFpEYpkIWy3BmZxNMS8dIaWB2FBGRsFMhizX4fNhzd2oNaxGJWSpksQTH9m3YDEN3eRKR\nmKVCFkuo/Py4jfaQRSQ2qZDFEpzH7vKkS55EJEapkMUSjl3y5NcqXSISo1TIYgmOnGyMuDiCzZqb\nHUVExBQqZDGfYeDIySbQqjU4HGanERExhQpZTGffm4e9pFhnWItITFMhi+l+WsNanx+LSOxSIYvp\nflrDWnvIIhK7VMhiOq1hLSKiQhYLcOouTyIiKmQxmWHg+HYLgcZNMJKSzU4jImIaFbKYyr57F469\nefi7XmR2FBERU6mQxVSuT7IAqLiou8lJRETMpUIWUzk3bQSgotvFJicRETGXCllM5fokC8Plwn/+\nBWZHERExlQpZzFNainPz1/jP7wwej9lpRERMpUIW0zi//gqb30/FRd3MjiIiYjoVspjG9dXnAPgv\n6GJyEhER86mQxTTOL44WcueuJicRETGfCllM4/zqC4JJyUduuygiEuNUyGKO4mIcW787cna1Xb+G\nIiL6m1BM4dr8FTbDOHKGtYiIqJDFHI5vtwDgP/c8k5OIiFiDCllM4dh29A5PbduZnERExBpUyGIK\nZ7bugSwi8nMqZDGFIyebQKMzMerVNzuKiIglOE9noxkzZvDpp5/i9/u555576NSpE2PHjiUQCJCW\nlsbMmTNxu92hzirRorQUe+4PVFzS2+wkIiKWUWUhb9iwgezsbFasWEFhYSHXX389PXr0ICMjg/79\n+zNnzhwyMzPJyMgIR16JAo7t27AZBoHWOlwtInJMlYesu3Xrxrx58wCoV68eXq+XrKws+vXrB0Df\nvn1Zv359aFNKVHHmHP38uG1bk5OIiFhHlXvIDoeDhIQEADIzM+nTpw8ffvhh5SHq1NRUCgoKTvkc\nDRok4HQ66iBu3UlLSzY7QthYbtY9OwFIuqgzSXWYzXJzhpBmjT6xMifE1qzVcVqfIQO88847ZGZm\nsmTJEq666qrKxw3DqPJnCwtLa5YuRNLSkikoKDI7RlhYcdbkL7/GAxxIO4tgHWWz4pyholmjT6zM\nCbE3a3Wc1lnWH3zwAYsWLeLZZ58lOTmZhIQEfD4fAPn5+aSnp1c/qcQsR3Y2RkICwSZNzY4iImIZ\nVRZyUVERM2bM4JlnniElJQWAnj17snr1agDWrFlD7946W1ZOUzCIc1s2/tZttIa1iMjPVHnI+s03\n36SwsJBRo0ZVPvb4448zceIgn7UuAAANZUlEQVREVqxYQZMmTbjuuutCGlKih333LmxeL4FzzjE7\nioiIpVRZyIMGDWLQoEEnPL506dKQBJLo5qhcoUtnWIuI/JyOGUpYVV7y1EaFLCLycypkCStH9pGb\nSvi1hywichwVsoSVI2crhs1GoFVrs6OIiFiKClnCypG9lWCz5nB0sRkRETlChSxhYzt8CMe+fAKt\ndYa1iMh/UiFL2Bw7w9rftp3JSURErEeFLGGjS55ERH6ZClnCxplz5AxrXfIkInIiFbKETeUha+0h\ni4icQIUsYePI2UqwfgpGWprZUURELEeFLOFRWopj+zYC7dqDzWZ2GhERy1EhS1g4v/kaWyBAxQWd\nzY4iImJJKmQJC+dXXwDgv6CLyUlERKxJhSxh4fric0CFLCLyS1TIEhbOr77ASEgkcE4bs6OIiFiS\nCllCr7QUx3ff4u90PjgcZqcREbEkFbKEnHNbNrZgEH+Hc82OIiJiWSpkCTmtYS0iUjUVsoSc49iS\nmVqhS0TkF6mQJeQcOUdvKqE1rEVEfpEKWULOmZ2NkZBIsHETs6OIiFiWCllCKxjEsS0bf+tzwK5f\nNxGRX6K/ISWk7Ltysfl8OlwtIlIFFbKElD4/FhE5PSpkCSnnsUueVMgiIqekQpaQcmTrkicRkdOh\nQpaQcuRsxbDZCLRqbXYUERFLUyFLSDmztxJs1gI8HrOjiIhYmgpZQsZ2sBB7wT78bXW4WkSkKipk\nCRktmSkicvpUyBIylYWsM6xFRKqkQpaQOXbJkwpZRKRqKmQJmcrbLuqQtYhIlVTIEjKOnK0EU1Iw\nUlPNjiIiYnkqZAmNigocO74n0KYd2GxmpxERsTwVsoSEY8f32Px+/Oe0MTuKiEhEUCFLSBz7/FiX\nPImInB4VsoSE7vIkIlI9KmQJiZ8uedIhaxGR06FClpBw5GzFcLkING9pdhQRkYigQpa6Zxg4srMJ\nnN0KXC6z04iIRAQVstQ527592A8f0gldIiLVoEKWOufUCV0iItWmQpY6d+ymEroGWUTk9KmQpc45\nsr8DIKBCFhE5bSpkqXOuzz7FcDjwdzjP7CgiIhFDhSx1y+fD+dUX+DudDwkJZqcREYkYKmSpU86v\nvsRWXk7FRd3NjiIiElFUyFKnXJs2AuDvdrHJSUREIstpFfLWrVu54ooreOmllwDIy8vj1ltvJSMj\ng5EjR1JeXh7SkBI5XJ9kAVChQhYRqZYqC7m0tJTJkyfTo0ePysfmz59PRkYGy5Yto0WLFmRmZoY0\npEQO56aNBM5sTLDpWWZHERGJKFUWstvt5tlnnyU9Pb3ysaysLPr16wdA3759Wb9+fegSSsSw783D\nkb8Xf5cLwWYzO46ISERxVrmB04nTefxmXq8Xt9sNQGpqKgUFBaFJJxHF+cXnAPg7dzE5iYhI5Kmy\nkKtiGEaV2zRokIDT6ajtS9WptLRksyOETdhmzfk3AIl9epJown9fvafRKVZmjZU5IbZmrY4aFXJC\nQgI+nw+Px0N+fv5xh7NPprCwtEbhQiUtLZmCgiKzY4RFOGet9/EG4oD9LdphhPm/r97T6BQrs8bK\nnBB7s1ZHjS576tmzJ6tXrwZgzZo19O7duyZPI9HEMHB98TmBZs0xzjjD7DQiIhGnyj3kzZs3M336\ndHbv3o3T6WT16tXMmjWL8ePHs2LFCpo0acJ1110XjqxiYbaCAuz7Cyi7+tdmRxERiUhVFnLHjh15\n8cUXT3h86dKlIQkkkcmx83sAAq1am5xERCQyaaUuqROOnTsACLRoaWoOEZFIpUKWOlFZyC3PNjeI\niEiEUiFLndAesohI7aiQpU7Yd3yPYbcTPKuZ2VFERCKSClnqhGNXLsHGTeDoCm4iIlI9KmSpvUAA\ne94egk2amp1ERCRiqZCl1uz78rEFAgSaqpBFRGpKhSy1Zt+zG4BgYxWyiEhNqZCl1ioLWXvIIiI1\npkKWWnPs3gVAQHvIIiI1pkKWWrPn/gBAsJkueRIRqSkVstSaVukSEak9FbLUmmPnDoL1UzBSGpgd\nRUQkYqmQpXYMA8fOHVoyU0SkllTIUiv2/L3YfD6CKmQRkVpRIUut2HfsAHRTCRGR2lIhS6049hy9\n5Ek3lRARqRUVstSKfffRRUG0jrWISK2okKVW7HlapUtEpC6okKVWHEf3kLVKl4hI7aiQpVbsebsx\n4uIwUlPNjiIiEtFUyFIrjl27CDZuAjab2VFERCKaCllqrqQE+/4CXfIkIlIHVMhSY44fdgIQaKE1\nrEVEakuFLDXm2PE9oEVBRETqggpZasyx82ght2xpbhARkSigQpYaO3bbxaBuuygiUmsqZKkx+7HP\nkJs1NzmJiEjkUyFLjTn27CGYmIRRP8XsKCIiEU+FLDVm37PryJKZugZZRKTWVMhSM6Wl2AsLjywK\nIiIitaZClhpxHL2pRKDpWSYnERGJDipkqRH7nj0A2kMWEakjKmSpESMlBcPjwX9RN7OjiIhEBafZ\nASQy+TtdwP5tu8HlMjuKiEhU0B6y1JzKWESkzqiQRURELECFLCIiYgEqZBEREQtQIYuIiFiACllE\nRMQCVMgiIiIWoEIWERGxABWyiIiIBaiQRURELECFLCIiYgEqZBEREQuwGYZhmB1CREQk1mkPWURE\nxAJUyCIiIhagQhYREbEAFbKIiIgFqJBFREQsQIUsIiJiAU6zA4TTxo0bGTlyJFOnTqVv374AfPvt\ntzzyyCMAtGvXjkcffdTEhHVn6tSpfPnll9hsNiZMmMD5559vdqQ6tXXrVoYNG8btt9/OLbfcQl5e\nHmPHjiUQCJCWlsbMmTNxu91mx6wTM2bM4NNPP8Xv93PPPffQqVOnqJvV6/Uyfvx4Dhw4QFlZGcOG\nDaN9+/ZRN+fP+Xw+rrnmGoYNG0aPHj2ictasrCxGjhxJmzZtAGjbti133XVXVM66atUqFi9ejNPp\n5L777qNdu3bVnjNm9pB/+OEHli5dSteuXY97fMqUKUyYMIHly5dTXFzMv/71L5MS1p2NGzeyc+dO\nVqxYwZQpU5gyZYrZkepUaWkpkydPpkePHpWPzZ8/n4yMDJYtW0aLFi3IzMw0MWHd2bBhA9nZ2axY\nsYLFixczderUqJx17dq1dOzYkZdeeom5c+fy+OOPR+WcP7dw4ULq168PRO/vL0D37t158cUXefHF\nF3n44YejctbCwkKeeuopli1bxqJFi3j33XdrNGfMFHJaWhpPPvkkycnJlY+Vl5eze/fuyr3Hvn37\nsn79erMi1pn169dzxRVXANC6dWsOHTpEcXGxyanqjtvt5tlnnyU9Pb3ysaysLPr16wdEz/sI0K1b\nN+bNmwdAvXr18Hq9UTnrgAEDGDJkCAB5eXk0atQoKuc8Ztu2beTk5HDZZZcB0fv7ezLROOv69evp\n0aMHSUlJpKenM3ny5BrNGTOFHB8fj8PhOO6xwsJC6tWrV/l1amoqBQUF4Y5W5/bv30+DBg0qv27Y\nsGFUzHWM0+nE4/Ec95jX6608HBQt7yOAw+EgISEBgMzMTPr06RO1swLcdNNNjB49mgkTJkT1nNOn\nT2f8+PGVX0fzrDk5OQwdOpTBgwfz0UcfReWsu3btwufzMXToUDIyMli/fn2N5ozKz5BfffVVXn31\n1eMeGzFiBL179z7lz0XrKqLROtcvicZ533nnHTIzM1myZAlXXXVV5ePRNuvy5cvZsmULY8aMOW62\naJpz5cqVdO7cmWbNmp30+9E0a8uWLRk+fDj9+/cnNzeX2267jUAgUPn9aJr14MGDPPnkk+zZs4fb\nbrutRr+/UVnIAwcOZODAgVVu17BhQw4ePFj5dX5+/nGHQSNVeno6+/fvr/x63759pKWlmZgo9BIS\nEvD5fHg8nqh5H4/54IMPWLRoEYsXLyY5OTkqZ928eTOpqak0btyYDh06EAgESExMjLo5AdatW0du\nbi7r1q1j7969uN3uqHxPARo1asSAAQMAaN68OWeccQZff/111M2amppKly5dcDqdNG/enMTERBwO\nR7XnjJlD1ifjcrlo1aoVmzZtAmDNmjVV7kVHgksuuYTVq1cD8M0335Cenk5SUpLJqUKrZ8+elTNH\ny/sIUFRUxIwZM3jmmWdISUkBonPWTZs2sWTJEuDIRy6lpaVROSfA3Llzee2113jllVcYOHAgw4YN\ni9pZV61axXPPPQdAQUEBBw4c4IYbboi6WXv16sWGDRsIBoMUFhbW+Pc3Zu72tG7dOp577jm2b99O\nw4YNSUtLY8mSJeTk5DBp0iSCwSAXXHABDz74oNlR68SsWbPYtGkTNpuNP/zhD7Rv397sSHVm8+bN\nTJ8+nd27d+N0OmnUqBGzZs1i/PjxlJWV0aRJE6ZNm4bL5TI7aq2tWLGCBQsWcPbZZ1c+9vjjjzNx\n4sSomtXn8/HQQw+Rl5eHz+dj+PDhdOzYkXHjxkXVnP9pwYIFNG3alF69ekXlrMXFxYwePZrDhw9T\nUVHB8OHD6dChQ1TOunz58sozqe+99146depU7TljppBFRESsLKYPWYuIiFiFCllERMQCVMgiIiIW\noEIWERGxABWyiIiIBaiQRURELECFLCIiYgEqZBEREQv4f5MMDNh3DJjaAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f12347f6590>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VPX99vH3rJlsbCFBQRbZcQUq\nWBBURK1Qn0ppKRgrtSpVEQR/som4IjsqWysWhLZYBIxL1VqhVnBrCKKgUlESVGQJIdAACZlJZjnP\nH0CUimabmXNm5n5dl5fJzGRyf5iR23PmnO+xGYZhICIiIqaymx1AREREVMgiIiKWoEIWERGxABWy\niIiIBaiQRURELECFLCIiYgHOaPyS4uLSaPyaGmvcOIWSknKzY0RFosyaKHOCZo1HiTInJNasmZnp\ntXp8Qm4hO50OsyNETaLMmihzgmaNR4kyJyTWrLWVkIUsIiJiNSpkERERC1Ahi4iIWIAKWURExAJU\nyCIiIhagQhYREbEAFbKIiIgFVLswSF5eHmPGjKFDhw4AdOzYkVtvvZUJEyYQDAbJzMxkzpw5uN3u\niIcVERGJVzVaqatnz54sWLCg6vt7772X7OxsBgwYwOOPP05OTg7Z2dkRCykiIhLv6rTLOi8vj/79\n+wPQr18/cnNzwxpKREQk0dRoC7mgoIDbb7+dI0eOMGrUKLxeb9Uu6oyMDIqLi3/w5xs3TrHccmm1\nXWM0liXKrIkyJ2jWsDp6FD78ED76CCoqwOE49Z+kJLjgAujaFVyuiMXQayrVFnKbNm0YNWoUAwYM\nYPfu3QwfPpxgMFh1v2EY1f4Sqy0knpmZbrkLXkRKosyaKHOCZq0v58dbcb33Ls6PPsT50VacOwtq\n9HNGcjL+C7sR6HEx/hP/GBkZYcmk1zQ+1fZ/PKot5GbNmjFw4EAAWrVqRdOmTfnkk0/w+Xx4PB6K\niorIysqqW1oRkWjw+0l69W8k//FJXB+8X3VzqEFDKvteRuDCbgTOvwAjLQ2CIQgGIRTEFgxiO3YM\n59YtuN7Pw5WXi3vjvwEwnE4qBg+hfORdBM8516zJJI5UW8gvv/wyxcXF3HLLLRQXF3Po0CEGDx7M\n2rVrue6661i3bh19+/aNRlYRkVqxHTxI8orleJYvxbG/EMNmo+Lqa6gYPAR/1+6Ezm4LNlv1T3TD\n8OPPV3oU54cf4Ho/j6SXnsez5lk8a56lov9VeEeNxd+7T82eT+Q0bEY1+5zLysoYN24cR48exe/3\nM2rUKLp06cLEiROpqKigefPmzJgxA9cPfLZitd0TibbLJBFmTZQ5QbPWSChE8lN/IHXGI9h8PkJp\n6fiuvwHvLbcRatsuPOFCIdxvrCV50fyqrWZ/t+6UTZtN4KKetXoqvabxqba7rKst5HCw2h9+or0h\nEmHWRJkTNGt17PsLSR91O+631xNqmkn53ePwDbsBI71BhFKCc/MmUn6/APdrr4DDwbH7HsJ7xyiw\n1+xEFr2m8am2hayVukQkbrhfe5XGl/0Y99vrqbjqJ/z3rY14R9wR0TIGCFzUk6PLn+HI868QapJB\n2sNTaHDjUGz/PRTR3yvxRYUsIrEvECBt3Fga3pSNzeuldOZjHH1mDUZmZlRj+PtcSsmb71F5WT+S\n/rmWxlf0wblR6zRIzaiQRSS2GQbp/zea5L8sI3Du+ZT88218N48w7eAqIyuLI6tf5NjkB7DvL6TR\n4J/ievMNU7JIbFEhi0hMS334fjyr/oq/W3cOv/I6wU6dzY4EdjvlY8dx5Lm/gcNBg1uG4/zkI7NT\nicWpkEUkZiUvnEfKHxYQ6NCRIyufx0iz1gpQ/r6XcfQPS7GVH6NB9hDse3abHUksTIUsIjHJ89e/\nkDb1AYLNW3Bk9YthWzUr3Cr/33Uce3gajqL9NLz+F9gOl5gdSSxKhSwiMcfxn22kjRtDqEkTjqx5\nidBZLc2O9IO8t4+i/Hd34Pz8MxrcfCOEQmZHEgtSIYtIbDEM0iaPxxYMUvr7PxLs2MnsRDVy7OHp\nVFx9De533ybpuVVmxxELUiGLSExJeul53LnvUXHNQCr7X212nJpzOCib+RiGx0Pq9Eeg3FoX3RHz\nqZBFJHaUlZH60BSMpCTKHplhdppaC53VEu9td+Io3EfK4kVmxxGLUSGLSMxInf8YjsJ9lN95F6E2\nZ5sdp07K77qbUNNMUhY8gb1ov9lxxEJUyCISE+z79pL85EKCLc6i/K57zI5TZ0Z6A45NvA9b+TFS\nZk0zO45YiApZRGJC8pMLsVVWUj7+XkhJMTtOvfhuGE6gbTs8z62CsjKz44hFqJBFxPJshw6RvOJP\nBJu3wPfLoWbHqT+nk4pBv8BWUYF7/b/MTiMWoUIWEctLXroYW3k53pGjwe02O05YVA74KQBJ/3jV\n5CRiFSpkEbE0W1kpyU8/RahJE7w3/MbsOGETuKArweYtcL+xFvx+s+OIBaiQRcTSPH9ejv3wYbwj\n7oDUVLPjhI/NRuU1A7EfPgzvvGN2GrEAFbKIWFdFBcmLFxFKTcN7y+/MThN2Fdcc323N2rXmBhFL\nUCGLiHX9+c84ivbju+kWjEaNzU4Tdv4+l1I+4na45hqzo4gFOM0OICJyWoEAzJ6NkZSE9/Y7zU4T\nGU4nx6bNJiUzHYpLzU4jJtMWsohYUtIrL8HOnfiG3kCo2RlmxxGJOBWyiFhPKETK/MfBbqd81Biz\n04hEhQpZRCwnac2zOD/dBtdfH7NrVovUlgpZRCzFdvQIaVMfxEhOhunTzY4jEjUqZBGxlJS5s7AX\nH6B8zD3QqpXZcUSiRoUsIpbh2PE5yUsXE2zdhvKRd5kdRySqVMgiYg2GQdrkCdgCAcqmzgSPx+xE\nIlGlQhYRS0j62wu4315P5RVXUvmTAWbHEYk6FbKImM525DCpUyZheDyUzpgLNpvZkUSiToUsIqZL\nnf4IjgNFlN89ntDZbc2OI2IKFbKImMr54WY8f3qaQMdOlN+pRUAkcamQRcQ8gQBp48ZiMwzK5swD\nt9vsRCKmUSGLiGmSlyzGte1jvNf/Gn+vS8yOI2IqFbKImMK+Zzeps6YRatKEYw9MNTuOiOl0+UUR\nMUXafROxlR+jdMYcjIwMs+OImE5byCISde7XXyPpH69S2esSKobdYHYcEUtQIYtIdJWVkXbvOAyX\ni7LZT+icY5ETVMgiElWpc2bg2LuH8jvHEOzU2ew4IpahQhaRqHFs+4TkP/7h+MUj7h5vdhwRS1Eh\ni0h0hEKkjx+DLRikdNbjkJxsdiIRS1Ehi0hUeP6yHNcHm/ENGoz/iivNjiNiOSpkEYk4W1ERqY8+\nRCi9AcemzjQ7jogl6TxkEYm4tAfvxX70CKUz5hJqdobZcUQsSVvIIhJRrg1v4nkhB3+37vhuusXs\nOCKWpUIWkcjx+Uib+H8Ydjtlc+eDw2F2IhHLUiGLSMSkzJuL88sv8I64g8D5F5odR8TSVMgiEhGO\n/B2kLHyCYPMWlE+cbHYcEctTIYtI+BkGaePHYvP7KZs2GyMt3exEIpanQhaRsEta8yzuf79LxU8G\nUDnwWrPjiMSEGhWyz+fjyiuv5IUXXqCwsJAbb7yR7OxsxowZQ2VlZaQzikgMsf33EGkP3YeRkkLZ\n9Dm6eIRIDdWokJ988kkaNmwIwIIFC8jOzmblypW0bt2anJyciAYUkdiSOvVB7IcOcWz8ZEItW5kd\nRyRmVFvIO3fupKCggMsvvxyAvLw8+vfvD0C/fv3Izc2NaEARiR3Ojbkk//UvBLqci/d3d5gdRySm\nVFvIs2bNYtKkSVXfe71e3G43ABkZGRQXF0cunYjEjspK0ieMxbDZKJ07D1wusxOJxJQfXDrzpZde\nomvXrrRs2fK09xuGUaNf0rhxCk6ntRYEyMxMnKM+E2XWRJkTLDrrzJnw2Xa47TYaDwzfxSMsOWsE\nJMqckFiz1sYPFvKGDRvYvXs3GzZsYP/+/bjdblJSUvD5fHg8HoqKisjKyqr2l5SUlIctcDhkZqZT\nXFxqdoyoSJRZE2VOsOas9l1f0eSRRzCaZvLfeyZjhCmfFWeNhESZExJv1tr4wUKeN29e1dcLFy6k\nRYsWbNmyhbVr13Ldddexbt06+vbtW7ekIhIfDIO0Sfdg83opfWwBRqPGZicSiUm1Pg959OjRvPTS\nS2RnZ3P48GEGDRoUiVwiEiPcr7xE0r/+SeWl/aj4xa/MjiMSs2p8+cXRo0dXfb18+fKIhBGR2GIr\nPUrafRMxkpIom/2YzjkWqQet1CUidZYyYyqOov2Uj7mHYNv2ZscRiWkqZBGpE+fWD0letoRAu/aU\nj77b7DgiMU+FLCK1FwySNv5ubKEQZXPmQVKS2YlEYp4KWURqLXnZH3F9tAXfkGH4+1xqdhyRuKBC\nFpFasRfuI2XGo4QaNaLsoWlmxxGJGzU+ylpEBCDtvonYy0qPn3OcmWl2HJG4oS1kEakx9z9fJ+nV\nv+Hv+WN8Nww3O45IXFEhi0jNHDtG2qRxGE4npXPmgV1/fYiEk/6LEpEaSX18No7dX+O9YzTBLueY\nHUck7qiQRRJcKBRiyZIn2bDhze99jGP7pyQ/uZBgq9Ycu2diFNOJJA4VskiC++tf/8J9903kV78a\nxIgRN1FUtP/UB4RCpI8fiy0QoGzGHEhJMSeoSJxTIYskqKKi/TzyyAM8/PAU0tLS+dGPevC3v71A\n794X8fTTfyQYDALgWbkC16aNVFx7HZVXXWNyapH4pUIWSUCGYXDnnbexaNE8jh49St++l/HKK2uZ\nM2cedrude+8dx8CB/fn4rfWkPnI/obR0yqbNMju2SFxTIYskoBdeeI63314PgN1u5x//eJV33nmL\n3/zmZt57bzODBw9hy5YPufpXg7jn8GGK/m88oTObm5xaJL6pkEUSzOHDJUyZMgmbzYbdbsfpdJKZ\nmUX37j8CICsri8WLn+bFBx+lrWEwD7ho6WL+/vdXMAzD3PAicUyFLJJgpk17hEOHDmIYBs2bt6Cy\nspKpU2fQsGGjbx5UUcG1z/yJj202xv/6Nxw8eJDf/vYGbrxxKLt3f21eeJE4pkIWSSAvvPAcf/7z\n0wA0bNiIPXt2c9ll/fj5z39Z9ZjPdpXw5fylOHcWYNzyO8Y/vpANG3Lp0+dS1q17nb59e7Jo0Xz8\nfr9ZY4jEJRWySAJZtGh+1dfBYICkpCRmzXocm81WdfvLb3zKi7tDBM84k/J77wegffsOPP/8Kyxa\n9BTJyck88sj9tGiRgc/ni/oMIvFKhSySQG67bSQATqeTsrIy7r57PG3btgOObxnP+uuHfFZcwbYW\n5zLp1oVs/2/wlJ+/6qqf8Mwza6q+d7lc0QsvEud0tSeRBHH4cAkPPzyF5ORkXnzxNXbv3sVPf/qz\nqvs7t25Mxrv/YiJNALjh+t60yEyruv+JJ+Ywc+ajNGt2BgBLlvwJh8MR3SFE4pgKWSRBTJ36EAcP\nHmTKlIfp3v1HVUdVn2Q7XMKWV99lWGUl3t/eyubPi6sKeceOz3nssePnIRcV7cflcnHhhd2iPoNI\nPNMua5EEsGlTHitWLKdLl3O4445Rp31M6qMP0/rrz7jusvZcd213mjdNBY4vIjJhwt34/X4aNGgA\nQCAQIBgMRC2/SCJQIYvEOb/fz/jxYwCYM2f+aT/3db6fR/JflvFjRwneO0YD0KNzFgCrV6/k3/9+\nl5YtW3H06FEAbr31Ntq16xClCUQSg3ZZi8S5xYt/z/btn3LjjTfRs+fF332A30/6uLEAlM6eB98q\n7EOHDnHXXXeQlORhz57d2Gw2srKaMWnSlGjFF0kYKmSROOX3+/n6613MnTuDpk2bMmXKQ6d9XPJT\nf8C5/T94bxhO4Me9TrnvkkuOf85cUfHN6U3Tp88hPb1BxHKLJCrtshaJQ8FgkF/+8mf07dsTr9fL\ngw8+SuPGTb7zOPvur0mdO4NQRgbH7n/4O/cvWPDkKd9fddVPuPban33ncSJSfypkkTj05z8vIzf3\nPQKB4wdePf/8mu+uQ20YpE0ej628nLKHpmE0yfjO85xzznkkJ6eQkpJCjx4XM3PmY6csIiIi4aNd\n1iJxpqioiEcffQibzYbD4SAQCLB799ffKVL3a6+StPYfVPa5lIpfXX/a55o8eTxebzkLFjzJsGE3\nRD68SALTFrJInHnggUmUlZViGAaZmcePlJ72P9cytpWVknbfBAy3m7LZT8Bptnpfe+1VXn/9NXr3\n7sPQodlRyS6SyFTIInHk9ddf48UXnwegadNMCgv3cd11g7niiqtOeVzq1Adx7NtL+ei7Cbb/7ulL\nZWWlTJ48HpfLxZw587SbWiQKVMgicWT48GFVX3u95aSnN2Dq1BmnPMa18d8kL19KoFNnyseOO+3z\nzJ49g3379jJ69Fg6dOgY0cwicpwKWSSOdOrUuerrY8eOMXny/ZxxxpnfPMDrJW3snRg2G6VPLIKk\npO88xyeffMySJU/Sps3ZjBlz+sIWkfDTQV0icWL//kL27t1Leno6vXpdgseTzE033XrKY1LnzMD5\nxU7Kb7uTwEU9T7lvxYo/sWvXV7z11psEg0FmzXqc5OTkaI4gktBUyCJxYsmSxZSVlXL55Vfw1FPL\nSU1NPeV+5/t5JP9hAcHWbTj2Pyttbd36IePGjak6NerHP+5Nv379o5ZdRLTLWiRu/Oxng2jZshUb\nNrzJZZf9mH/+8/Wq++x799DwpuOnLZXO+z18q6wDgQDjxo3FMAyczuP/j56fvyO64UVEhSwSLy68\nsBtvv53H6NF3s2/fXm644VfcfPONFO4soMGNw7AXH+DY1Bn4L+l7ys89/fRTfPzxVlq1al21kMhN\nN91ixggiCc1mfGf5nvArLi6N9K+olczMdMtlipREmTVR5oSazfrpp/9h/PixvP9+HulOJ48GAtx8\nw2/wPr7glHOO9+3byyWX9MBmg7KyMgDOPrstb721EY/HE9E5aiJRXtdEmRMSb9ba0GfIkjhCIez7\n9uLY8TnOgh04duzAUbADx949GCkpGKlpGOnphNIbYKSlEcpqhr93H/wX94IYO7jpnHPO5ZVX1pJz\n41Du/+daxgDLPtnKnI+20LVr96rHde3aBeCUda5nz37CEmUskmhUyBLfDAPn5k14nn2GpJdfwn70\nyKl322yEspphP3IYW2kptmDw1J+fNxfD48HfsxeVl/XDf3k/AueeD3aLf9pTWUmDKRO5859rGXxW\nS8b+6CLW/O1FrrnmCm6+eQT33nv/KVdsKin5LwCDBw/hssv6mZVaJKFpl3WcS5RZ/3dO24EDeJ5b\nhefZFTh3fA5AsHkL/D0vJtihE8EOHQl06ESwbbtvtn4NA3y+48VcVorjqy9wv7UB91vrcX66req5\ngy3OouKXQ/ENzT7tKleRVt1rai/cR4NbhuPavIlAl3M58ueVhNqczTvvvMWECXezc2cBZ5xxJtOm\nzaJVq9b85Cf9CIVCNGzYkPfe+4CsrKwoTvPDEvX9G88SbdbaUCHHuUSZ9eSctpL/kvrw/XjWPIst\nEMBwu6kYeC2+7OH4+14GDkednt924ADut9fj3vAm7n/8HXvpUQD8P7oI35Drqfj5LzBOc3nDSPih\n19SV+x4Nbv0N9uID+AYPofSxBaccUV1RUcHChU8wf/5jVFRU0KBBQ44ePcLcufO5/PIraNWqdVRm\nqKlEe/8mgkSbtTZUyHEuUWbNzEznyLJnSJ90D/biAwQ6dcZ70y1UDB4S/qL0ekl6/e94Vq/EteFN\nbKEQhttN5VXX4BuaTWX/q8DlCu/v/JbTvaa2I4dJXvx7UuY/BobBsYen4R1xx2kvGgHwxRcFjB//\nf7zzzgauuean/OUvz0Ysb30k0vs3EeaExJu1NlTIcS4RZrUVFdH0oUnw/PMYSUkcGz8Z78jR4Iz8\nIRL2ov0k5azBs2Ylzu2fAhDKyMA3eAgVv7qewAVdv7cU6+rbr6mt5L8k//FJkpcsxn70CKHMLI4u\n+RP+3n2qfR7DMPjww80nrnlszYPWEuH9C4kzJyTerLWhQo5z8T6r+7VXSR87Evvhw/gv7kXpE4tM\n+VwXw8C57WOS1jyL5/k12A8eBCDYug2Vl11x/ICwvpdiNGpc71+VmZnOwe1fkvzHP5C89CnsZaWE\nMjIov+MufDffipFWu78ErCze378nJcqckHiz1oYKOc7F86zul1+kwW03Q5IH2+xZFP/y19Y4+tnv\nx73+DZLWrMK9/l9VnzcbdjuBrt2ovLQfgQu7EezShWDrs2v0ubat9Ciujf/G9e47pOS9h7FlCzbD\nIJSZRfmdY/D+5uZTPiuOF/H8/v22RJkTEm/W2tBpTxKTTpaxkZzCkdUv0HjglWCV/8hdLiqvHkDl\n1QMgEMC55QPcb63H9fYGXJs34frwg6qHGsnJBDp2JtjlHIJtzga/H5vXi81bjs3rBa8Xx+5dOD/a\n+s0pWS4X/ot7Ufn/rsN7w28gJcWkQUUknFTIEnP+t4wDPS42O9L3czoJ9Lj4eMZxk7CVleLctBHn\np5/i3P4fHJ9tx/nZp7g+2vK9T2E4nQS6X0Rln774L7mURgP6c+RY8HsfLyKxSYUsMcX96suxU8an\nYaSl47/iKvxXXPXNjYEAjq++xP71LvB4MJKTMZJTMDye4/9u2BC+vXJWSgocs8jeABEJGxWyxAz7\n7q9JH307hic5Jsv4ezmdBNt3MOdgNBGxDBWyxAbDIH38WOzHyji64Mn4KWMRkROqLWSv18ukSZM4\ndOgQFRUVjBw5ks6dOzNhwgSCwSCZmZnMmTMHt9sdjbySoJKeW4X7zTeovPwKKoZmmx1HRCTsqi3k\n9evXc9555zFixAj27t3LzTffTPfu3cnOzmbAgAE8/vjj5OTkkJ2tvyQlMmzFxaTdPwkjJZXSufPD\nvtCGiIgVVHvS5sCBAxkxYgQAhYWFNGvWjLy8PPr37w9Av379yM3NjWxKSWhpUyZgLynh2H0PELLY\nWssiIuFS48+Qhw0bxv79+1m8eDG//e1vq3ZRZ2RkUFxcHLGAktgcXxTgefF5/N264735d2bHERGJ\nmBoX8qpVq9i+fTvjx4/n24t71WShr8aNU3A663aVnUip7QoqsSymZ52XA4Br3D1kntHoBx8a03PW\nkmaNP4kyJyTWrLVRbSFv27aNjIwMzjzzTLp06UIwGCQ1NRWfz4fH46GoqKja66eWlJSHLXA4JNrS\nbTE7azBIk2XLsTVoyKE+P7wSV0zPWUuaNf4kypyQeLPWRrWfIW/evJlly5YBcPDgQcrLy+nduzdr\n164FYN26dfTt27cOUUV+mHvDv3DsL6Ri8C/BolcjEhEJl2q3kIcNG8Z9991HdnY2Pp+PBx54gPPO\nO4+JEyeyevVqmjdvzqBBg6KRVRKMZ+UzAPiu/7XJSUREIq/aQvZ4PDz22GPfuX358uURCSQCYDt6\nBPfrfyfQ5RwCXbubHUdEJOIscK06ke9ybn4fm99PxU8G6rxjEUkIKmSxJNf7eQAEevQ0OYmISHSo\nkMWSXJs3AeD/UQ+Tk4iIRIcKWawnGMT5wWYC7TtgNMkwO42ISFSokMVyHJ9/hr2slMBF2l0tIolD\nhSyW49r6IaDd1SKSWFTIYjmOHZ8DEOh8jslJRESiR4UsluPYmQ9AsEMHk5OIiESPClksx5G/g1CT\nJjqgS0QSigpZrKWyEseurwi272h2EhGRqFIhi6U4vvoSWzBIoL12V4tIYlEhi6U48ncAEGynQhaR\nxKJCFktxFJwo5I6dTE4iIhJdKmSxFGfBiSOs27c3OYmISHSpkMVSHAU7MFwugq3amB1FRCSqVMhi\nHYaBIz+f4NltweUyO42ISFSpkMUybMXF2I8e0QFdIpKQVMhiGc6TB3TplCcRSUAqZLGMk6c8BTpo\nURARSTwqZLEMR9UR1tpCFpHEo0IWy3Bol7WIJDAVsliGMz+fUGYWRqPGZkcREYk6FbJYg8+Hffcu\nrWEtIglLhSyW4PhiJzbD0FWeRCRhqZDFEqo+P+6gLWQRSUwqZLEE58mrPOmUJxFJUCpksYSTpzwF\ntEqXiCQoFbJYgqMgHyMpiVDLVmZHERExhQpZzGcYOAryCbZtBw6H2WlEREyhQhbT2fcXYj9WpiOs\nRSShqZDFdN+sYa3Pj0UkcamQxXTfrGGtLWQRSVwqZDGd1rAWEVEhiwU4dZUnEREVspjMMHB8tp3g\nmc0x0tLNTiMiYhoVspjKvncPjv2FBLpfZHYUERFTqZDFVK738wDwX9TT5CQiIuZSIYupnJs3AeDv\ncbHJSUREzKVCFlO53s/DcLkIXHCh2VFEREylQhbzlJfj3PYJgQu6gsdjdhoREVOpkMU0zk8+xhYI\n4L+oh9lRRERMp0IW07g+3gJA4MJuJicRETGfCllM49x6opC7djc5iYiI+VTIYhrnx1sJpaUfv+yi\niEiCUyGLOcrKcOz4/PjR1Xa9DUVE9DehmMK17WNshnH8CGsREVEhizkcn20HIHDOuSYnERGxBhWy\nmMKx88QVnjp2MjmJiIg1qJDFFM58XQNZROTbVMhiCkdBPsFmZ2A0aGh2FBERS3DW5EGzZ8/mgw8+\nIBAIcNttt3H++eczYcIEgsEgmZmZzJkzB7fbHemsEi/Ky7Hv/hr/JX3NTiIiYhnVFvLGjRvJz89n\n9erVlJSU8POf/5xevXqRnZ3NgAEDePzxx8nJySE7OzsaeSUOOL7Yic0wCLbT7moRkZOq3WXdo0cP\n5s+fD0CDBg3wer3k5eXRv39/APr160dubm5kU0pccRac+Py4Y0eTk4iIWEe1W8gOh4OUlBQAcnJy\nuPTSS3n33XerdlFnZGRQXFz8g8/RuHEKTqcjDHHDJzMz3ewIUWO5WfftAiDtoq6khTGb5eaMIM0a\nfxJlTkisWWujRp8hA7zxxhvk5OSwbNkyrr766qrbDcOo9mdLSsrrli5CMjPTKS4uNTtGVFhx1vSP\nPsEDHMo8i1CYsllxzkjRrPEnUeaExJu1Nmp0lPU777zD4sWLWbJkCenp6aSkpODz+QAoKioiKyur\n9kklYTny8zFSUgg1b2F2FBERy6i2kEtLS5k9ezZPPfUUjRo1AqB3796sXbsWgHXr1tG3r46WlRoK\nhXDuzCfQroPWsBYR+ZZqd1nKAB9jAAANdUlEQVS/9tprlJSUMHbs2KrbZs6cyZQpU1i9ejXNmzdn\n0KBBEQ0p8cO+dw82r5dg+/ZmRxERsZRqC3no0KEMHTr0O7cvX748IoEkvjmqVujSEdYiIt+mfYYS\nVVWnPHVQIYuIfJsKWaLKkX/8ohIBbSGLiJxChSxR5SjYgWGzEWzbzuwoIiKWokKWqHLk7yDUshWc\nWGxGRESOUyFL1NiOHsFxoIhgOx1hLSLyv1TIEjUnj7AOdOxkchIREetRIUvU6JQnEZHvp0KWqHEW\nHD/CWqc8iYh8lwpZoqZql7W2kEVEvkOFLFHjKNhBqGEjjMxMs6OIiFiOClmio7wcxxc7CXbqDDab\n2WlERCxHhSxR4fzPJ9iCQfwXdjU7ioiIJamQJSqcH28FIHBhN5OTiIhYkwpZosK1dQugQhYR+T4q\nZIkK58dbMVJSCbbvYHYUERFLUiFL5JWX4/j8MwLnXwAOh9lpREQsSYUsEefcmY8tFCLQ5Ryzo4iI\nWJYKWSJOa1iLiFRPhSwR5zi5ZKZW6BIR+V4qZIk4R8GJi0poDWsRke+lQpaIc+bnY6SkEjqzudlR\nREQsS4UskRUK4diZT6Bde7Dr7SYi8n30N6RElH3Pbmw+n3ZXi4hUQ4UsEaXPj0VEakaFLBHlPHnK\nkwpZROQHqZAlohz5OuVJRKQmVMgSUY6CHRg2G8G27cyOIiJiaSpkiShn/g5CLVuDx2N2FBERS1Mh\nS8TYDpdgLz5AoKN2V4uIVEeFLBGjJTNFRGpOhSwRU1XIOsJaRKRaKmSJmJOnPKmQRUSqp0KWiKm6\n7KJ2WYuIVEuFLBHjKNhBqFEjjIwMs6OIiFieClkiw+/H8dWXBDt0ApvN7DQiIpanQpaIcHz1JbZA\ngED7DmZHERGJCSpkiYiTnx/rlCcRkZpRIUtE6CpPIiK1o0KWiPjmlCftshYRqQkVskSEo2AHhstF\nsFUbs6OIiMQEFbKEn2HgyM8neHZbcLnMTiMiEhNUyBJ2tgMHsB89ogO6RERqQYUsYefUAV0iIrWm\nQpawO3lRCZ2DLCJScypkCTtH/ucABFXIIiI1pkKWsHN9+AGGw0Ggy7lmRxERiRkqZAkvnw/nx1sJ\nnH8BpKSYnUZEJGaokCWsnB9/hK2yEv9FPc2OIiISU1TIElauzZsACPS42OQkIiKxpUaFvGPHDq68\n8kqeeeYZAAoLC7nxxhvJzs5mzJgxVFZWRjSkxA7X+3kA+FXIIiK1Um0hl5eXM3XqVHr16lV124IF\nC8jOzmblypW0bt2anJyciIaU2OHcvIngGWcSanGW2VFERGJKtYXsdrtZsmQJWVlZVbfl5eXRv39/\nAPr160dubm7kEkrMsO8vxFG0n0C3H4HNZnYcEZGY4qz2AU4nTuepD/N6vbjdbgAyMjIoLi6OTDqJ\nKc6tWwAIdO1mchIRkdhTbSFXxzCMah/TuHEKTqejvr8qrDIz082OEDVRm7XgUwBSL+1Nqgl/vnpN\n41OizJooc0JizVobdSrklJQUfD4fHo+HoqKiU3Znn05JSXmdwkVKZmY6xcWlZseIimjO2uDfG0kC\nDrbuhBHlP1+9pvEpUWZNlDkh8WatjTqd9tS7d2/Wrl0LwLp16+jbt29dnkbiiWHg2rqFYMtWGE2b\nmp1GRCTmVLuFvG3bNmbNmsXevXtxOp2sXbuWuXPnMmnSJFavXk3z5s0ZNGhQNLKKhdmKi7EfLKbi\nmp+aHUVEJCZVW8jnnXceK1as+M7ty5cvj0ggiU2OXV8CEGzbzuQkIiKxSSt1SVg4dn0FQLB1G1Nz\niIjEKhWyhEVVIbc529wgIiIxSoUsYaEtZBGR+lEhS1jYv/oSw24ndFZLs6OIiMQkFbKEhWPPbkJn\nNocTK7iJiEjtqJCl/oJB7IX7CDVvYXYSEZGYpUKWerMfKMIWDBJsoUIWEakrFbLUm33fXgBCZ6qQ\nRUTqSoUs9VZVyNpCFhGpMxWy1Jtj7x4AgtpCFhGpMxWy1Jt999cAhFrqlCcRkbpSIUu9aZUuEZH6\nUyFLvTl2fUWoYSOMRo3NjiIiErNUyFI/hoFj11daMlNEpJ5UyFIv9qL92Hw+QipkEZF6USFLvdi/\n+grQRSVEROpLhSz14th34pQnXVRCRKReVMhSL/a9JxYF0TrWIiL1okKWerEXapUuEZFwUCFLvThO\nbCFrlS4RkfpRIUu92Av3YiQlYWRkmB1FRCSmqZClXhx79hA6sznYbGZHERGJaSpkqbtjx7AfLNYp\nTyIiYaBCljpzfL0LgGBrrWEtIlJfKmSpM8dXXwJaFEREJBxUyFJnjl0nCrlNG3ODiIjEARWy1NnJ\nyy6GdNlFEZF6UyFLndlPfobcspXJSUREYp8KWerMsW8fodQ0jIaNzI4iIhLzVMhSZ/Z9e44vmalz\nkEVE6k2FLHVTXo69pOT4oiAiIlJvKmSpE8eJi0oEW5xlchIRkfigQpY6se/bB6AtZBGRMFEhS50Y\njRpheDwELuphdhQRkbjgNDuAxKbA+RdycOdecLnMjiIiEhe0hSx1pzIWEQkbFbKIiIgFqJBFREQs\nQIUsIiJiASpkERERC1Ahi4iIWIAKWURExAJUyCIiIhagQhYREbEAFbKIiIgFqJBFREQsQIUsIiJi\nATbDMAyzQ4iIiCQ6bSGLiIhYgApZRETEAlTIIiIiFqBCFhERsQAVsoiIiAWokEVERCzAaXaAaNq0\naRNjxoxh+vTp9OvXD4DPPvuMhx56CIBOnTrx8MMPm5gwfKZPn85HH32EzWZj8uTJXHDBBWZHCqsd\nO3YwcuRIbrrpJn79619TWFjIhAkTCAaDZGZmMmfOHNxut9kxw2L27Nl88MEHBAIBbrvtNs4///y4\nm9Xr9TJp0iQOHTpERUUFI0eOpHPnznE357f5fD6uvfZaRo4cSa9eveJy1ry8PMaMGUOHDh0A6Nix\nI7feemtczvryyy+zdOlSnE4nd911F506dar1nAmzhfz111+zfPlyunfvfsrt06ZNY/LkyaxatYqy\nsjLeeustkxKGz6ZNm9i1axerV69m2rRpTJs2zexIYVVeXs7UqVPp1atX1W0LFiwgOzublStX0rp1\na3JyckxMGD4bN24kPz+f1atXs3TpUqZPnx6Xs65fv57zzjuPZ555hnnz5jFz5sy4nPPbnnzySRo2\nbAjE7/sXoGfPnqxYsYIVK1Zw//33x+WsJSUl/P73v2flypUsXryYf/3rX3WaM2EKOTMzk0WLFpGe\nnl51W2VlJXv37q3aeuzXrx+5ublmRQyb3NxcrrzySgDatWvHkSNHKCsrMzlV+LjdbpYsWUJWVlbV\nbXl5efTv3x+In9cRoEePHsyfPx+ABg0a4PV643LWgQMHMmLECAAKCwtp1qxZXM550s6dOykoKODy\nyy8H4vf9ezrxOGtubi69evUiLS2NrKwspk6dWqc5E6aQk5OTcTgcp9xWUlJCgwYNqr7PyMiguLg4\n2tHC7uDBgzRu3Ljq+yZNmsTFXCc5nU48Hs8pt3m93qrdQfHyOgI4HA5SUlIAyMnJ4dJLL43bWQGG\nDRvGuHHjmDx5clzPOWvWLCZNmlT1fTzPWlBQwO23387111/Pe++9F5ez7tmzB5/Px+233052dja5\nubl1mjMuP0N+7rnneO655065bfTo0fTt2/cHfy5eVxGN17m+TzzO+8Ybb5CTk8OyZcu4+uqrq26P\nt1lXrVrF9u3bGT9+/CmzxdOcL730El27dqVly5anvT+eZm3Tpg2jRo1iwIAB7N69m+HDhxMMBqvu\nj6dZDx8+zKJFi9i3bx/Dhw+v0/s3Lgt5yJAhDBkypNrHNWnShMOHD1d9X1RUdMpu0FiVlZXFwYMH\nq74/cOAAmZmZJiaKvJSUFHw+Hx6PJ25ex5PeeecdFi9ezNKlS0lPT4/LWbdt20ZGRgZnnnkmXbp0\nIRgMkpqaGndzAmzYsIHdu3ezYcMG9u/fj9vtjsvXFKBZs2YMHDgQgFatWtG0aVM++eSTuJs1IyOD\nbt264XQ6adWqFampqTgcjlrPmTC7rE/H5XLRtm1bNm/eDMC6deuq3YqOBZdccglr164F4D//+Q9Z\nWVmkpaWZnCqyevfuXTVzvLyOAKWlpcyePZunnnqKRo0aAfE56+bNm1m2bBlw/COX8vLyuJwTYN68\neTz//POsWbOGIUOGMHLkyLid9eWXX+bpp58GoLi4mEOHDjF48OC4m7VPnz5s3LiRUChESUlJnd+/\nCXO1pw0bNvD000/zxRdf0KRJEzIzM1m2bBkFBQU88MADhEIhLrzwQu69916zo4bF3Llz2bx5Mzab\njQcffJDOnTubHSlstm3bxqxZs9i7dy9Op5NmzZoxd+5cJk2aREVFBc2bN2fGjBm4XC6zo9bb6tWr\nWbhwIWeffXbVbTNnzmTKlClxNavP5+O+++6jsLAQn8/HqFGjOO+885g4cWJczfm/Fi5cSIsWLejT\np09czlpWVsa4ceM4evQofr+fUaNG0aVLl7icddWqVVVHUt9xxx2cf/75tZ4zYQpZRETEyhJ6l7WI\niIhVqJBFREQsQIUsIiJiASpkERERC1Ahi4iIWIAKWURExAJUyCIiIhagQhYREbGA/w9XHHTFk2Ux\nHAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1232389510>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl0VPX9xvH3rNmBJCYIyC6bBVkq\nWBBQxJXaI2KpGAvFHREEK5u4S9nRstiCitAKPwRE61ZbqBZcKougiChIgoosIQQIkGUmyczc3x9A\nKlXJNjP3zszzOodzyGQy83yYgYd7597vtRmGYSAiIiKmspsdQERERFTIIiIilqBCFhERsQAVsoiI\niAWokEVERCxAhSwiImIBznA8SX5+YTiepspSUxMpKCgxO0ZYxMqssTInaNZoFCtzQmzNmpGRUq37\nx+QWstPpMDtC2MTKrLEyJ2jWaBQrc0JszVpdMVnIIiIiVqNCFhERsQAVsoiIiAWokEVERCxAhSwi\nImIBKmQRERELUCGLiIhYQKULg2zcuJFRo0bRqlUrAFq3bs0dd9zBuHHj8Pv9ZGRkMHPmTNxud8jD\nioiIRKsqrdTVrVs35s6dW/H1gw8+SFZWFtdeey1PP/00q1atIisrK2QhRUREol2Ndllv3LiRvn37\nAtCnTx/Wr18f1FAiIiKxpkpbyDk5OQwbNozjx48zYsQIPB5PxS7q9PR08vPzz/rzqamJllsurbpr\njEayWJk1VuYEzRpUJ07AJ5/AZ59BaSk4HGf+iouDCy+ETp3A5QpZDL2mUmkhN2vWjBEjRnDttdey\nd+9ehgwZgt/vr/i+YRiVPonVFhLPyEix3AUvQiVWZo2VOUGz1pZz21Zc//kQ52ef4PxsK87dOVX6\nOSMhgfKOnfF1vZjyU7+M9PSgZNJrGp2q+x+PSgu5fv369OvXD4AmTZpwzjnn8Pnnn+P1eomPjycv\nL4/MzMyapRURCYfycuLeep2E5+bj2vJxxc2BOnUp63Upvo6d8XW4ECM5GfwB8Psh4Mfm92MrLsa5\n9VNcH2/EtXE97g0fAWA4nZQOGEjJ8PvwX/AzsyaTKFJpIb/xxhvk5+dz++23k5+fz5EjRxgwYACr\nV6/m+uuvZ82aNfTq1SscWUVEqsV2+DAJSxYTv3ghjoO5GDYbpVddQ+mAgZR36kKgeQuw2Sp/oFuG\nnHy8whM4P9mC6+ONxL32CvErXyJ+5UuU9r0Sz4jRlPfoWbXHE/kRNqOSfc5FRUWMGTOGEydOUF5e\nzogRI2jXrh3jx4+ntLSUhg0bMnXqVFxn+WzFarsnYm2XSSzMGitzgmatkkCAhGf/TNLUJ7F5vQSS\nU/DefAue2+8m0KJlcMIFArjfWU3CM3MqtprLO3ehaPIMfBd1q9ZD6TWNTtXdZV1pIQeD1f7wY+0N\nEQuzxsqcoFkrYz+YS8qIYbjfX0vgnAxK7h+Dd9AtGCl1QpQSnJs3kfinubjffhMcDoofehzPPSPA\nXrUTWfSaRqfqFrJW6hKRqOF++y1SL/0F7vfXUnrl1Rx9bwOeO+8JaRkD+C7qxonFSzn+ypsE0tJJ\nfuJh6gy+CdvRIyF9XokuKmQRiXw+H8ljRlN3aBY2j4fCaU9xYulKjIyMsMYo79mbgn//h7JL+xD3\nr9WkXt4T5wat0yBVo0IWkchmGKT8fiQJLy7C97MOFPzrfby33WnawVVGZibHV/yN4omPYj+YS70B\nv8T173dMySKRRYUsIhEt6YlHiF/+f5R37sKxN/+Jv01bsyOB3U7J6DEcf/l1cDioc/sQnJ9/ZnYq\nsTgVsohErIR5s0n881x8rVpzfNkrGMnWWgGqvNelnPjzQmwlxdTJGoh9316zI4mFqZBFJCLF/9+L\nJE96FH/DRhxf8begrZoVbGW/up7iJybjyDtI3ZtvxHaswOxIYlEqZBGJOI4vtpM8ZhSBtDSOr3yN\nwHmNzY50Vp5hIyi56x6cX+2kzm2DIRAwO5JYkApZRCKLYZA8cSw2v5/CPz2Hv3UbsxNVSfETUyi9\n6hrcH75P3MvLzY4jFqRCFpGIEvfaK7jX/4fSa/pR1vcqs+NUncNB0bSnMOLjSZryJJRY66I7Yj4V\nsohEjqIikh5/GCMujqInp5qdptoC5zXGc/e9OHIPkLjgGbPjiMWokEUkYiTNeQpH7gFK7r2PQLPm\nZsepkZL77idwTgaJc/+IPe+g2XHEQlTIIhIR7Af2kzB/Hv5G51Fy3wNmx6kxI6UOxeMfwlZSTOL0\nyWbHEQtRIYtIREiYPw9bWRklYx+ExESz49SK95Yh+Fq0JP7l5VBUZHYcsQgVsohYnu3IERKW/AV/\nw0Z4f32T2XFqz+mktP+N2EpLca991+w0YhEqZBGxvISFC7CVlOAZPhLcbrPjBEXZtb8EIO4fb5mc\nRKxChSwilmYrKiThhWcJpKXhueV3ZscJGt+FnfA3bIT7ndVQXm52HLEAFbKIWFr8XxdjP3YMz533\nQFKS2XGCx2aj7Jp+2I8dgw8+MDuNWIAKWUSsq7SUhAXPEEhKxnP7XWanCbrSa07utmb1anODiCWo\nkEXEuv76Vxx5B/EOvR2jXqrZaYKuvGdvSu4cBtdcY3YUsQCn2QFERH6UzwczZmDExeEZdq/ZaULD\n6aR48gwSM1Igv9DsNGIybSGLiCXFvfka7N6N96ZbCNQ/1+w4IiGnQhYR6wkESJzzNNjtlIwYZXYa\nkbBQIYuI5cStfAnnl9vh5psjds1qkepSIYuIpdhOHCd50mMYCQkwZYrZcUTCRoUsIpaSOGs69vxD\nlIx6AJo0MTuOSNiokEXEMhy7viJh4QL8TZtRMvw+s+OIhJUKWUSswTBInjgOm89H0aRpEB9vdiKR\nsFIhi4glxL3+Ku7311J2+RWUXX2t2XFEwk6FLCKmsx0/RtLDEzDi4ymcOgtsNrMjiYSdCllETJc0\n5Ukch/IouX8sgeYtzI4jYgoVsoiYyvnJZuL/8gK+1m0ouVeLgEjsUiGLiHl8PpLHjMZmGBTNnA1u\nt9mJREyjQhYR0yQ8vwDX9m14bv4t5d0vMTuOiKlUyCJiCvu+vSRNn0wgLY3iRyeZHUfEdLr8ooiY\nIvmh8dhKiimcOhMjPd3sOCKm0xayiISd+59vE/ePtyjrfgmlg24xO46IJaiQRSS8iopIfnAMhstF\n0Yw/6pxjkVNUyCISVkkzp+LYv4+Se0fhb9PW7DgilqFCFpGwcWz/nITn/nzy4hH3jzU7joilqJBF\nJDwCAVLGjsLm91M4/WlISDA7kYilqJBFJCziX1yMa8tmvP0HUH75FWbHEbEcFbKIhJwtL4+kPzxO\nIKUOxZOmmR1HxJJ0HrKIhFzyYw9iP3GcwqmzCNQ/1+w4IpakLWQRCSnXun8T/+oqyjt3wTv0drPj\niFiWCllEQsfrJXn87zHsdopmzQGHw+xEIpalQhaRkEmcPQvnN1/jufMefB06mh1HxNJUyCISEo7s\nXSTO+yP+ho0oGT/R7DgilqdCFpHgMwySx47GVl5O0eQZGMkpZicSsTwVsogEXdzKl3B/9CGlV19L\nWb/rzI4jEhGqVMher5crrriCV199ldzcXAYPHkxWVhajRo2irKws1BlFJILYjh4h+fGHMBITKZoy\nUxePEKmiKhXy/PnzqVu3LgBz584lKyuLZcuW0bRpU1atWhXSgCISWZImPYb9yBGKx04k0LiJ2XFE\nIkalhbx7925ycnK47LLLANi4cSN9+/YFoE+fPqxfvz6kAUUkcjg3rCfh/17E1+5neO66x+w4IhGl\n0kKePn06EyZMqPja4/HgdrsBSE9PJz8/P3TpRCRylJWRMm40hs1G4azZ4HKZnUgkopx16czXXnuN\nTp060bhx4x/9vmEYVXqS1NREnE5rLQiQkRE7R33GyqyxMidYdNZp02DnDrj7blL7Be/iEZacNQRi\nZU6IrVmr46yFvG7dOvbu3cu6des4ePAgbrebxMREvF4v8fHx5OXlkZmZWemTFBSUBC1wMGRkpJCf\nX2h2jLCIlVljZU6w5qz2Pd+S9uSTGOdkcPSBiRhBymfFWUMhVuaE2Ju1Os5ayLNnz674/bx582jU\nqBGffvopq1ev5vrrr2fNmjX06tWrZklFJDoYBskTHsDm8VD41FyMeqlmJxKJSNU+D3nkyJG89tpr\nZGVlcezYMfr37x+KXCISIdxvvkbcu/+irHcfSm/8jdlxRCJWlS+/OHLkyIrfL168OCRhRCSy2ApP\nkPzQeIy4OIpmPKVzjkVqQSt1iUiNJU6dhCPvICWjHsDf4nyz44hENBWyiNSIc+snJCx6Hl/L8ykZ\neb/ZcUQingpZRKrP7yd57P3YAgGKZs6GuDizE4lEPBWyiFRbwqLncH32Kd6Bgyjv2dvsOCJRQYUs\nItVizz1A4tQ/EKhXj6LHJ5sdRyRqVPkoaxERgOSHxmMvKjx5znFGhtlxRKKGtpBFpMrc//oncW+9\nTnm3X+C9ZYjZcUSiigpZRKqmuJjkCWMwnE4KZ84Gu/75EAkm/Y0SkSpJenoGjr3f4blnJP52F5gd\nRyTqqJBFpFKOHV+SMH8e/iZNKX5gvNlxRKKSCllEzi4QIGXsaGw+H0VTZ0JiotmJRKKSCllEzip+\n2RJcmzZQet31lF15jdlxRKKWCllEfpItP5+kJx8hkJxC0eTpZscRiWo6D1lEflLyEw9jP3aMosnT\nCTRoaHYckaimLWQR+VGuD98nfuVLlHfsjOe2u8yOIxL1VMgi8kOlpSSPHY1ht1M0azY4HGYnEol6\nKmQR+YHEeX/EuTsHz2134uvY2ew4IjFBhSwiZ3B8nUPinKfwn9uAkgcfMTuOSMxQIYvIfxkGyeMe\nwFZaStHk6RgpdcxOJBIzVMgiUiHulZW4319L6RVXUXbd9WbHEYkpKmQRAcB2rIDkRydiJCRQNHUW\n2GxmRxKJKSpkEQEg6Q9PYD+cT/ED4wk0bWZ2HJGYo0IWEZwfbyThxUX42rbDc89Is+OIxCQVskis\nKy8nZcxoAApnzAaXy+RAIrFJhSwS4xKe/TPOHV/guWUIvl90NzuOSMxSIYvEMPve70iaNZVAejrF\njzxhdhyRmKaLS4jEKsMgeeJYbCUlFE5/GiMt3exEIjFNW8giMcr99lvErf4HZT17U/qbm82OIxLz\nVMgiMchWVEjyQ+Mw3G6KZvxR5xyLWIAKWSQGJU16DMeB/ZSMvB//+a3MjiMiqJBFYo5rw0ckLF6I\nr01bSkaPMTuOiJyiQhaJImVlZWe/g8dD8uh7MWw2Cv/4DMTFhSeYiFRKhSwS4QzDID8/nxtv/BXt\n25/Pl19+8ZP3TZo5FefXu/HcNRzfRd3CmFJEKqNCFolQZWVlTJw4lnbtmtO798V88MF7HDt2jKFD\nszh+/NgP7u/8eCMJf56Lv2kziic8bEJiETkbnYcsEoEOHszl1lt/y5YtH1fcNnr0WAIBP3PnPs29\n997Fiy8ux24/+X9u+/591B16CwCFs/8ESUmm5BaRn6YtZJEI88EHH3D55T0rytjtdgOQn5/Hgw8+\nwqWX9mHNmn/y9NMzTv5AcTF1Bg/Cnn+I4klTKb+kl1nRReQsVMgiEeSOO35H7969OXw4H4Bzz21A\nWVkZbrebvn2vwuFw8Oyzi2jcuAkzZ07lX6v/QZ0Rd+Pavg3P4Fvx3DHM5AlE5Kdol7XEjkAA+4H9\nOHZ9hTNnF45du3Dk7MKxfx9GYiJGUjJGSgqBlDoYyckEMutT3qMn5Rd3h4QEs9Nz5MgR3njjbxVf\nN2rUmP3799KgQUMWLVrCz3/eFYC0tHQWL17Kddddxb13DKFbaSlNevSkaOpMLQAiYmEqZIluhoFz\n8ybiX1pK3BuvYT9x/Mxv22wEMutjP34MW2EhNr//zJ+fPQsjPp7ybt0pu7QP5Zf1wfezDmAP784l\nwzBYtmxJxddOp5P9+/dyySW9eO65v5CRkXHG/S9sewFzL+rGXR++zwCXizefeZbEU7u2RcSaVMgS\nlWyHDhH/8nLiX1qCc9dXAPgbNsJ7eV/8rdrgb9UaX6s2+Fu0/O/Wr2GA13uymIsKcXz7Ne731uF+\nby3u90/+YhL4G51H6a9vwntTVlhWuSoqKmTUqHt5883XqF//XOrXz2Tbtm3cc89IHnnkCZzOk3+N\nd+4pAOACt4c6tw/hzs2b+CQ1lQUFBfz+D48zf/5CbNpCFrEsFbJEFVvBUZKeeIT4lS9h8/kw3G68\n/QfgzRpCea9LweE4yw/bICEBIyEBIzOTQIuWlF9+JcWcLHj3+2txr/s37n/8ncQ5T5E45ynKf34R\n3oE3U3rDjRipaUGfJycnm6FDs9i16yu6d7+E5577Cy1bNmLLlu20adP2jPu+/uE32E4c55Jn7sSe\nfwjvgIE8PHUWm28ZyKuvvkyXLj/nrruGBz2jiASHzTAMI9RPkp9fGOqnqJaMjBTLZQqVWJk1IyOF\n44uWkjLhAez5h/C1aYtn6O2UDhgY/KL0eIj759+JX7EM17p/YwsEMNxuyq68Bu9NWZT1vRJcrlo/\nzdtvv8WIEXdTVFTI3XcP59FHJ+FyuX7wmu7cU8Dr72Xz1YEiANrv284N7erQfPjvwGbj4MFc+vbt\nxdGjR3j11bfo3v2SWmcLl1h6/8bCnBB7s1aHCjnKxcKstrw8znl8ArzyCkZcHMVjJ+IZPhKcod8B\nZM87SNyqlcSvXIZzx5cABNLT8Q4YSOlvbsZ3YadqH0j11Vc7GTt2NBs2fERcXBxPPTWX33zv8ojf\nf01tBUdJeG4++S+/ychfTwFg2s9dZF555qlNGzZ8xIAB15GamsY777xPgwYNazN22MTC+xdiZ06I\nvVmrQ4Uc5aJ9Vvfbb5Eyejj2Y8cov7g7hX98xpyrFxkGzu3biFv5EvGvrMR++DAA/qbNKLv08pMH\nhPXqjVEv9awPc/ToEXr3vphDhw5V3OZ0Ojn//Fa0a3cBN9wwkMGDb+Lwjm9IeO7PJCx8FntRIf93\n+a2UX3Qxvs5dIC6O63s2/8FjP//8fB56aDwABw4crfjs2cqi/f17WqzMCbE3a3VY/2+kyE9wv/E3\n6tx9G8TFwzPPcOzXvw370c8VbDZ8HTri69CR4kcn4V77DnErl+Ne+y4JLy4i4cVFGHY7vk6dKevd\nB1/HzvjbtcPftHnF59rbtm3lttsGc+jQIRwOBxMnPsK3337Ll19+wc6dX7Jz5w62/fsdBs+eQfqn\nn2IzDAIZmRSNmUBqj+vp2qkJAB/v/G+Z5+fnc//991JSUsLVV/eruH3Pnm9o2VKXXRSxEm0hR7lo\nnfV0GRsJiRxf8Sqp/a6w5pw+H85Pt+B+by2u99fh2rwJm89X8W0jIQFf67b8NT6ekVs+xuvzYQcC\nQNOkJNqnpNDegKaH8hhuGFwFrHa5KPt5V8p+dT2eW34HiYk/+tSffLKZ224bzIED+ytuS0tLY+bM\n2fzqV/1DO3eQROv793/FypwQe7NWh7aQJeL8bxn7ul5sdqSf5nTi63rxyYxjJmArKsS5aQPOL7/E\nueML/F9+wdjPP2N+IEBd4GXga+BN4PPiYv5eXMzfv/dw21LTYN9ejhf7f/TpTlu69K9MmPAAZWVl\nnHtuAw4ezAXg4YefiJgyFok1KmSJKO633oicMv4RRnIK5ZdfSfnlV3LwYC633TaYzYEA7Vq0ZOl9\nv6dFs+ZckpDAbxMSMeLjyfd4+PLAfj79Yjt/+MNjLFi89OQWcfGPb2GUlJRwzTV92LlzB8nJybjd\n7ooyTk8/h+7de4RzXBGpBhWyRAz73u9IGTkMIz4hIsv4+zZs+Ig77vgdhw7lccMNN/L008+QlJRE\n+f/cLx3o1e4CevW9kvvuu7/Sx50w4QF27twBnCznQODkJ1JdulzE4sVLI+boapFYpItLSGQwDFLG\njsZeXETR1JkRXcZff72bAQOu48iRw0yaNJUFCxaRFKTLId5//9iK3588PMRg6NDbef31f6iMRSyu\n0i1kj8fDhAkTOHLkCKWlpQwfPpy2bdsybtw4/H4/GRkZzJw5s+IScCKhEPfyctz/foeyyy6n9KYs\ns+PUSlpaGqmpaRw9eoQOHToGbTnL7OxdDB168s/GbrfjdDqZNWsOgwbdEpTHF5HQqnQLee3atbRv\n356lS5cye/Zspk2bxty5c8nKymLZsmU0bdqUVatWhSOrxChbfj7Jj0zASEyicNaciL9iUb16qbzw\nwovYbDbuuON35OYeqPVj/v3vb3L11X3Izt7FsGEjeP/9DXz44ccqY5EIUmkh9+vXjzvvvBOA3Nxc\n6tevz8aNG+nbty8Affr0Yf369aFNKTEt+eFx2AsKKH7oUQJNmpodJyh+8YsePPHEZA4fzue22wZT\nWlpao8fx+/1MnvwEt956C4GAn2efXcSTT06hdeu2NGv2w8VBRMS6qvwZ8qBBgxgzZgwTJ07E4/FU\n7KJOT08nPz8/ZAEltjm+ziH+b69Q3rkLntvuMjtOUN1xxzBuvPE3bNnyMY88MqHaP3/06BEGDRrA\nnDlP0bx5C95++11uuOHXIUgqIuFQ5aOsly9fzo4dOxg7dizfX0ukKuuKpKYm4nSe5So7JqjuCduR\nLKJnnX3y4xDXmAfIOLfeWe8aiXO++OJisrN38pe/vEDv3pdw6623Vunn9u7NZsCAAezZs4frrruO\nJUuWUK/e2f98IlUkvq41EStzQmzNWh2VFvL27dtJT0+nQYMGtGvXDr/fT1JSEl6vl/j4ePLy8sjM\nzDzrYxQUlAQtcDDE2koxETur30/aosXY6tTlSM8r4CxzRPKczz//IldddRn33HMPjRu3pGPHzme9\n/9tvv8qwYcMoLS1l3LiJ/P734ygvt0fs/GcTya9rdcTKnBB7s1ZHpbusN2/ezKJFiwA4fPgwJSUl\n9OjRg9WrVwOwZs0aevXqdbaHEKkR97p3cRzMpXTAryEhwew4IdO8eQvmz19IaWkp/fv/knnz/siG\nDR9x7FjBGfcrKytj3Lj7GTp0KHFx8SxduoIxYyZgN2v9bhEJqkq3kAcNGsRDDz1EVlYWXq+XRx99\nlPbt2zN+/HhWrFhBw4YN6d9fS/FJ8MUvWwqA9+bfmpwk9C644GcAFBcXMWnSYxW3N2jQkA4dLuTe\ne0cxadJjbN68iQ4dOrBw4RKaN29hVlwRCYFKCzk+Pp6nnnrqB7cvXrw4JIFEAGwnjuP+59/xtbsA\nX6cuZscJuR07vgCoWHe6S5eLqFevHtu2bWXNmn/y0UcfUlRUxIABA3nxxcWUlARMTiwiwaZ9XWJJ\nzs0fYysvp/TqfhF/3nFV7N9/8opMBw/mYrfb+eSTzRiGgcfjAU4ug/mHP0xj/vyFQVvVS0SsRWtZ\niyW5Pt4IgK9rN5OThEf//gM4evQIn3++ja1bP2Hv3u9Yu/bdiu8vXPhXrrvuehMTikioqZDFklyb\nNwFQ/vOuJicJjzp16jJ69JiKr1eufImRI4dx7rnn0q1bd5WxSAxQIYv1+P04t2zGd34rjLR0s9OY\n4je/uZlLLulF/frn4nTqr6lILNBnyGI5jq92Yi8qxHdRbOyu/imNGp2nMhaJISpksRzX1k+A2Nld\nLSICKmSxIMeurwDwtb3A5CQiIuGjQhbLcezOBsDfqpXJSUREwkeFLJbjyN5FIC0tZg/oEpHYpEIW\naykrw7HnW/zntzY7iYhIWKmQxVIc336Dze/Hd752V4tIbFEhi6U4sncB4G+pQhaR2KJCFktx5Jwq\n5NZtTE4iIhJeKmSxFGfOqSOszz/f5CQiIuGlQhZLceTswnC58DdpZnYUEZGwUiGLdRgGjuxs/M1b\ngMtldhoRkbBSIYtl2PLzsZ84rgO6RCQmqZDFMpynD+jSKU8iEoNUyGIZp0958rXSoiAiEntUyGIZ\njoojrLWFLCKxR4UsluHQLmsRiWEqZLEMZ3Y2gYxMjHqpZkcREQk7FbJYg9eLfe8erWEtIjFLhSyW\n4Ph6NzbD0FWeRCRmqZDFEio+P26lLWQRiU0qZLEE5+mrPOmUJxGJUSpksYTTpzz5tEqXiMQoFbJY\ngiMnGyMujkDjJmZHERExhQpZzGcYOHKy8bdoCQ6H2WlEREyhQhbT2Q/mYi8u0hHWIhLTVMhiuv+u\nYa3Pj0UkdqmQxXT/XcNaW8giErtUyGI6rWEtIqJCFgtw6ipPIiIqZDGZYeDYuQN/g4YYySlmpxER\nMY0KWUxl378Px8FcfF0uMjuKiIipVMhiKtfHGwEov6ibyUlERMylQhZTOTdvAqC868UmJxERMZcK\nWUzl+ngjhsuF78KOZkcRETGVClnMU1KCc/vn+C7sBPHxZqcRETGVCllM4/x8Gzafj/KLupodRUTE\ndCpkMY1r26cA+Dp2NjmJiIj5VMhiGufWU4XcqYvJSUREzKdCFtM4t20lkJxy8rKLIiIxToUs5igq\nwrHrq5NHV9v1NhQR0b+EYgrX9m3YDOPkEdYiIqJCFnM4du4AwHfBz0xOIiJiDSpkMYVj96krPLVu\nY3ISERFrUCGLKZzZugayiMj3qZDFFI6cbPz1z8WoU9fsKCIiluCsyp1mzJjBli1b8Pl83H333XTo\n0IFx48bh9/vJyMhg5syZuN3uUGeVaFFSgn3vd5Rf0svsJCIillFpIW/YsIHs7GxWrFhBQUEBN9xw\nA927dycrK4trr72Wp59+mlWrVpGVlRWOvBIFHF/vxmYY+Ftqd7WIyGmV7rLu2rUrc+bMAaBOnTp4\nPB42btxI3759AejTpw/r168PbUqJKs6cU58ft25tchIREeuodAvZ4XCQmJgIwKpVq+jduzcffvhh\nxS7q9PR08vPzz/oYqamJOJ2OIMQNnoyMFLMjhI3lZj2wB4DkizqRHMRslpszhDRr9ImVOSG2Zq2O\nKn2GDPDOO++watUqFi1axFVXXVVxu2EYlf5sQUFJzdKFSEZGCvn5hWbHCAsrzpry2efEA0cyziMQ\npGxWnDNUNGv0iZU5IfZmrY4qHWX9wQcfsGDBAp5//nlSUlJITEzE6/UCkJeXR2ZmZvWTSsxyZGdj\nJCYSaNjI7CgiIpZRaSEXFhYyY8YMnn32WerVqwdAjx49WL16NQBr1qyhVy8dLStVFAjg3J2Nr2Ur\nrWEtIvI9le6yfvvttykoKGA5bZI1AAANbklEQVT06NEVt02bNo2HH36YFStW0LBhQ/r37x/SkBI9\n7Pv3YfN48J9/vtlRREQspdJCvummm7jpppt+cPvixYtDEkiim6NihS4dYS0i8n3aZyhhVXHKUysV\nsojI96mQJawc2ScvKuHTFrKIyBlUyBJWjpxdGDYb/hYtzY4iImIpKmQJK0f2LgKNm8CpxWZEROQk\nFbKEje3EcRyH8vC31BHWIiL/S4UsYXP6CGtf6zYmJxERsR4VsoSNTnkSEflpKmQJG2fOySOsdcqT\niMgPqZAlbCp2WWsLWUTkB1TIEjaOnF0E6tbDyMgwO4qIiOWokCU8SkpwfL0bf5u2YLOZnUZExHJU\nyBIWzi8+x+b3U96xk9lRREQsSYUsYeHcthUAX8fOJicREbEmFbKEhWvrp4AKWUTkp6iQJSyc27Zi\nJCbhP7+V2VFERCxJhSyhV1KC46ud+DpcCA6H2WlERCxJhSwh59ydjS0QwNfuArOjiIhYlgpZQk5r\nWIuIVE6FLCHnOL1kplboEhH5SSpkCTlHzqmLSmgNaxGRn6RClpBzZmdjJCYRaNDQ7CgiIpalQpbQ\nCgRw7M7G1/J8sOvtJiLyU/QvpISUfd9ebF6vdleLiFRChSwhpc+PRUSqRoUsIeU8fcqTCllE5KxU\nyBJSjmyd8iQiUhUqZAkpR84uDJsNf4uWZkcREbE0FbKElDN7F4HGTSE+3uwoIiKWpkKWkLEdK8Ce\nfwhfa+2uFhGpjApZQkZLZoqIVJ0KWUKmopB1hLWISKVUyBIyp095UiGLiFROhSwhU3HZRe2yFhGp\nlApZQsaRs4tAvXoY6elmRxERsTwVsoRGeTmOb7/B36oN2GxmpxERsTwVsoSE49tvsPl8+M5vZXYU\nEZGIoEKWkDj9+bFOeRIRqRoVsoSErvIkIlI9KmQJif+e8qRd1iIiVaFClpBw5OzCcLnwN2lmdhQR\nkYigQpbgMwwc2dn4m7cAl8vsNCIiEUGFLEFnO3QI+4njOqBLRKQaVMgSdE4d0CUiUm0qZAm60xeV\n0DnIIiJVp0KWoHNkfwWAX4UsIlJlKmQJOtcnWzAcDnztfmZ2FBGRiKFCluDyenFu24qvw4WQmGh2\nGhGRiKFClqBybvsMW1kZ5Rd1MzuKiEhEUSFLULk2bwLA1/Vik5OIiESWKhXyrl27uOKKK1i6dCkA\nubm5DB48mKysLEaNGkVZWVlIQ0rkcH28EYByFbKISLVUWsglJSVMmjSJ7t27V9w2d+5csrKyWLZs\nGU2bNmXVqlUhDSmRw7l5E/5zGxBodJ7ZUUREIkqlhex2u3n++efJzMysuG3jxo307dsXgD59+rB+\n/frQJZSIYT+YiyPvIL7OPwebzew4IiIRxVnpHZxOnM4z7+bxeHC73QCkp6eTn58fmnQSUZxbPwXA\n16mzyUlERCJPpYVcGcMwKr1PamoiTqejtk8VVBkZKWZHCJuwzZrzJQBJvXuQZMKfr17T6BQrs8bK\nnBBbs1ZHjQo5MTERr9dLfHw8eXl5Z+zO/jEFBSU1ChcqGRkp5OcXmh0jLMI5a52PNhAHHG7aBiPM\nf756TaNTrMwaK3NC7M1aHTU67alHjx6sXr0agDVr1tCrV6+aPIxEE8PAtfVT/I2bYJxzjtlpREQi\nTqVbyNu3b2f69Ons378fp9PJ6tWrmTVrFhMmTGDFihU0bNiQ/v37hyOrWJgtPx/74XxKr/ml2VFE\nRCJSpYXcvn17lixZ8oPbFy9eHJJAEpkce74BwN+ipclJREQik1bqkqBw7PkWAH/TZqbmEBGJVCpk\nCYqKQm7W3NwgIiIRSoUsQaEtZBGR2lEhS1DYv/0Gw24ncF5js6OIiEQkFbIEhWPfXgINGsKpFdxE\nRKR6VMhSe34/9twDBBo2MjuJiEjEUiFLrdkP5WHz+/E3UiGLiNSUCllqzX5gPwCBBipkEZGaUiFL\nrVUUsraQRURqTIUstebYvw8Av7aQRURqTIUstWbf+x0AgcY65UlEpKZUyFJrWqVLRKT2VMhSa449\n3xKoWw+jXqrZUUREIpYKWWrHMHDs+VZLZoqI1JIKWWrFnncQm9dLQIUsIlIrKmSpFfu33wK6qISI\nSG2pkKVWHAdOnfKki0qIiNSKCllqxb7/1KIgWsdaRKRWVMhSK/ZcrdIlIhIMKmSpFcepLWSt0iUi\nUjsqZKkVe+5+jLg4jPR0s6OIiEQ0FbLUimPfPgINGoLNZnYUEZGIpkKWmisuxn44X6c8iYgEgQpZ\naszx3R4A/E21hrWISG2pkKXGHN9+A2hREBGRYFAhS4059pwq5GbNzA0iIhIFVMhSY6cvuxjQZRdF\nRGpNhSw1Zj/9GXLjJiYnERGJfCpkqTHHgQMEkpIx6tYzO4qISMRTIUuN2Q/sO7lkps5BFhGpNRWy\n1ExJCfaCgpOLgoiISK2pkKVGHKcuKuFvdJ7JSUREooMKWWrEfuAAgLaQRUSCRIUsNWLUq4cRH4/v\noq5mRxERiQpOswNIZPJ16Mjh3fvB5TI7iohIVNAWstScylhEJGhUyCIiIhagQhYREbEAFbKIiIgF\nqJBFREQsQIUsIiJiASpkERERC1Ahi4iIWIAKWURExAJUyCIiIhagQhYREbEAFbKIiIgF2AzDMMwO\nISIiEuu0hSwiImIBKmQRERELUCGLiIhYgApZRETEAlTIIiIiFqBCFhERsQCn2QHCadOmTYwaNYop\nU6bQp08fAHbu3Mnjjz8OQJs2bXjiiSdMTBg8U6ZM4bPPPsNmszFx4kQuvPBCsyMF1a5duxg+fDhD\nhw7lt7/9Lbm5uYwbNw6/309GRgYzZ87E7XabHTMoZsyYwZYtW/D5fNx999106NAh6mb1eDxMmDCB\nI0eOUFpayvDhw2nbtm3Uzfl9Xq+X6667juHDh9O9e/eonHXjxo2MGjWKVq1aAdC6dWvuuOOOqJz1\njTfeYOHChTidTu677z7atGlT7TljZgv5u+++Y/HixXTp0uWM2ydPnszEiRNZvnw5RUVFvPfeeyYl\nDJ5NmzaxZ88eVqxYweTJk5k8ebLZkYKqpKSESZMm0b1794rb5s6dS1ZWFsuWLaNp06asWrXKxITB\ns2HDBrKzs1mxYgULFy5kypQpUTnr2rVrad++PUuXLmX27NlMmzYtKuf8vvnz51O3bl0get+/AN26\ndWPJkiUsWbKERx55JCpnLSgo4E9/+hPLli1jwYIFvPvuuzWaM2YKOSMjg2eeeYaUlJSK28rKyti/\nf3/F1mOfPn1Yv369WRGDZv369VxxxRUAtGzZkuPHj1NUVGRyquBxu908//zzZGZmVty2ceNG+vbt\nC0TP6wjQtWtX5syZA0CdOnXweDxROWu/fv248847AcjNzaV+/fpROedpu3fvJicnh8suuwyI3vfv\nj4nGWdevX0/37t1JTk4mMzOTSZMm1WjOmCnkhIQEHA7HGbcVFBRQp06diq/T09PJz88Pd7SgO3z4\nMKmpqRVfp6WlRcVcpzmdTuLj48+4zePxVOwOipbXEcDhcJCYmAjAqlWr6N27d9TOCjBo0CDGjBnD\nxIkTo3rO6dOnM2HChIqvo3nWnJwchg0bxs0338x//vOfqJx13759eL1ehg0bRlZWFuvXr6/RnFH5\nGfLLL7/Myy+/fMZtI0eOpFevXmf9uWhdRTRa5/op0TjvO++8w6pVq1i0aBFXXXVVxe3RNuvy5cvZ\nsWMHY8eOPWO2aJrztddeo1OnTjRu3PhHvx9NszZr1owRI0Zw7bXXsnfvXoYMGYLf76/4fjTNeuzY\nMZ555hkOHDjAkCFDavT+jcpCHjhwIAMHDqz0fmlpaRw7dqzi67y8vDN2g0aqzMxMDh8+XPH1oUOH\nyMjIMDFR6CUmJuL1eomPj4+a1/G0Dz74gAULFrBw4UJSUlKictbt27eTnp5OgwYNaNeuHX6/n6Sk\npKibE2DdunXs3buXdevWcfDgQdxud1S+pgD169enX79+ADRp0oRzzjmHzz//POpmTU9Pp3Pnzjid\nTpo0aUJSUhIOh6Pac8bMLusf43K5aNGiBZs3bwZgzZo1lW5FR4JLLrmE1atXA/DFF1+QmZlJcnKy\nyalCq0ePHhUzR8vrCFBYWMiMGTN49tlnqVevHhCds27evJlFixYBJz9yKSkpico5AWbPns0rr7zC\nypUrGThwIMOHD4/aWd944w1eeOEFAPLz8zly5AgDBgyIull79uzJhg0bCAQCFBQU1Pj9GzNXe1q3\nbh0vvPACX3/9NWlpaWRkZLBo0SJycnJ49NFHCQQCdOzYkQcffNDsqEExa9YsNm/ejM1m47HHHqNt\n27ZmRwqa7du3M336dPbv34/T6aR+/frMmjWLCRMmUFpaSsOGDZk6dSoul8vsqLW2YsUK5s2bR/Pm\nzStumzZtGg8//HBUzer1ennooYfIzc3F6/UyYsQI2rdvz/jx46Nqzv81b948GjVqRM+ePaNy1qKi\nIsaMGcOJEycoLy9nxIgRtGvXLipnXb58ecWR1Pfccw8dOnSo9pwxU8giIiJWFtO7rEVERKxChSwi\nImIBKmQRERELUCGLiIhYgApZRETEAlTIIiIiFqBCFhERsQAVsoiIiAX8P+kuL5idpElmAAAAAElF\nTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f123256a810>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW9xvHPrNnZQoKC7LvKWpeC\nLEbUCuqV0nLVWHFFAUHwyibgStnRIlrFDdqqCIqWoqVCtYCAIQJuYFUSVGQJIUCALDNJZubcP4BU\nKpBtJufMzPN+vXhJJpPJ82UCj2f7HZthGAYiIiJiKrvZAURERESFLCIiYgkqZBEREQtQIYuIiFiA\nCllERMQCVMgiIiIW4KyNb5KXV1Ab36bS6tePJz+/2OwYtSJaZo2WOUGzRqJomROia9aUlKQqPT8q\nt5CdTofZEWpNtMwaLXOCZo1E0TInRNesVRWVhSwiImI1KmQRERELUCGLiIhYgApZRETEAlTIIiIi\nFqBCFhERsQAVsoiIiAVUuDBIZmYmo0ePpm3btgC0a9eOu+++m/Hjx+P3+0lJSWHOnDm43e6QhxUR\nEYlUlVqp65JLLmH+/PnlHz/00EOkp6fTv39/nnrqKZYtW0Z6enrIQoqIiES6au2yzszMpF+/fgCk\npaWRkZER1FAiIiLRplJbyNnZ2QwbNoyjR48ycuRIPB5P+S7q5ORk8vLyzvr19evHW265tKquMRrO\nomXWaJkTNGtQHTsGn34KX3wBJSXgcJz6KyYGOneGrl3B5QpZDL2nUmEht2jRgpEjR9K/f392797N\nkCFD8Pv95Z83DKPCb2K1hcRTUpIsd8OLUImWWaNlTtCsNeX88nNcGzfg/OJTnF98jnNndqW+zoiL\no6xLN3wXX0rZiV9GcnJQMuk9jUxV/R+PCgu5UaNGDBgwAIBmzZrRsGFDtm3bhtfrJTY2ltzcXFJT\nU6uXVkSkNpSVEfPe34h78XlcWzeXPxyoU5fS3n3xdemGr1NnjMRE8AfA74eAH5vfj62oCOfnn+Ha\nnIkrMwP3po8BMJxOSgYNpnjE/fjPv8CsySSCVFjIK1asIC8vj7vuuou8vDwOHTrEoEGDWLVqFTfc\ncAOrV6+md+/etZFVRKRKbAcPEvfqImIXvYxjfw6GzUbJ1ddQMmgwZV27E2jZCmy2il/oliHHX6/g\nGM5Pt+LanEnM8reJffMNYt98g5J+V+EZOYaynr0q93oip2EzKtjnXFhYyNixYzl27BhlZWWMHDmS\njh07MmHCBEpKSmjcuDEzZszAdZZjK1bbPRFtu0yiYdZomRM0a6UEAsS98BwJM57A5vUSSEzCe/Mt\neO66l0Cr1sEJFwjg/mAVcc8+Xb7VXNatO4XTZuO76JIqvZTe08hU1V3WFRZyMFjtDz/afiCiYdZo\nmRM0a0Xs+3NIGjkM90drCDRMofiBsXhvugUjqU6IUoJzyyfE/3E+7pXvgsNB0eTH8AwfCfbKXcii\n9zQyVbWQtVKXiEQM98r3qN/3l7g/WkPJVb/i8LpNeIYOD2kZA/guuoRji17j6NvvEmiQTOLjU6hz\n643YDh8K6feVyKJCFpHw5/OROHYMdW9Px+bxUDDzSY699iZGSkqtxijr1Yf8f22ktG8aMf9cRf0r\neuHcpHUapHJUyCIS3gyDpP8bRdxfFuK7oBP5//wI751DTTu5ykhN5ejSv1I06RHs+3OoN+haXP/6\nwJQsEl5UyCIS1hIef5jYJa9T1q07R959H3/7DmZHArud4jFjOfrW38DhoM5dQ3Bu+8LsVGJxKmQR\nCVtxz8wj/rn5+Nq24+jitzESrbUCVFnvvhx77mVsxUXUSR+Mfc9usyOJhamQRSQsxb7+FxKnPoK/\ncROOLv1r0FbNCrbS62+g6PFpOHL3U/fm32A7km92JLEoFbKIhB3HV9tJHDuaQIMGHH1zOYHzmpod\n6aw8w0ZSfM9wnN9+Q507b4VAwOxIYkEqZBEJL4ZB4qRx2Px+Cv74Iv527c1OVClFj0+n5OprcG/4\niJi3lpgdRyxIhSwiYSVm+du4MzZScs0ASvtdbXacynM4KJz5JEZsLAnTn4Bia910R8ynQhaR8FFY\nSMJjUzBiYih8YobZaaoscF5TPPfehyNnH/ELnjU7jliMCllEwkbC00/iyNlH8X33E2jR0uw41VJ8\n/wMEGqYQP/8P2HP3mx1HLESFLCJhwb5vL3HPP4O/yXkU3/+g2XGqzUiqQ9GEydiKi4ifNc3sOGIh\nKmQRCQtxzz+DrbSU4nEPQXy82XFqxHvLEHytWhP71hIoLDQ7jliECllELM926BBxr/4Jf+MmeH97\no9lxas7ppGTgb7CVlOBe86HZacQiVMgiYnlxLy/AVlyMZ8QocLvNjhMUpf2vBSDmH++ZnESsQoUs\nIpZmKywg7pUXCDRogOeW28yOEzS+zl3xN26C+4NVUFZmdhyxABWyiFha7J8XYT9yBM/Q4ZCQYHac\n4LHZKL1mAPYjR2D9erPTiAWokEXEukpKiFvwLIGERDx33WN2mqArueb4bmtWrTI3iFiCCllErOvP\nf8aRux/v7Xdh1KtvdpqgK+vVh+Khw+Caa8yOIhbgNDuAiMhp+XwwezZGTAyeYfeZnSY0nE6Kps0m\nPiUJ8grMTiMm0xayiFhSzLvLYedOvDfeQqDROWbHEQk5FbKIWE8gQPzTT4HdTvHI0WanEakVKmQR\nsZyYN9/A+e/tcPPNYbtmtUhVqZBFxFJsx46SOPVRjLg4mD7d7DgitUaFLCKWEj93Fva8AxSPfhCa\nNTM7jkitUSGLiGU4dnxL3MsL8DdvQfGI+82OI1KrVMgiYg2GQeKk8dh8PgqnzoTYWLMTidQqFbKI\nWELM397B/dEaSq+4ktJf9Tc7jkitUyGLiOlsR4+QMGUiRmwsBTPmgs1mdiSRWqdCFhHTJUx/AseB\nXIofGEegZSuz44iYQoUsIqZyfrqF2D+9gq9de4rv0yIgEr1UyCJiHp+PxLFjsBkGhXPmgdttdiIR\n06iQRcQ0cS8twLX9Szw3/46yHpeZHUfEVCpkETGFfc9uEmZNI9CgAUWPTDU7jojpdPtFETFF4uQJ\n2IqLKJgxByM52ew4IqbTFrKI1Dr3+yuJ+cd7lPa4jJKbbjE7joglqJBFpHYVFpL40FgMl4vC2X/Q\nNcciJ6iQRaRWJcyZgWPvHorvG42/fQez44hYhgpZRGqNY/s24l587vjNIx4YZ3YcEUtRIYtI7QgE\nSBo3GpvfT8GspyAuzuxEIpaiQhaRWhH7l0W4tm7BO3AQZVdcaXYcEctRIYtIyNlyc0n4/WMEkupQ\nNHWm2XFELEnXIYtIyCU++hD2Y0cpmDGXQKNzzI4jYknaQhaRkHKt/Rex7yyjrFt3vLffZXYcEctS\nIYtI6Hi9JE74Pwy7ncK5T4PDYXYiEctSIYtIyMTPm4vz++/wDB2Or1MXs+OIWJoKWURCwpG1g/hn\n/oC/cROKJ0wyO46I5amQRST4DIPEcWOwlZVROG02RmKS2YlELE+FLCJBF/PmG7g/3kDJr/pTOuA6\ns+OIhIVKFbLX6+XKK6/knXfeIScnh1tvvZX09HRGjx5NaWlpqDOKSBixHT5E4mOTMeLjKZw+RzeP\nEKmkShXy888/T926dQGYP38+6enpLF68mObNm7Ns2bKQBhSR8JIw9VHshw5RNG4SgabNzI4jEjYq\nLOSdO3eSnZ3N5ZdfDkBmZib9+vUDIC0tjYyMjJAGFJHw4dyUQdzrf8HX8QI89ww3O45IWKmwkGfN\nmsXEiRPLP/Z4PLjdbgCSk5PJy8sLXToRCR+lpSSNH4Nhs1Ewdx64XGYnEgkrZ106c/ny5XTt2pWm\nTZue9vOGYVTqm9SvH4/Taa0FAVJSouesz2iZNVrmBIvOOnMmfPM13Hsv9QcE7+YRlpw1BKJlToiu\nWavirIW8du1adu/ezdq1a9m/fz9ut5v4+Hi8Xi+xsbHk5uaSmppa4TfJzy8OWuBgSElJIi+vwOwY\ntSJaZo2WOcGas9p3/UCDJ57AaJjC4QcnYQQpnxVnDYVomROib9aqOGshz5s3r/z3zzzzDE2aNOGz\nzz5j1apV3HDDDaxevZrevXtXL6mIRAbDIHHig9g8HgqenI9Rr77ZiUTCUpWvQx41ahTLly8nPT2d\nI0eOMHDgwFDkEpEw4X53OTEf/pPSPmmU/OZ/zY4jErYqffvFUaNGlf9+0aJFIQkjIuHFVnCMxMkT\nMGJiKJz9pK45FqkBrdQlItUWP2Mqjtz9FI9+EH+rNmbHEQlrKmQRqRbn558St/AlfK3bUDzqAbPj\niIQ9FbKIVJ3fT+K4B7AFAhTOmQcxMWYnEgl7KmQRqbK4hS/i+uIzvINvoqxXH7PjiEQEFbKIVIk9\nZx/xM35PoF49Ch+bZnYckYhR6bOsRUQAEidPwF5YcPya45QUs+OIRAxtIYtIpbn/+T4x7/2Nskt+\nifeWIWbHEYkoKmQRqZyiIhInjsVwOimYMw/s+udDJJj0N0pEKiXhqdk4dv+IZ/go/B3PNzuOSMRR\nIYtIhRxf/5u455/B36w5RQ9OMDuOSERSIYvI2QUCJI0bg83no3DGHIiPNzuRSERSIYvIWcUufhXX\nJ5soue4GSq+6xuw4IhFLhSwiZ2TLyyPhiYcJJCZROG2W2XFEIpquQxaRM0p8fAr2I0conDaLwLmN\nzY4jEtG0hSwip+Xa8BGxb75BWZdueO68x+w4IhFPhSwiP1dSQuK4MRh2O4Vz54HDYXYikYinQhaR\nn4l/5g84d2bjuXMovi7dzI4jEhVUyCJyCsd32cQ//ST+c86l+KGHzY4jEjVUyCLyH4ZB4vgHsZWU\nUDhtFkZSHbMTiUQNFbKIlIt5+03cH62h5MqrKb3uBrPjiEQVFbKIAGA7kk/iI5Mw4uIonDEXbDaz\nI4lEFRWyiACQ8PvHsR/Mo+jBCQSatzA7jkjUUSGLCM7NmcT9ZSG+Dh3xDB9ldhyRqKRCFol2ZWUk\njR0DQMHseeBymRxIJDqpkEWiXNwLz+H8+is8twzB98seZscRiVoqZJEoZt/9IwlzZxBITqbo4cfN\njiMS1XRzCZFoZRgkThqHrbiYgllPYTRINjuRSFTTFrJIlHKvfI+YVf+gtFcfSv73ZrPjiEQ9FbJI\nFLIVFpA4eTyG203h7D/ommMRC1Ahi0ShhKmP4ti3l+JRD+Bv09bsOCKCjiGLnOKpp2aTn3+YPn0u\np0ePXiQmJpodKehcmz4mbtHL+Np3oHjMWLPjiMgJKmSRE95441Vmzvw9AC+88Bwul4uLLrqEPn0u\np2/fNLp27Y7TGeZ/ZTweEsfch2GzUfCHZyEmxuxEInJCmP/rIhIcGzeu54EHjq9Q1bx5SwYMuI6M\njA1s2vQxGRkbmTVrGnXq1KVXrz707ZtG375ptGzZCluYHXtNmDMD53c7Kb73PnwXXWJ2HBH5CRWy\nRL0ff9zF3XcPwTAMAHbt+p7du39k9ep1HD58iI0b17N27RrWrVvDypXvsnLluwA0bdqsvJx79+5L\nA4tfNuTcnEncc/PxN29B0cQpZscRkf+iQpaoVlRUxJAhN3Po0CHi4+MJBAJ4vV7anDjRqUGDZK6/\nfiDXXz8QgO+//451646X84YNH/Haa3/mtdf+jM1mo3PnruW7tz/4YDULFjzLjBlzSUu7gpYtW5u6\nNW3fu4e6t98CQMG8P0JCgmlZROT0bMbJzYIQyssrCPW3qJKUlCTLZQqVaJm1OnMahsHdd9/Gu+8u\n59pr/4e//30FAH37pvHGG29XeLzY7/fzxReflRf05s2ZlJWVnfa5553XtHxr+qqrriGhBoVY5VmL\niqh3/a9wbf+Swmmz8AwdXu3vXdv08xt5om3WqtBlTxK1TpYxgMPhAKBhwxRefHFRpU7ecjgcdO9+\nEQ88MI7ly1fy7be7WLz4Le644+6fPXfv3j28/vpfuOeeOxg+/M7gDnI2gQB1Rt6La/uXeG69A8/d\nw2rve4tIlWiXtUSPQAD7vr04dnyLM3sHv87P590Tn3p3xV8BWNq0Kc3GPYCRmEggtRFlPXtRdmkP\niIur8OUTExO58spf0bBhCosWvQxA/fr1qVu3Hvn5hzl69CgA77//Dy677CL69bua8eMfIjGxav8X\nXRXxs6cR8/cVlPbsReGMOVoARMTCtMs6wkXLrGec0zBwbvmE2DdeI2bFcuzHjp7y6R3A/9jtfBsI\n0ArYeZrXNmJjKbukB6V90yi7PA3fBZ3AfuadS4ZhsGzZUlat+gfr168lPz//lM936dKVHTu+xePx\nsGTJ21xxxVXBmfWnSktJnDKBuD+9gr95C/JXrQnLtaqj/uc3AkXbrFWhLWSJSLYDB4h9awmxb7yK\nc8e3APgbN8F7RT/8bdvjb9sOX9v21G/Vmsnr1jBkyE0MGDmavHGTsBUUYCsswPHDd7jXrcW9bg3u\nj47/Yir4m5xHyW9vxHtj+mlXubLZbAwefBODB9+E3+9n27Yv+Oijtaxbt4aSkhKWLHmH2267mfXr\n19G5c7egz27P2Uedu4bg2vIJvo4XcPTPi8OyjEWijQpZIoot/zAJjz9M7JtvYPP5MNxuvAMH4U0f\nQlnvvnDiWPFPZWRsBKBPnzSIi8OIi8NITSXQqjVlV1xFEccL3v3RGtxr/4X7H39nwdNPUvb0k4zu\n/gvK/jedkl//BqN+g5+9tsPhoGvX7nTt2p377/8/AIqLi8nMzODCCzvTsGHDoM7vythInbtvw553\nAO+gwRQ8OV9nVIuECRWyRAz3u38jaeKD2PMO4GvfAc/td1EyaPBpi/Kn1q1bQ0xMDJde2uOMzzFS\nUyn57Y2U/PZG/vTSAsZPHg/A2k+38sanW0l+5CFKr7oG743plPa7Clwuvtl1fFd1h+b1T3mtzMwM\nSktL6ds3rYYT/4ft6BHiFvyR+KefBMOg8Pczj59NrWPGImFDhSxhz5abC8PvoO7bb2PExFA45XE8\nI0ZBJc6UPnDgAP/+93b69EkjrhInbmVkbGTSo5NITk6mffuOvP/xBkZ06cpfSkuJ+fsKYv6+gkBy\nMt5Bg1nR/DqMhMSfFfK6dWsAglLItvzDxL34PHEvLcB+7CiBlFSOvfQnynr2qvFri0jt0mVPEtbc\nK9+jQe+L4e23Kbu0B/lrPsZz/wOVKmOA9evXApUrx927f+Suu24FYN685zh4MA+AXveMIH9tBvkf\nrqf43hFsO6cDU4+cxzeHfXy7+whzp75J9pL3sB05vsVcmS3yitgOHiR++hM0+EUnEp6cBS4nhVMe\n53DmZypjkTClLWQJW+4Vf6XOvXdCTCw8+yxHfvu7s579fDont1abNGlCIBDAfoavLyoqYtCg6zh4\n8CAzZszh9df/zI4d33LvvSMYPPgmAHyduuDr1IXGZWX8buWHTPz6+Nfe9/pjNDu8B8NuZ+8FF/LV\nV9u4/PwLSczZi795y9Me1/5vtoJjuDZ9jGvDesjcSPJnn2EzDAIpqRSOnYjntjt1rFgkzKmQJSyd\nLGMjLp6jS9+h/oAroRqXUhw+fAiAYcPuYsqUifTp05e+fa+gb980GjduUv68X/ziAg4fPgxAXt4B\n3n9/Jb17X86jj/7+5y/qcvFxg3b8z2VAIMAHLV/gxt0bcX20lnWfbALgmn9vp8Evu2PExeFr1wF/\nx/Pxt2gJZWXYPB5snmJsHg94PDh278L5xefY/P7y1y+7tAel19+A55bbID6+ynOLiPXoOuQIF4mz\n/ncZ+y6+tNpzFhQc4/33V5Yvf5mbu7/8c23btqNv3zT69Enj8OFDjBlzX/nnmjdvwapVa854Q4nN\n3xzg4g6pP/v9/cPvZsnbb7J+6HAuOpKP45uvce74BltJyRkzGk4nvm6/oLRXb8ou60O9/v3IK/JX\nedZwFIk/v6cTLXNC9M1aFSrkCBdps7rfW0GdobedUsYQnDkNw2DHjm9Zt+5frFu3ho0bN1BcXAQc\nv3ypU6fO5OTkUFhYyIoV79OpU+dTvj43dz8pKaln3O1tGAZdu3aktLSEr77a+Z/n+Xw4fvge+4+7\nIDb2+GVXcfEYsbHH/1u3LsTGlr9OpL2nZxMts0bLnBB9s1aFdllL2LDv/pGkUcMwYuNOKeNgsdls\ntG/fgfbtO3DPPSMoLS1l69bN5VvPn322lUAgAMANN/SnV6/eJ24YcQWbN2cyevQIAAYN+u1pd3tn\nZe0gJ2cfAwcOOrW0nU78bdqedpEREYkeKmQJD4ZB0rgx2IsKOTb/+aCX8em43W569LiMHj0uY+LE\nKRw9eoQNG9aXb0G///5K3n9/JcApd296551lvPPOMgDatGnLwIG/Ydy4h/joo5OXO10R8uwiEn4q\nLGSPx8PEiRM5dOgQJSUljBgxgg4dOjB+/Hj8fj8pKSnMmTMHt9tdG3klSsW8tQT3vz6g9PIrKLkx\n3ZQMdevW49prr+faa68H4Mcfd5Uvifnee3875bnnnHMuMTExfPfdTubOncnIkWPKz+ju0+fy2o4u\nImGgwmPIK1euZO/evQwdOpS9e/dy55130r17d/r06UP//v156qmnOOecc0hPP/M/klY7XhBtxzDC\nfVZbXh4Nel2EraSUwx9tItCs+c+eY/act9wymH/+c1X5xzabjZN/tWw2G7/8ZU8yMjaSmtqI7duz\navS9zJ61NkXLrNEyJ0TfrFVR4UWbAwYMYOjQoQDk5OTQqFEjMjMz6devHwBpaWlkZGRUI6pI5SRO\nGY89P5+iyY+ctoyt4LXX3mTDhs1MmzaLq6++hri4/1yK1KBBcvl62QcO5JoVUUQsrtLHkG+66Sb2\n79/PggULuOOOO8p3UScnJ5OXlxeygBLdHN9lE/vXtynr1h3PnfeYHeeMbDYb7dq1p1279gwdOpyy\nsjK2bt3Ctm2f85vf/C8+n58XX3yOO+8canZUEbGoKl329PXXXzN+/Hjy8vLYtOn4Age7du1iwoQJ\nLFmy5Ixf5/P5cTorXo1I5GcmT4bp0+H11+Esh0VERMJdhVvI27dvJzk5mXPPPZeOHTvi9/tJSEjA\n6/USGxtLbm4uqampZ32N/PzioAUOhmg7hhG2s/r9NFi4CFuduhzqdfaVuMJ6zirSrJEnWuaE6Ju1\nKio8hrxlyxYWLlwIwMGDBykuLqZnz56sWnX8BJbVq1fTu3fvakQVOTv32g9x7M+hZNBvoRJ3YhIR\nCWcVbiHfdNNNTJ48mfT0dLxeL4888ggXXnghEyZMYOnSpTRu3JiBAwfWRlaJMrGLXwPAe/PvTE4i\nIhJ6FRZybGwsTz755M8eX7RoUUgCiQDYjh3F/f7f8XU8H1/X7mbHEREJOd0PWSzJuWUztrIySn41\nAGw2s+OIiIScClksybU5EwDfxZeYnEREpHaokMWSXFs+AaDsFxebnEREpHaokMV6/H6cW7fga9MW\n4wz3GxYRiTQqZLEcx7ffYC8swHeRdleLSPRQIYvluD7/FNDuahGJLipksRzHjm8B8HU43+QkIiK1\nR4UsluPYefz2hP62bU1OIiJSe1TIYjmOrB0EGjTQCV0iElVUyGItpaU4dv2Av007s5OIiNQqFbJY\niuOH77H5/fjaaHe1iEQXFbJYiiNrBwD+1ipkEYkuKmSxFEf2iUJu197kJCIitUuFLJbizD5xhnWb\nNiYnERGpXSpksRRH9g4Mlwt/sxZmRxERqVUqZLEOw8CRlYW/ZStwucxOIyJSq1TIYhm2vDzsx47q\nhC4RiUoqZLEM58kTunTJk4hEIRWyWMbJS558bbUoiIhEHxWyWIaj/AxrbSGLSPRRIYtlOLTLWkSi\nmApZLMOZlUUgJRWjXn2zo4iI1DoVsliD14t99y6tYS0iUUuFLJbg+G4nNsPQXZ5EJGqpkMUSyo8f\nt9UWsohEJxWyWILz5F2edMmTiEQpFbJYwslLnnxapUtEopQKWSzBkZ2FERNDoGkzs6OIiJhChSzm\nMwwc2Vn4W7UGh8PsNCIiplAhi+ns+3OwFxXqDGsRiWoqZDHdf9aw1vFjEYleKmQx3X/WsNYWsohE\nLxWymE5rWIuIqJDFApy6y5OIiApZTGYYOL75Gv+5jTESk8xOIyJiGhWymMq+dw+O/Tn4ul9kdhQR\nEVOpkMVUrs2ZAJRddInJSUREzKVCFlM5t3wCQNnFl5qcRETEXCpkMZVrcyaGy4Wvcxezo4iImEqF\nLOYpLsa5fRu+zl0hNtbsNCIiplIhi2mc277E5vNRdtHFZkcRETGdCllM4/ryMwB8XbqZnERExHwq\nZDGN8/MThdy1u8lJRETMp0IW0zi//JxAYtLx2y6KiEQ5FbKYo7AQx45vj59dbdePoYiI/iUUU7i2\nf4nNMI6fYS0iIipkMYfjm68B8J1/gclJRESsQYUspnDsPHGHp3btTU4iImINKmQxhTNL90AWEfkp\nFbKYwpGdhb/RORh16podRUTEEpyVedLs2bPZunUrPp+Pe++9l06dOjF+/Hj8fj8pKSnMmTMHt9sd\n6qwSKYqLse/+kbLLepudRETEMios5E2bNpGVlcXSpUvJz8/n17/+NT169CA9PZ3+/fvz1FNPsWzZ\nMtLT02sjr0QAx3c7sRkG/tbaXS0iclKFu6wvvvhinn76aQDq1KmDx+MhMzOTfv36AZCWlkZGRkZo\nU0pEcWafOH7crp3JSURErKPCLWSHw0F8fDwAy5Yto0+fPmzYsKF8F3VycjJ5eXlnfY369eNxOh1B\niBs8KSlJZkeoNZabdd8uABIv6kpiELNZbs4Q0qyRJ1rmhOiatSoqdQwZ4IMPPmDZsmUsXLiQq6++\nuvxxwzAq/Nr8/OLqpQuRlJQk8vIKzI5RK6w4a9IX24gFDqWcRyBI2aw4Z6ho1sgTLXNC9M1aFZU6\ny3r9+vUsWLCAl156iaSkJOLj4/F6vQDk5uaSmppa9aQStRxZWRjx8QQaNzE7ioiIZVRYyAUFBcye\nPZsXXniBevXqAdCzZ09WrVoFwOrVq+ndW2fLSiUFAjh3ZuFr3VZrWIuI/ESFu6xXrlxJfn4+Y8aM\nKX9s5syZTJkyhaVLl9K4cWMGDhwY0pASOex792DzePC3aWN2FBERS6mwkG+88UZuvPHGnz2+aNGi\nkASSyOYoX6FLZ1iLiPyU9hm06VxFAAANJklEQVRKrSq/5KmtCllE5KdUyFKrHFnHbyrh0xayiMgp\nVMhSqxzZOzBsNvytWpsdRUTEUlTIUqscWTsING0GJxabERGR41TIUmtsx47iOJCLv7XOsBYR+W8q\nZKk1J8+w9rVrb3ISERHrUSFLrdElTyIiZ6ZCllrjzD5+hrUueRIR+TkVstSa8l3W2kIWEfkZFbLU\nGkf2DgJ162GkpJgdRUTEclTIUjuKi3F8txN/+w5gs5mdRkTEclTIUiucX23D5vdT1qWr2VFERCxJ\nhSy1wvnl5wD4unQzOYmIiDWpkKVWuD7/DFAhi4iciQpZaoXzy88x4hPwt2lrdhQREUtSIUvoFRfj\n+PYbfJ06g8NhdhoREUtSIUvIOXdmYQsE8HU83+woIiKWpUKWkNMa1iIiFVMhS8g5Ti6ZqRW6RETO\nSIUsIefIPnFTCa1hLSJyRipkCTlnVhZGfAKBcxubHUVExLJUyBJagQCOnVn4WrcBu37cRETORP9C\nSkjZ9+zG5vVqd7WISAVUyBJSOn4sIlI5KmQJKefJS55UyCIiZ6VClpByZOmSJxGRylAhS0g5sndg\n2Gz4W7U2O4qIiKWpkCWknFk7CDRtDrGxZkcREbE0FbKEjO1IPva8A/jaaXe1iEhFVMgSMloyU0Sk\n8lTIEjLlhawzrEVEKqRClpA5ecmTCllEpGIqZAmZ8tsuape1iEiFVMgSMo7sHQTq1cNITjY7ioiI\n5amQJTTKynD88D3+tu3BZjM7jYiI5amQJSQcP3yPzefD16at2VFERMKCCllC4uTxY13yJCJSOSpk\nCQnd5UlEpGpUyBIS/7nkSbusRUQqQ4UsIeHI3oHhcuFv1sLsKCIiYUGFLMFnGDiysvC3bAUul9lp\nRETCggpZgs524AD2Y0d1QpeISBWokCXonDqhS0SkylTIEnQnbyqha5BFRCpPhSxB58j6FgC/CllE\npNJUyBJ0rk+3Yjgc+DpeYHYUEZGwoUKW4PJ6cX75Ob5OnSE+3uw0IiJhQ4UsQeX88gtspaWUXXSJ\n2VFERMKKClmCyrXlEwB8F19qchIRkfBSqULesWMHV155Ja+99hoAOTk53HrrraSnpzN69GhKS0tD\nGlLCh2tzJgBlKmQRkSqpsJCLi4uZOnUqPXr0KH9s/vz5pKens3jxYpo3b86yZctCGlLCh3PLJ/jP\nOZdAk/PMjiIiElYqLGS3281LL71Eampq+WOZmZn069cPgLS0NDIyMkKXUMKGfX8Ojtz9+Lr9Amw2\ns+OIiIQVZ4VPcDpxOk99msfjwe12A5CcnExeXl5o0klYcX7+GQC+rt1MTiIiEn4qLOSKGIZR4XPq\n14/H6XTU9FsFVUpKktkRak2tzZr9bwAS+vQkwYQ/X72nkSlaZo2WOSG6Zq2KahVyfHw8Xq+X2NhY\ncnNzT9mdfTr5+cXVChcqKSlJ5OUVmB2jVtTmrHU+3kQMcLB5e4xa/vPVexqZomXWaJkTom/WqqjW\nZU89e/Zk1apVAKxevZrevXtX52UkkhgGrs8/w9+0GUbDhmanEREJOxVuIW/fvp1Zs2axd+9enE4n\nq1atYu7cuUycOJGlS5fSuHFjBg4cWBtZxcJseXnYD+ZRcs21ZkcREQlLFRbyhRdeyKuvvvqzxxct\nWhSSQBKeHLu+B8DfqrXJSUREwpNW6pKgcOz6AQB/8xam5hARCVcqZAmK8kJu0dLcICIiYUqFLEGh\nLWQRkZpRIUtQ2H/4HsNuJ3BeU7OjiIiEJRWyBIVjz24C5zaGEyu4iYhI1aiQpeb8fuw5+wg0bmJ2\nEhGRsKVClhqzH8jF5vfjb6JCFhGpLhWy1Jh9314AAueqkEVEqkuFLDVWXsjaQhYRqTYVstSYY+8e\nAPzaQhYRqTYVstSYffePAASa6pInEZHqUiFLjWmVLhGRmlMhS405dv1AoG49jHr1zY4iIhK2VMhS\nM4aBY9cPWjJTRKSGVMhSI/bc/di8XgIqZBGRGlEhS43Yf/gB0E0lRERqSoUsNeLYd+KSJ91UQkSk\nRlTIUiP2vScWBdE61iIiNaJClhqx52iVLhGRYFAhS404Tmwha5UuEZGaUSFLjdhz9mLExGAkJ5sd\nRUQkrKmQpUYce/YQOLcx2GxmRxERCWsqZKm+oiLsB/N0yZOISBCokKXaHD/uAsDfXGtYi4jUlApZ\nqs3xw/eAFgUREQkGFbJUm2PXiUJu0cLcICIiEUCFLNV28raLAd12UUSkxlTIUm32k8eQmzYzOYmI\nSPhTIUu1OfbtI5CQiFG3ntlRRETCngpZqs2+b8/xJTN1DbKISI2pkKV6ioux5+cfXxRERERqTIUs\n1eI4cVMJf5PzTE4iIhIZVMhSLfZ9+wC0hSwiEiQqZKkWo149jNhYfBddbHYUEZGI4DQ7gIQnX6cu\nHNy5F1wus6OIiEQEbSFL9amMRUSCRoUsIiJiASpkERERC1Ahi4iIWIAKWURExAJUyCIiIhagQhYR\nEbEAFbKIiIgFqJBFREQsQIUsIiJiASpkERERC1Ahi4iIWIDNMAzD7BAiIiLRTlvIIiIiFqBCFhER\nsQAVsoiIiAWokEVERCxAhSwiImIBKmQRERELcJodoDZ98sknjB49munTp5OWlgbAN998w2OPPQZA\n+/btefzxx01MGDzTp0/niy++wGazMWnSJDp37mx2pKDasWMHI0aM4Pbbb+d3v/sdOTk5jB8/Hr/f\nT0pKCnPmzMHtdpsdMyhmz57N1q1b8fl83HvvvXTq1CniZvV4PEycOJFDhw5RUlLCiBEj6NChQ8TN\n+VNer5frrruOESNG0KNHj4icNTMzk9GjR9O2bVsA2rVrx9133x2Rs65YsYKXX34Zp9PJ/fffT/v2\n7as8Z9RsIf/4448sWrSI7t27n/L4tGnTmDRpEkuWLKGwsJB169aZlDB4PvnkE3bt2sXSpUuZNm0a\n06ZNMztSUBUXFzN16lR69OhR/tj8+fNJT09n8eLFNG/enGXLlpmYMHg2bdpEVlYWS5cu5eWXX2b6\n9OkROeuaNWu48MILee2115g3bx4zZ86MyDl/6vnnn6du3bpA5P78AlxyySW8+uqrvPrqqzz88MMR\nOWt+fj5//OMfWbx4MQsWLODDDz+s1pxRU8gpKSk8++yzJCUllT9WWlrK3r17y7ce09LSyMjIMCti\n0GRkZHDllVcC0Lp1a44ePUphYaHJqYLH7Xbz0ksvkZqaWv5YZmYm/fr1AyLnfQS4+OKLefrppwGo\nU6cOHo8nImcdMGAAQ4cOBSAnJ4dGjRpF5Jwn7dy5k+zsbC6//HIgcn9+TycSZ83IyKBHjx4kJiaS\nmprK1KlTqzVn1BRyXFwcDofjlMfy8/OpU6dO+cfJycnk5eXVdrSgO3jwIPXr1y//uEGDBhEx10lO\np5PY2NhTHvN4POW7gyLlfQRwOBzEx8cDsGzZMvr06ROxswLcdNNNjB07lkmTJkX0nLNmzWLixInl\nH0fyrNnZ2QwbNoybb76ZjRs3RuSse/bswev1MmzYMNLT08nIyKjWnBF5DPmtt97irbfeOuWxUaNG\n0bt377N+XaSuIhqpc51JJM77wQcfsGzZMhYuXMjVV19d/nikzbpkyRK+/vprxo0bd8pskTTn8uXL\n6dq1K02bNj3t5yNp1hYtWjBy5Ej69+/P7t27GTJkCH6/v/zzkTTrkSNHePbZZ9m3bx9Dhgyp1s9v\nRBby4MGDGTx4cIXPa9CgAUeOHCn/ODc395TdoOEqNTWVgwcPln984MABUlJSTEwUevHx8Xi9XmJj\nYyPmfTxp/fr1LFiwgJdffpmkpKSInHX79u0kJydz7rnn0rFjR/x+PwkJCRE3J8DatWvZvXs3a9eu\nZf/+/bjd7oh8TwEaNWrEgAEDAGjWrBkNGzZk27ZtETdrcnIy3bp1w+l00qxZMxISEnA4HFWeM2p2\nWZ+Oy+WiVatWbNmyBYDVq1dXuBUdDi677DJWrVoFwFdffUVqaiqJiYkmpwqtnj17ls8cKe8jQEFB\nAbNnz+aFF16gXr16QGTOumXLFhYuXAgcP+RSXFwckXMCzJs3j7fffps333yTwYMHM2LEiIiddcWK\nFbzyyisA5OXlcejQIQYNGhRxs/bq1YtNmzYRCATIz8+v9s9v1Nztae3atbzyyit89913NGjQgJSU\nFBYuXEh2djaPPPIIgUCALl268NBDD5kdNSjmzp3Lli1bsNlsPProo3To0MHsSEGzfft2Zs2axd69\ne3E6nTRq1Ii5c+cyceJESkpKaNy4MTNmzMDlcpkdtcaWLl3KM888Q8uWLcsfmzlzJlOmTImoWb1e\nL5MnTyYnJwev18vIkSO58MILmTBhQkTN+d+eeeYZmjRpQq9evSJy1sLCQsaOHcuxY8coKytj5MiR\ndOzYMSJnXbJkSfmZ1MOHD6dTp05VnjNqCllERMTKonqXtYiIiFWokEVERCxAhSwiImIBKmQREREL\nUCGLiIhYgApZRETEAlTIIiIiFqBCFhERsYD/B4sEXiZCe6/cAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1232680090>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VPXd/vH3rJlsQBITNtlJAAVZ\nCloQrBRrhfZXrS2PGitalYoURR/ZRFwpsqqAWnGDKj4UMLZU7QLVgltDEEUUF5KAIEsIAQNkmUky\nM+f3B5BKFbLOnDMz9+u6uCQnk8n9YSI358w532MzDMNARERETGU3O4CIiIiokEVERCxBhSwiImIB\nKmQRERELUCGLiIhYgApZRETEApzh+CYlJWXh+Db1lpKSQGlppdkxwiJWZo2VOUGzRqNYmRNia9b0\n9OQGPT4m95CdTofZEcImVmaNlTlBs0ajWJkTYmvWhorJQhYREbEaFbKIiIgFqJBFREQsQIUsIiJi\nASpkERERC1Ahi4iIWIAKWURExALqXBgkLy+PiRMnkpmZCUBWVhY333wzU6ZMIRAIkJ6ezvz583G7\n3SEPKyIiEq3qtVLX+eefz+LFi2s/vvvuu8nOzmbkyJE8+uij5OTkkJ2dHbKQIiIi0a5Rh6zz8vIY\nMWIEAMOHDyc3N7dZQ4mIiMSaeu0hFxYWMm7cOI4ePcqECRPwer21h6jT0tIoKSk549enpCRYbrm0\nhq4xGsliZdZYmRM0a7M6dgw+/BC2boWqKnA4Tv0VFwfnnQf9+oHLFbIYek2lzkLu3LkzEyZMYOTI\nkezZs4cxY8YQCARqP28YRp3fxGoLiaenJ1vuhhehEiuzxsqcoFmbyvnxR7jeexfn1g9xbv0I547C\nen2dER9PTd/++AddQM2JX0ZaWrNk0msanRr6D486C7l169aMGjUKgI4dO3LWWWfxySef4PP58Hg8\nFBcXk5GR0bi0IiLhUFND3Ot/If6Zp3B98H7t5mCLllQP+wH+vv3x9zkPIykJAkEIBCAYwBYIYKuo\nwPnRFlzv5+HKy8W98d8AGE4nVVeOpnL87QTOOdesySSK1FnIr776KiUlJdx0002UlJRw+PBhrrzy\nStauXcvll1/OunXrGDZsWDiyiog0iO3QIeKXL8Oz7DkcB4owbDaqLr2MqitHU9NvAMEuXcFmq/uJ\nrh1z/PnKjuH88ANc7+cRt+YVPKv/iGf1H6ka8SO8E+6gZsjQ+j2fyHewGXUccy4vL2fSpEkcO3aM\nmpoaJkyYQK9evZg6dSpVVVW0a9eO2bNn4zrDeytWOzwRa4dMYmHWWJkTNGu9BIPEP/17Emc/hM3n\nI5iUjO+aa/HedAvBrt2aJ1wwiPuNtcQ/sah2r7mm/wDKZ83DP/D8Bj2VXtPo1NBD1nUWcnOw2h9+\nrP1AxMKssTInaNa62A8UkTxhHO631xM8K53KOyfhu/pajOQWIUoJzs2bSHhyMe6/vQYOBxX3PID3\n1glgr9+FLHpNo1NDC1krdYlI1HD/7XVSfvB93G+vp+pHP+brtzbiHXtrSMsYwD/wfI4te4mjr7xG\nMDWNpAdn0OK6q7B9fTik31eiiwpZRCKf30/SpDtoeUM2Nq+XsjmPcOyl1Rjp6WGNUTP0Ikr/9R7V\nPxhO3D/XkvLDoTg3ap0GqR8VsohENsMg+X9vI/7FpfjP7UPpP9/Gd+NY006uMjIyOLrqz1RMvw/7\ngSJaXfkTXP96w5QsEllUyCIS0RIfvBfPyv+jpv8Ajrz2DwI9epodCex2Ku+YxNGX/wIOBy1uGoPz\nk61mpxKLUyGLSMSKf3whCb9fjD8zi6MrXsFIstYKUDXDfsCx3z+HrbKCFtmjse/dY3YksTAVsohE\nJM//vUjSzPsItGvP0VV/brZVs5pb9f+7nIoHZ+EoPkDLa36B7Uip2ZHEolTIIhJxHJ9uI2nSRIKp\nqRxdvYbg2R3MjnRG3nETqPzNrTi3f0GLG6+DYNDsSGJBKmQRiSyGQdL0ydgCAcqefIZAVg+zE9VL\nxYMPU3XpZbjffZu4l1eaHUcsSIUsIhElbs0ruHPfo+qyUVSPuNTsOPXncFA+5xEMj4fEhx+CSmvd\ndEfMp0IWkchRXk7iAzMw4uIof2i22WkaLHh2B7y3/BZH0X4SljxhdhyxGBWyiESMxEWP4CjaT+Vv\nbyfYuYvZcRql8vY7CZ6VTsLix7AXHzA7jliICllEIoJ9/z7in3qcQPuzqbz9LrPjNJqR3IKKqfdg\nq6wgYe4ss+OIhaiQRSQixD/1OLbqaion3w0JCWbHaRLftWPwd+2G5+WVUF5udhyxCBWyiFie7fBh\n4pf/gUC79vh+eZXZcZrO6aTqil9gq6rCvf5Ns9OIRaiQRcTy4p9bgq2yEu/428DtNjtOs6ge+RMA\n4v7+uslJxCpUyCJiabbyMuKff5pgairea683O06z8Z/Xj0C79rjfWAs1NWbHEQtQIYuIpXleWIb9\nyBG8Y2+FxESz4zQfm43qy0ZhP3IE3nnH7DRiASpkEbGuqirilzxBMDEJ702/MTtNs6u67Phha9au\nNTeIWIIKWUSs64UXcBQfwHfDTRitUsxO0+xqhl5E5dhxcNllZkcRC3CaHUBE5Dv5/TBvHkZcHN5x\nvzU7TWg4nVTMmkdCejKUlJmdRkymPWQRsaS419bAjh34rrqWYOs2ZscRCTkVsohYTzBIwqJHwW6n\ncsJEs9OIhIUKWUQsJ271H3F+tg2uuSZi16wWaSgVsohYiu3YUZJm3o8RHw8PP2x2HJGwUSGLiKUk\nLJiLveQglRPvgo4dzY4jEjYqZBGxDEf+duKfW0KgU2cqx99udhyRsFIhi4g1GAZJ06dg8/spnzkH\nPB6zE4mElQpZRCwh7i9/wv32eqp/eAnVPx5pdhyRsFMhi4jpbEePkDhjGobHQ9nsBWCzmR1JJOxU\nyCJiusSHH8JxsJjKOycT7NLV7DgiplAhi4ipnB9uxvOH5/Fn9aDyt1oERGKXCllEzOP3kzTpDmyG\nQfn8heB2m51IxDQqZBExTfyzS3Bt+xjvNb+iZvCFZscRMZUKWURMYd+7h8S5swimplJx30yz44iY\nTrdfFBFTJN0zFVtlBWWz52OkpZkdR8R02kMWkbBz/+NvxP39daoHX0jV1deaHUfEElTIIhJe5eUk\n3T0Jw+WifN5juuZY5AQVsoiEVeL82Tj27aXytxMJ9OhpdhwRy1Ahi0jYOLZ9Qvwzvz9+84g7J5sd\nR8RSVMgiEh7BIMmTJ2ILBCib+yjEx5udSMRSVMgiEhaeF5fh+mAzviuupOaHl5gdR8RyVMgiEnK2\n4mISf/cAweQWVMycY3YcEUvSdcgiEnJJ99+N/dhRymYvINi6jdlxRCxJe8giElKuDf/C86ccavoP\nwHfDTWbHEbEsFbKIhI7PR9LU/8Ww2ylfsAgcDrMTiViWCllEQiZh4QKcX+7EO/ZW/H36mh1HxNJU\nyCISEo6CfBIef4xAu/ZUTp1udhwRy1Mhi0jzMwySJt+BraaG8lnzMJKSzU4kYnkqZBFpdnGr/4j7\n3+9S9eORVI/6qdlxRCJCvQrZ5/NxySWX8Kc//YmioiKuu+46srOzmThxItXV1aHOKCIRxPb1YZIe\nuAcjIYHyh+fr5hEi9VSvQn7qqado2bIlAIsXLyY7O5sVK1bQqVMncnJyQhpQRCJL4sz7sR8+TMXk\n6QQ7dDQ7jkjEqLOQd+zYQWFhIRdffDEAeXl5jBgxAoDhw4eTm5sb0oAiEjmcG3OJ/78X8fc6F+9v\nbjU7jkhEqbOQ586dy7Rp02o/9nq9uN1uANLS0igpKQldOhGJHNXVJE+5A8Nmo2zBQnC5zE4kElHO\nuHTmmjVr6NevHx06dPjOzxuGUa9vkpKSgNNprQUB0tNj56zPWJk1VuYEi846Zw588Tnccgspo5rv\n5hGWnDUEYmVOiK1ZG+KMhbxhwwb27NnDhg0bOHDgAG63m4SEBHw+Hx6Ph+LiYjIyMur8JqWllc0W\nuDmkpydTUlJmdoywiJVZY2VOsOas9t27SH3oIYyz0vn6rukYzZTPirOGQqzMCbE3a0OcsZAXLlxY\n+/vHH3+c9u3bs2XLFtauXcvll1/OunXrGDZsWOOSikh0MAySpt2Fzeul7JHFGK1SzE4kEpEafB3y\nbbfdxpo1a8jOzubIkSNcccUVocglIhHC/doa4t78J9UXDafqF/9jdhyRiFXv2y/edttttb9ftmxZ\nSMKISGSxlR0j6Z6pGHFxlM97RNccizSBVuoSkUZLmD0TR/EBKifeRaBrd7PjiEQ0FbKINIrzow+J\nX/os/m7dqbztTrPjiEQ8FbKINFwgQNLkO7EFg5TPXwhxcWYnEol4KmQRabD4pc/g2roF3+irqRl6\nkdlxRKKCCllEGsRetJ+E2b8j2KoV5Q/MMjuOSNSo91nWIiIASfdMxV5edvya4/R0s+OIRA3tIYtI\nvbn/+Q/iXv8LNed/H9+1Y8yOIxJVVMgiUj8VFSRNm4ThdFI2fyHY9deHSHPS/1EiUi+Jj87Dsecr\nvLfeRqDXOWbHEYk6KmQRqZPj88+If+pxAh07UXHXVLPjiEQlFbKInFkwSPLkO7D5/ZTPng8JCWYn\nEolKKmQROSPPiuW4Nm2k6qeXU/2jy8yOIxK1VMgiclq2khISH7qXYFIy5bPmmh1HJKrpOmQROa2k\nB2dgP3KE8llzCbZtZ3YckaimPWQR+U6ud9/Gs/qP1PTtj/fG35gdRyTqqZBF5NuqqkiafAeG3U75\ngoXgcJidSCTqqZBF5FsSHn8M545CvDeOxd+3v9lxRGKCCllETuHYWUjCokcItGlL5d33mh1HJGao\nkEXkPwyDpCl3YauqonzWXIzkFmYnEokZKmQRqRX3ymrcb6+n6pJLqf7p5WbHEYkpKmQRAcB2pJSk\n+6ZjxMdTPnsB2GxmRxKJKSpkEQEg8XcPYj9UQsVdUwl26mx2HJGYo0IWEZzv5xH/4lL8PXvhvfU2\ns+OIxCQVskisq6khedIdAJTNWwgul8mBRGKTClkkxsU//Xucn3+K99ox+L8/2Ow4IjFLhSwSw+x7\nviJxwWyCaWlU3Pug2XFEYppuLiESqwyDpOmTsVVWUjb3UYzUNLMTicQ07SGLxCj3314nbu3fqR56\nEVX/c43ZcURingpZJAbZystIumcKhttN+bzHdM2xiAXokLVEverqar78cicFBfkUFGynZctW3Hjj\nWKqqqggEAiQkJJgdMewSZ96PY/8+Ku6aSqB7ptlxRAQVskSp9957h5///Ce0adOWgweLCQaDp3z+\nyScXsW/fXhITk9i8+WNSUlJNShp+ro3/Jn7Zc/h79KTyjklmxxGRE1TIEhWCwSB79+4hP387hYX5\nLFnyJAAHDhR95+OPHDlC69ZtKCraz6efbmPo0IvCGdc8Xi9Jd/wWw2aj7LEnIC7O7EQicoIKWSJK\nVVXVicPP2ykoyD9RwAUUFuZTWVn5rcfHx8eTkdEam81GRUU5hw8fJhgMMmPGAyQmJjJhwi3k52+P\nmUJOnD8b584dVN7yW/wDzzc7joh8gwpZLCcQCPDKK6tp1SqFw4cP1b73W1CQz+7duwgEAqc8Pi4u\njh49etC1a3e6d88iK6sHqamp/PKXl+P1etm9excAKSkpDBx4Pj17nsPIkT+p3XsuLMwP94imcL6f\nR/zvFxPo1JmKaTPMjiMi/0WFLJayaNEjLFr0COXl5d/6XEpKCt/73iCysnqcKN4sunfPokOHjrRp\n04qSkrJTHv/ccy9w5MgRMjOzyMzsQVpaGrZvnE2clJQEQH5+9Beyfd9eWt5wLQBlC5+ExESTE4nI\nf1Mhi6WsWfMK5eXlOJ1O/H4/AFlZWaxZ8w/OOuusBj3Xz3728zN+PikpmXbt2kf/HnJFBS2uuxp7\nyUHKZ82l5sJhZicSke+g65DFMoLBIAcPFgMwY8YDtGzZCoBx425rcBl/ly92l/LF7tJTtmVmZrF/\n/z7Ky8tO81URLhikxYRbcG37GO91v8Z78zizE4nIaWgPWSzjpZdeoKSkBICPP97K0aNHGDPmRn71\nq+ub5fn/8u5OqKqmT+cKnIX5OPLzOXf7F7wFFP9wKGeflY6RnEwwuQVGUhLBjNbUDBlKzQWDIT6+\nWTKEW8K8WcT99VWqhwylfPZ8LQAiYmEqZLGEAweKePDBe/F44vH5vKxZ8wpt2rTlvvuaeMMDw6Dg\nn7n8ZeMetrvTAZj7wWdk566kz95tnHviYdsPFnPBnq+w/dcJYyxcgOHxUHP+YKp/MJyai4fjP7cP\n2C1+cKm6mqQZU4n/w/MEOnXm2NLl4HabnUpEzkCFLJbw/vubKCs7RnJyMj7f8cPX8+Y9RosWLRv1\nfLaDB/G8vBLPH5czJH877dM6MOH6xwG4oVOQtj+6i68ze9D2QBFc8ws++s14Rt19L/h82MrKsJWX\n4di1E/dbG3C/tR7328d/MRMC7c+m6pdX4bsq25KrXNmL9tPipjG4Nm/C3+tcjr6wQjeOEIkAKmSx\nhFGjfsoDD8xizpyZAKSmpnLZZaMa/Dy20q9JfPBePKv/iM3vx3C78V1xJW8OG8PPOnUCm413bF24\nfGgXADLPOr7XnJ+//fjh3Ph4jPh4jIwMgl27UfPDH1HB8YJ3v70e94Z/4f77X0lY9AgJix6h5nsD\n8Y2+hqqf/wLDAqt9uXLfo8XN12MvOYjvytGUPbJYZ1SLRAibYRhGqL/Jf1+OYrb09GTLZQqVSJv1\nyy93MmrUCGpqaigo2HPKZUqns3XrFh57bC43ZPbiFyuWYy85iL9HT7w33ETVlaMxUlJ5/4uDDOqZ\nAXDK7w3DIDOzI23atOHdd9+vX0ivl7h//BXPqhW4NvwLWzCI4XZT/aPL8F2VTfWIH4HL1eg/g7p8\n12tqO3qE+CVPkrDoETAMKh6chXfsrRH/nnGk/fw2VqzMCbE3a0OokKNcJM56/fXZ/P3vr7NtWyEZ\nGRlnfKzP52P4RRewY9eXtdv2Trob9/9OBmf9DgCNHDmCrVu3sHt3Ma4GFqm9+ABxOavxrF6B8/PP\nAAimpeG7cjRV/3MN/vP6NXspfvM1tZV+TfwzTxH/7BLsx44STM/g2LN/oGbI0Gb9nmaJxJ/fxoiV\nOSH2Zm0Ii5+ZIrEoMzMLgIKC7XU+duH4m9mx60uu/sa2WRXl31nGX399mLy8jbz00gvcf/893HXX\nRMrLy8nMzMLv99eu6NUQwdZt8P72dko35FL65jtU3jIebDYSnl1Cyo9+QOr5fUmadAfu1/6C7Uhp\n3U9YT7ZDh0h4+CFSv9eHxEfmgstJ+YwH+TpvS9SUsUis0XvIYjn/KeR8LjzDIhZfPLGQRa+/Sieb\njWvGjmXlM89gt9uZMeOB2sfs3buHAQPOPe1zxMd7eO21vwDw7rtv072xJ2nZbPj79MXfpy8V983E\nvf4N4lavxL3+TeJfXEr8i0sx7Hb8/fpTfdFw/H37E+jVi0CnLuBw1P30Zcdwbfw3rnffgbz3SNuy\nBZthEEzPoHzSNLzX36j3ikUinApZLKc+e8j2P+dwx0P3EQB+d8/93LniRRwOB2vXrj/lsPOmTRtr\nf9+5cxcMw6CiooLDhw9hGAbPPPNU7ed3feOwd5O4XFRfOpLqS0eC349zywe431qP6+0NuDZvwvXh\nB7UPNeLj8Wf1JNDrHAKdu0BNDTavF5u3EpvXC14vjj27cW796D+XZLlc1FwwmOr/dznea6+HGLyf\ns0g0UiGL5XxzD/m7uF/9MyvG3cSHwKWDLuDdkhJ27tzJz372czZu/DfLl79QezOKkpKDtV93snBt\nNhsnT50YMGAgkydPo0uXrnTt2r35h3E68Q+6AP+gC2DSNGzlZTg3bcT52Wc4P/8Uxxef4/ziM1xb\nt5z2KQynE/+AgVQPHUbNhRfRauQIjlYETvt4EYlMOqkrykXqrOed1wOHw8GWLZ/VbquqqmLvH55n\nz/3TWW2zkxPwn/brbTYbHTp0IjMzk02b8igrO1a7vVOnzrU3qBgz5td07dot5POckd+PY9eX2L/a\nDR7P8cuu4hMwPJ7j/23ZEjye2odH6mvaGLEya6zMCbE3a0NoD1ksKTOzB++8s4EHHpjBjh0F33Hr\nxSDwn73diy++mIEDv197Z6euXbuRcOJQ7ueff0ZBwXa6d8+ia9dueL5RbpbgdBLonmnJRUZEJHxU\nyGJJ55xzLu+8s4Hf/34xcPzWixckJXHO0aN0vuIXdBl9FZmZPWjbth1Hjhyhd+/up/1Xd69e59Cr\n1znhjC8i0mB1FrLX62XatGkcPnyYqqoqxo8fT8+ePZkyZQqBQID09HTmz5+PW+vkSjO6885JnHde\nXzp06Ej37lm0/9c/aTHhFqov/iFHn156yrW9rVu3NjGpiEjzqLOQ169fT+/evRk7diz79u3jxhtv\nZMCAAWRnZzNy5EgeffRRcnJyyM7ODkdeiRGpqWmMHn386mJbSQlJ907DSEikbMGiiF99SkTku9S5\nMMioUaMYO3YsAEVFRbRu3Zq8vDxGjBgBwPDhw8nNzQ1tSolpSTOmYC8tpeKe+wh27GR2HBGRkKj3\ne8hXX301Bw4cYMmSJfz617+uPUSdlpZWew9bkebm2FmI58+vUNN/AN4bf2N2HBGRkKl3Ia9cuZLP\nP/+cyZMn880rpepz1VRKSgJOZ92rEYVTQ09Hj2QRPevCHABck+4ivU2rMz40oudsIM0afWJlToit\nWRuizkLetm0baWlptG3bll69ehEIBEhMTMTn8+HxeCguLq7zBgClpZXNFrg5xNp1cBE7ayBA6tJl\n2Fq05PDQS+AMc0T0nA2kWaNPrMwJsTdrQ9T5HvLmzZtZunQpAIcOHaKyspIhQ4awdu1aANatW8ew\nYadfb1iksdwb3sRxoIiqK38J8fFmxxERCak695Cvvvpq7rnnHrKzs/H5fNx333307t2bqVOnsmrV\nKtq1a8cVV1wRjqwSYzwrXgLAd82vTE4iIhJ6dRayx+PhkUce+db2ZcuWhSSQCIDt2FHc//gr/l7n\n4O83wOw4IiIhp/shiyU5N7+PraaGqh+P0nXHIhITVMhiSa738wDwDzrf5CQiIuGhQhZLcm3eBEDN\n9waZnEREJDxUyGI9gQDODzbj756JkZpmdhoRkbBQIYvlOLZ/gb28DP9AHa4WkdihQhbLcX30IaDD\n1SISW1TIYjmO/O0A+HvqHsYiEjtUyGI5jh0FAAQyM01OIiISPipksRxHQT7B1FSd0CUiMUWFLNZS\nXY1j9y4C3bPMTiIiElYqZLEUx64vsQUC+LvrcLWIxBYVsliKoyAfgEA3FbKIxBYVsliKo/BEIWf1\nMDmJiEh4qZDFUpyFJ86w7t7d5CQiIuGlQhZLcRTmY7hcBDp2NjuKiEhYqZDFOgwDR0EBgS5dweUy\nO42ISFipkMUybCUl2I8d1QldIhKTVMhiGc6TJ3TpkicRiUEqZLGMk5c8+TO1KIiIxB4VsliGo/YM\na+0hi0jsUSGLZTh0yFpEYpgKWSzDWVBAMD0Do1WK2VFERMJOhSzW4PNh37Nba1iLSMxSIYslOHbu\nwGYYusuTiMQsFbJYQu37x5naQxaR2KRCFktwnrzLky55EpEYpUIWSzh5yZNfq3SJSIxSIYslOAoL\nMOLiCHboaHYUERFTqJDFfIaBo7CAQNdu4HCYnUZExBQqZDGd/UAR9opynWEtIjFNhSym+88a1nr/\nWERilwpZTPefNay1hywisUuFLKbTGtYiIipksQCn7vIkIqJCFpMZBo4vPifQth1GUrLZaURETKNC\nFlPZ9+3FcaAI/4CBZkcRETGVCllM5Xo/D4CageebnERExFwqZDGVc/MmAGoGXWByEhERc6mQxVSu\n9/MwXC785/U1O4qIiKlUyGKeykqc2z7Bf14/8HjMTiMiYioVspjG+cnH2Px+agYOMjuKiIjpVMhi\nGtfHWwDw9+1vchIREfOpkMU0zo9OFHK/ASYnERExnwpZTOP8+COCScnHb7soIhLjVMhijvJyHPnb\nj59dbdePoYiI/iYUU7i2fYzNMI6fYS0iIipkMYfji88B8J9zrslJRESsQYUspnDsOHGHp6weJicR\nEbEGFbKYwlmgeyCLiHyTCllM4SgsINC6DUaLlmZHERGxBGd9HjRv3jw++OAD/H4/t9xyC3369GHK\nlCkEAgHS09OZP38+brc71FklWlRWYt/zFTUXDjM7iYiIZdRZyBs3bqSgoIBVq1ZRWlrKz3/+cwYP\nHkx2djYjR47k0UcfJScnh+zs7HDklSjg2LkDm2EQ6KbD1SIiJ9V5yHrQoEEsWrQIgBYtWuD1esnL\ny2PEiBEADB8+nNzc3NCmlKjiLDzx/nFWlslJRESso849ZIfDQUJCAgA5OTlcdNFFvPvuu7WHqNPS\n0igpKTnjc6SkJOB0OpohbvNJT082O0LYWG7W/bsBSBrYj6RmzGa5OUNIs0afWJkTYmvWhqjXe8gA\nb7zxBjk5OSxdupRLL720drthGHV+bWlpZePShUh6ejIlJWVmxwgLK86avPUTPMDh9LMJNlM2K84Z\nKpo1+sTKnBB7szZEvc6yfuedd1iyZAnPPvssycnJJCQk4PP5ACguLiYjI6PhSSVmOQoKMBISCLZr\nb3YUERHLqLOQy8rKmDdvHk8//TStWrUCYMiQIaxduxaAdevWMWyYzpaVegoGce4owN8tU2tYi4h8\nQ52HrP/2t79RWlrKHXfcUbttzpw5zJgxg1WrVtGuXTuuuOKKkIaU6GHftxeb10uge3ezo4iIWEqd\nhXzVVVdx1VVXfWv7smXLQhJIopujdoUunWEtIvJNOmYoYVV7yVOmCllE5JtUyBJWjoLjN5Xwaw9Z\nROQUKmQJK0dhPobNRqBrN7OjiIhYigpZwspRkE+wQ0c4sdiMiIgcp0KWsLEdO4rjYDGBbjrDWkTk\nv6mQJWxOnmHtz+phchIREetRIUvY6JInEZHTUyFL2DgLj59hrUueRES+TYUsYVN7yFp7yCIi36JC\nlrBxFOYTbNkKIz3d7CgiIpajQpbwqKzEsXMHgR49wWYzO42IiOWokCUsnJ9+gi0QoKZvP7OjiIhY\nkgpZwsL58UcA+Pv2NzmJiIiflMswAAAMSklEQVQ1qZAlLFwfbQFUyCIip6NClrBwfvwRRkIige6Z\nZkcREbEkFbKEXmUlju1f4O9zHjgcZqcREbEkFbKEnHNHAbZgEH+vc8yOIiJiWSpkCTmtYS0iUjcV\nsoSc4+SSmVqhS0TktFTIEnKOwhM3ldAa1iIip6VClpBzFhRgJCQSbNvO7CgiIpalQpbQCgZx7CjA\n36072PXjJiJyOvobUkLKvncPNp9Ph6tFROqgQpaQ0vvHIiL1o0KWkHKevORJhSwickYqZAkpR4Eu\neRIRqQ8VsoSUozAfw2Yj0LWb2VFERCxNhSwh5SzIJ9ihE3g8ZkcREbE0FbKEjO1IKfaSg/izdLha\nRKQuKmQJGS2ZKSJSfypkCZnaQtYZ1iIidVIhS8icvORJhSwiUjcVsoRM7W0XdchaRKROKmQJGUdh\nPsFWrTDS0syOIiJieSpkCY2aGhy7viSQ2QNsNrPTiIhYngpZQsKx60tsfj/+7plmRxERiQgqZAmJ\nk+8f65InEZH6USFLSOguTyIiDaNClpD4zyVPOmQtIlIfKmQJCUdhPobLRaBjZ7OjiIhEBBWyND/D\nwFFQQKBLV3C5zE4jIhIRVMjS7GwHD2I/dlQndImINIAKWZqdUyd0iYg0mApZmt3Jm0roGmQRkfpT\nIUuzcxRsByCgQhYRqTcVsjQ714cfYDgc+Huda3YUEZGIoUKW5uXz4fz4I/x9zoOEBLPTiIhEDBWy\nNCvnx1uxVVdTM/B8s6OIiEQUFbI0K9fmTQD4B11gchIRkchSr0LOz8/nkksu4aWXXgKgqKiI6667\njuzsbCZOnEh1dXVIQ0rkcL2fB0CNCllEpEHqLOTKykpmzpzJ4MGDa7ctXryY7OxsVqxYQadOncjJ\nyQlpSIkczs2bCLRpS7D92WZHERGJKHUWstvt5tlnnyUjI6N2W15eHiNGjABg+PDh5Obmhi6hRAz7\ngSIcxQfw9/8e2GxmxxERiSjOOh/gdOJ0nvowr9eL2+0GIC0tjZKSktCkk4ji/GgLAP5+/U1OIiIS\neeos5LoYhlHnY1JSEnA6HU39Vs0qPT3Z7AhhE7ZZCz8DIPGiISSa8Oer1zQ6xcqssTInxNasDdGo\nQk5ISMDn8+HxeCguLj7lcPZ3KS2tbFS4UElPT6akpMzsGGERzllb/HsjccChTj0wwvznq9c0OsXK\nrLEyJ8TerA3RqMuehgwZwtq1awFYt24dw4YNa8zTSDQxDFwfbSHQoSPGWWeZnUZEJOLUuYe8bds2\n5s6dy759+3A6naxdu5YFCxYwbdo0Vq1aRbt27bjiiivCkVUszFZSgv1QCVWX/cTsKCIiEanOQu7d\nuzfLly//1vZly5aFJJBEJsfuLwEIdO1mchIRkciklbqkWTh27wIg0KmzqTlERCKVClmaRW0hd+5i\nbhARkQilQpZmoT1kEZGmUSFLs7Dv+hLDbid4dgezo4iIRCQVsjQLx949BNu2gxMruImISMOokKXp\nAgHsRfsJtmtvdhIRkYilQpYmsx8sxhYIEGivQhYRaSwVsjSZff8+AIJtVcgiIo2lQpYmqy1k7SGL\niDSaClmazLFvLwAB7SGLiDSaClmazL7nKwCCHXTJk4hIY6mQpcm0SpeISNOpkKXJHLt3EWzZCqNV\nitlRREQilgpZmsYwcOzepSUzRUSaSIUsTWIvPoDN5yOoQhYRaRIVsjSJfdcuQDeVEBFpKhWyNIlj\n/4lLnnRTCRGRJlEhS5PY951YFETrWIuINIkKWZrEXqRVukREmoMKWZrEcWIPWat0iYg0jQpZmsRe\ntA8jLg4jLc3sKCIiEU2FLE3i2LuXYNt2YLOZHUVEJKKpkKXxKiqwHyrRJU8iIs1AhSyN5vhqNwCB\nTlrDWkSkqVTI0miOXV8CWhRERKQ5qJCl0Ry7TxRy587mBhERiQIqZGm0k7ddDOq2iyIiTaZClkaz\nn3wPuUNHk5OIiEQ+FbI0mmP/foKJSRgtW5kdRUQk4qmQpdHs+/ceXzJT1yCLiDSZClkap7ISe2np\n8UVBRESkyVTI0iiOEzeVCLQ/2+QkIiLRQYUsjWLfvx9Ae8giIs1EhSyNYrRqheHx4B84yOwoIiJR\nwWl2AIlM/j59ObRjH7hcZkcREYkK2kOWxlMZi4g0GxWyiIiIBaiQRURELECFLCIiYgEqZBEREQtQ\nIYuIiFiACllERMQCVMgiIiIWoEIWERGxABWyiIiIBaiQRURELECFLCIiYgE2wzAMs0OIiIjEOu0h\ni4iIWIAKWURExAJUyCIiIhagQhYREbEAFbKIiIgFqJBFREQswGl2gHDatGkTEydO5OGHH2b48OEA\nfPHFFzzwwAMA9OjRgwcffNDEhM3n4YcfZuvWrdhsNqZPn855551ndqRmlZ+fz/jx47nhhhv41a9+\nRVFREVOmTCEQCJCens78+fNxu91mx2wW8+bN44MPPsDv93PLLbfQp0+fqJvV6/Uybdo0Dh8+TFVV\nFePHj6dnz55RN+c3+Xw+fvrTnzJ+/HgGDx4clbPm5eUxceJEMjMzAcjKyuLmm2+OyllfffVVnnvu\nOZxOJ7fffjs9evRo8Jwxs4f81VdfsWzZMgYMGHDK9lmzZjF9+nRWrlxJeXk5b731lkkJm8+mTZvY\nvXs3q1atYtasWcyaNcvsSM2qsrKSmTNnMnjw4NptixcvJjs7mxUrVtCpUydycnJMTNh8Nm7cSEFB\nAatWreK5557j4YcfjspZ169fT+/evXnppZdYuHAhc+bMico5v+mpp56iZcuWQPT+/AKcf/75LF++\nnOXLl3PvvfdG5aylpaU8+eSTrFixgiVLlvDmm282as6YKeT09HSeeOIJkpOTa7dVV1ezb9++2r3H\n4cOHk5uba1bEZpObm8sll1wCQLdu3Th69Cjl5eUmp2o+brebZ599loyMjNpteXl5jBgxAoie1xFg\n0KBBLFq0CIAWLVrg9XqjctZRo0YxduxYAIqKimjdunVUznnSjh07KCws5OKLLwai9+f3u0TjrLm5\nuQwePJikpCQyMjKYOXNmo+aMmUKOj4/H4XCcsq20tJQWLVrUfpyWlkZJSUm4ozW7Q4cOkZKSUvtx\nampqVMx1ktPpxOPxnLLN6/XWHg6KltcRwOFwkJCQAEBOTg4XXXRR1M4KcPXVVzNp0iSmT58e1XPO\nnTuXadOm1X4czbMWFhYybtw4rrnmGt57772onHXv3r34fD7GjRtHdnY2ubm5jZozKt9Dfvnll3n5\n5ZdP2XbbbbcxbNiwM35dtK4iGq1znU40zvvGG2+Qk5PD0qVLufTSS2u3R9usK1eu5PPPP2fy5Mmn\nzBZNc65Zs4Z+/frRoUOH7/x8NM3auXNnJkyYwMiRI9mzZw9jxowhEAjUfj6aZj1y5AhPPPEE+/fv\nZ8yYMY36+Y3KQh49ejSjR4+u83GpqakcOXKk9uPi4uJTDoNGqoyMDA4dOlT78cGDB0lPTzcxUegl\nJCTg8/nweDxR8zqe9M4777BkyRKee+45kpOTo3LWbdu2kZaWRtu2benVqxeBQIDExMSomxNgw4YN\n7Nmzhw0bNnDgwAHcbndUvqYArVu3ZtSoUQB07NiRs846i08++STqZk1LS6N///44nU46duxIYmIi\nDoejwXPGzCHr7+JyuejatSubN28GYN26dXXuRUeCCy+8kLVr1wLw6aefkpGRQVJSksmpQmvIkCG1\nM0fL6whQVlbGvHnzePrpp2nVqhUQnbNu3ryZpUuXAsffcqmsrIzKOQEWLlzIK6+8wurVqxk9ejTj\nx4+P2llfffVVnn/+eQBKSko4fPgwV155ZdTNOnToUDZu3EgwGKS0tLTRP78xc7enDRs28Pzzz7Nz\n505SU1NJT09n6dKlFBYWct999xEMBunbty9333232VGbxYIFC9i8eTM2m43777+fnj17mh2p2Wzb\nto25c+eyb98+nE4nrVu3ZsGCBUybNo2qqiratWvH7NmzcblcZkdtslWrVvH444/TpUuX2m1z5sxh\nxowZUTWrz+fjnnvuoaioCJ/Px4QJE+jduzdTp06Nqjn/2+OPP0779u0ZOnRoVM5aXl7OpEmTOHbs\nGDU1NUyYMIFevXpF5awrV66sPZP61ltvpU+fPg2eM2YKWURExMpi+pC1iIiIVaiQRURELECFLCIi\nYgEqZBEREQtQIYuIiFiACllERMQCVMgiIiIWoEIWERGxgP8PJJnCxZ2bx/UAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f123253cf10>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW9xvHPrEkmCVtMECi7bFYQ\nrOgFBUXUCu29IpUCUah1qYIg9MomLpVSZLeIG1YEr3DZtRSXWygKrgFEkUVBEhRkJ2ACCTOTZGbO\n/QOIUoGsM+fMzPN+vXyVOTnJPF8n8vScmfM7NsMwDERERMRUdrMDiIiIiApZRETEElTIIiIiFqBC\nFhERsQAVsoiIiAWokEVERCzAGYknyc0tiMTTlFvt2h7y8rxmx4iIeJk1XuYEzRqL4mVOiK9Z09NT\nK7R/XB4hO50OsyNETLzMGi9zgmaNRfEyJ8TXrBUVl4UsIiJiNSpkERERC1Ahi4iIWIAKWURExAJU\nyCIiIhagQhYREbEAFbKIiIgFlLkwyPr16xk2bBgtWrQAoGXLltx7772MGjWKYDBIeno6U6dOxe12\nhz2siIhIrCrXSl1XXXUVM2fOLH38yCOPkJmZSY8ePXj66adZtmwZmZmZYQspIiIS6yp1ynr9+vV0\n794dgG7dupGVlVWtoUREROJNuY6Qc3JyeOCBBzh+/DhDhgzB5/OVnqJOS0sjNzf3gt9fu7bHcsul\nVXSN0WgWL7PGy5ygWavViRPw+eeweTMUFYHDcfY/CQnQrh20bw8uV9hi6DWVMgu5SZMmDBkyhB49\nerB3714GDhxIMBgs/bphGGU+idUWEk9PT7XcDS/CJV5mjZc5QbNWlXPLF7g+/gjn5s9xbv4C566c\ncn2fkZREyeUdCHS8mpLT/xhpadWSSa9pbKro//Eos5Dr1q1Lz549AWjUqBEXXXQRW7duxe/3k5iY\nyOHDh8nIyKhcWhGRSCgpIeGtf5D0txdxffZp6eZQjZoUd7mOwOUdCLRth5GSAsEQBIMQCmILBrGd\nPInzi024Pl2Pa30W7nWfAGA4nRT17oN38EMEL/25WZNJDCmzkFesWEFubi733HMPubm5HDt2jN69\ne7Ny5UpuvfVWVq1aRZcuXSKRVUSkQmxHj5I0by6Jc2fjOHQQw2aj6OZbKOrdh5L2VxBq2gxstrJ/\n0B0DT/28ghM4P/8M16frSVj+OolLFpK4ZCFF3W/CN2Q4JZ2vLd/PEzkHm1HGOefCwkJGjBjBiRMn\nKCkpYciQIbRp04bRo0dTVFRE/fr1mThxIq4LvLditdMT8XbKJB5mjZc5QbOWSyhE0ksvkDzxz9j8\nfkIpqfj734HvnvsJNWtePeFCIdyrV5L03DOlR80lHa6gcMIUAldeVaEfpdc0NlX0lHWZhVwdrPYv\nP95+IeJh1niZEzRrWeyHDpI65AHcH6whdFE63j+OwN/vDozUGmFKCc6NG/A8PxP3O2+Cw8HJR5/E\nN2gI2Mt3IYte09hU0ULWSl0iEjPc77xF7ev+A/cHayi66Zd8//46fPcNCmsZAwSuvIoTc+dz/PU3\nCdVJI2XcY9QY0Bfb98fC+rwSW1TIIhL9AgFSRgyn5l2Z2Hw+CiZN58T8JRjp6RGNUXJtV/Le+5ji\n67qR8K+V1L7hWpzrtE6DlI8KWUSim2GQ+t9DSXptDoGftyXvXx/gv/s+0z5cZWRkcHzx3zk59gns\nhw5Sq/evcL232pQsEl1UyCIS1ZLHPU7iov+lpMMV5L/5T4KtWpsdCex2vMNHcHzpP8DhoMY9A3Fu\n3Wx2KrE4FbKIRK2kZ2fgeWEmgRYtOb7gdYwUa60AVdLlOk68MBub9yQ1Mvtg37fX7EhiYSpkEYlK\nif/7GinjnyBYvwHHF/+92lbNqm7F/3krJ8dNwHH4EDX7/wZbfp7ZkcSiVMgiEnUcX24jZcQwQnXq\ncHzJckI/a2h2pAvyPTAE7x8G4fx6BzXuHgChkNmRxIJUyCISXQyDlLEjsQWDFDz/N4ItW5mdqFxO\njnuKoptvwf3RByQsXWR2HLEgFbKIRJWE5a/jzvqYolt6Utz9ZrPjlJ/DQeGk6RiJiSQ/9WfwWuum\nO2I+FbKIRI/CQpKffAwjIYHCP080O02FhX7WEN/9D+I4eADPrOfMjiMWo0IWkaiR/Mx0HAcP4H3w\nIUJNmpodp1K8D/2R0EXpeGb+FfvhQ2bHEQtRIYtIVLAf2E/Si88SbPAzvA89bHacSjNSa3By9KPY\nvCfxTJ5gdhyxEBWyiESFpBefxVZcjHfkI+DxmB2nSvx3DCTQrDmJSxdBYaHZccQiVMgiYnm2Y8dI\nmvcqwfoN8N/e1+w4Ved0UtTrN9iKinCvedfsNGIRKmQRsbyk2bOweb34Bg8Ft9vsONWiuMevAEj4\nv7dMTiJWoUIWEUuzFRaQ9MpLhOrUwXfH78yOU20C7doTrN8A9+qVUFJidhyxABWyiFha4v/MxZ6f\nj+++QZCcbHac6mOzUXxLT+z5+fDhh2anEQtQIYuIdRUVkTTrOULJKfju+YPZaapd0S2nTluzcqW5\nQcQSVMgiYl3/8z84Dh/Cf9c9GLVqm52m2pVc2xXvfQ/ALbeYHUUswGl2ABGRcwoEYMoUjIQEfA88\naHaa8HA6OTlhCp70VMgtMDuNmExHyCJiSQlvLoddu/D3vYNQ3YvNjiMSdipkEbGeUAjPM0+D3Y53\nyDCz04hEhApZRCwnYclCnF9tg/79o3bNapGKUiGLiKXYThwnZfyfMJKS4KmnzI4jEjEqZBGxFM+0\nydhzj+Ad9jA0amR2HJGIUSGLiGU4dn5N0uxZBBs3wTv4IbPjiESUCllErMEwSBk7ClsgQOH4SZCY\naHYikYhSIYuIJST84w3cH6yh+IYbKf5lD7PjiEScCllETGc7nk/yY2MwEhMpmDgNbDazI4lEnApZ\nREyX/NSfcRw5jPePIwk1bWZ2HBFTqJBFxFTOzzeS+OorBFq2wvugFgGR+KVCFhHzBAKkjBiOzTAo\nnDoD3G6zE4mYRoUsIqZJenkWrm1b8PW/k5JO15gdR8RUKmQRMYV9316SJ08gVKcOJ58Yb3YcEdPp\n9osiYoqUR0dj856kYOJUjLQ0s+OImE5HyCISce5/vkPC/71FcadrKOp3h9lxRCxBhSwikVVYSMoj\nIzBcLgqn/FXXHIucpkIWkYhKnjoRx/59eB8cRrBVa7PjiFiGCllEIsaxbStJf3vh1M0j/jjS7Dgi\nlqJCFpHICIVIHTkMWzBIweSnISnJ7EQilqJCFpGISHxtLq7PNuLv1ZuSG240O46I5aiQRSTsbIcP\nk/yXJwml1uDk+ElmxxGxJF2HLCJhl/KnR7CfOE7BxGmE6l5sdhwRS9IRsoiElWvteyS+sYySDlfg\nv+ses+OIWJYKWUTCx+8nZfR/Y9jtFE57BhwOsxOJWJYKWUTCxjNjGs5vv8F33yACbS83O46IpamQ\nRSQsHNk78Tz7V4L1G+AdPdbsOCKWp0IWkepnGKSMHI6tpITCCVMwUlLNTiRieSpkEal2CUsW4v7k\nI4p+2YPinr82O45IVChXIfv9fm688UbeeOMNDh48yIABA8jMzGTYsGEUFxeHO6OIRBHb98dIefJR\nDI+Hwqem6uYRIuVUrkJ+8cUXqVmzJgAzZ84kMzOTBQsW0LhxY5YtWxbWgCISXZLH/wn7sWOcHDmW\nUMNGZscRiRplFvKuXbvIycnh+uuvB2D9+vV0794dgG7dupGVlRXWgCISPZzrskj639cItPk5vj8M\nMjuOSFQps5AnT57MmDFjSh/7fD7cbjcAaWlp5Obmhi+diESP4mJSRw3HsNkomDYDXC6zE4lElQsu\nnbl8+XLat29Pw4YNz/l1wzDK9SS1a3twOq21IEB6evx86jNeZo2XOcGis06aBDu2w/33U7tn9d08\nwpKzhkG8zAnxNWtFXLCQ165dy969e1m7di2HDh3C7Xbj8Xjw+/0kJiZy+PBhMjIyynySvDxvtQWu\nDunpqeTmFpgdIyLiZdZ4mROsOat9z27q/PnPGBel8/3DYzGqKZ8VZw2HeJkT4m/WirhgIc+YMaP0\nz88++ywNGjRg06ZNrFy5kltvvZVVq1bRpUuXyiUVkdhgGKSMeRibz0fB9JkYtWqbnUgkKlX4OuSh\nQ4eyfPlyMjMzyc/Pp1evXuHIJSJRwv3mchLe/RfFXbtR9Jvfmh1HJGqV+/aLQ4cOLf3z3LlzwxJG\nRKKLreAEKY+OxkhIoHDKdF1zLFIFWqlLRCrNM3E8jsOH8A57mGCzS8yOIxLVVMgiUinOLz4nac7L\nBJpfgnfoH82OIxL1VMgiUnHBICkj/4gtFKJw6gxISDA7kUjUUyGLSIUlzfkbrs2b8PfpR8m1Xc2O\nIxITVMgiUiH2gwfwTPwLoVq1KHxygtlxRGJGuT9lLSICkPLoaOyFBaeuOU5PNzuOSMzQEbKIlJv7\nX/8k4a1/UHLVf+C/Y6DZcURiigpZRMrn5ElSxozAcDopmDoD7PrrQ6Q66b8oESmX5Ken4Nj7Hb5B\nQwm2udTsOCIxR4UsImVybP+KpBefJdioMScfHm12HJGYpEIWkQsLhUgdORxbIEDhxKng8ZidSCQm\nqZBF5IISF8zDtWEdRb++leKbbjE7jkjMUiGLyHnZcnNJ/vPjhFJSKZww2ew4IjFN1yGLyHmljHsM\ne34+hRMmE6pX3+w4IjFNR8gick6ujz4gcclCSi7vgO/uP5gdRyTmqZBF5KeKikgZORzDbqdw2gxw\nOMxOJBLzVMgi8hOeZ/+Kc1cOvrvvI3B5B7PjiMQFFbKInMXxTQ6eZ6YTvLge3kceNzuOSNxQIYvI\nDwyDlFEPYysqonDCZIzUGmYnEokbKmQRKZXw+hLcH6yh6MabKf71rWbHEYkrKmQRAcCWn0fKE2Mx\nkpIonDgNbDazI4nEFRWyiACQ/Jdx2I/mcvLh0YQaNzE7jkjcUSGLCM5P15P02hwCrdvgGzTU7Dgi\ncUmFLBLvSkpIHTEcgIIpM8DlMjmQSHxSIYvEuaSXXsC5/Ut8dwwk8B+dzI4jErdUyCJxzL73O5Kn\nTSSUlsbJx8eZHUckrunmEiLxyjBIGTsSm9dLweSnMeqkmZ1IJK7pCFkkTrnfeYuElf9H8bVdKfpt\nf7PjiMQ9FbJIHLIVFpDy6CgMt5vCKX/VNcciFqBCFolDyeP/hOPAfrxD/0jwkhZmxxERVMgicce1\n7hOS5s4m0Ko13uEjzI4jIqepkEXiic9HyvAHMWw2Cv76HCQkmJ1IRE5TIYvEkeSpE3F+swvfHwYT\nuPIqs+OIyI+okEXihPPT9SS9MJNg4yacHPOY2XFE5N+okEXigH3/PmredQcABTOeh+RkkxOJyL/T\nwiAise7kSWoM6Ic99wiFEyZTck0XsxOJyDnoCFkkloVC1BhyP65tW/AN+D2+ex8wO5GInIeOkCV+\nhELYD+zHsfNrnDk7cezciSNnJ479+zA8HozkFIzUVEKpNTBSUghl1KWk87WUXN0JkpLMTl8pnikT\nSHh7BcWdr6Vw4lQtACJiYSpkiW2GgXPjBhIXzidhxXLsJ46f/WWbjVBGXezH87EVFGALBs/+/hnT\nMBITKbmqE8XXdaPk+m4Eft4W7BY/uVRcTMpjo0l69RWCjZtwYs48cLvNTiUiF6BClphkO3KExKWL\nSFw4D+fOrwEI1m+A/4buBFu0ItiiJYEWrQg2a/7D0a9hgN9/qpgLC3Ds/gb3+2txv78G9wen/mE8\nBBv8jKLb++Lvm2nJVa7sBw9Q456BuDZuINDm5xz/nwW6cYRIFFAhS0yx5X1P8rjHSVyyEFsggOF2\n4+/VG3/mQEq6XAcOxwW+2QZJSRhJSRgZGYSaNafkhps4yamCd3+wBvfa93D/39t4npmO55nplPzi\nSvx9+lN0228wateJ1Jjn5cr6mBr3/g577hH8vftQMH2mPlEtEiVUyBIz3G/+g9QxD2PPPUKgVWt8\nd91DUe8+1VKURkYGRbf3pej2vuDzkfDPt0lcvADX2vdI/WwjKU88QvFNt+Dvm0lx95vA5aqGicrP\ndjyfpFnP43lmOhgGhX+ZhO++QXrPWCSKqJAl6tkOH4ZBv6fm669jJCRQ+Ng4fIOHgjNMv95JSRTd\ndjtFt92O/fAhEpYtIXHJAhLeXkHC2ysIpaXh792Hot/2J9CufVhL0Zb3PUl/e5Gkl2dhP3GcUHoG\nJ15+lZLO14btOUUkPGyGYRjhfpLc3IJwP0WFpKenWi5TuMT6rO533iJ1+GDs+fmUXN2Jgr8+Z877\nuoaBc9sWEpYsJPH1JdiPHgUg2LgJxdfdcOoDYV26YtSqXeWnSk9P5ej2b0n62wskzX4Je2EBobQ0\nvIMewn/3vRgpqVV+DquI9d/fM+JlToi/WStChRzjYnlW94q/U+P+uyEhEduUyeTefqc1Pv1cUoJ7\nzWoSlizCveZd7AUnADDsdgLtO1DctRuByzsQbNOGYOOmF35f+zRbwQlc6z7B9dGHeNZ/jLFpEzbD\nIJSegffBYfh+d3dMvlccy7+/PxYvc0L8zVoROmUtUelMGRtJHo4vfoPaPW8Eq/xH7nJRfHMPim/u\nAYEAzk2f4X5/Da4P1uLauAHX55+V7mokJRFo2Zpgm0sJNmkKJSXYfD5sPi82nw98Phx79+Dc/MUP\nl2S5XJRc3Yni/7wV3x2/A4/HpEFFpDqpkCXq/HsZBzpebXak83M6CXS8+lTGEWOwFRbg3LAO51df\n4dz+JY4d23Hu+ArX5k3n/RGG00ngiispvrYLJdd0pVaP7hw/GTzv/iISnVTIElXcb62InjI+ByMl\nlZIbbqLkhpt+2BgI4Nj9Lfbv9kBi4qnLrpI8GImJp/63Zk1ITPxhf48HTlrkbICIVBsVskQN+97v\nSB36AEZiUlSW8Xk5nQQvaWHJRUZEJHJUyGIJBQUnKCoq5qKLLjr3DoZB6sjh2E8WcmLmi7FTxiIi\np5VZyD6fjzFjxnDs2DGKiooYPHgwrVu3ZtSoUQSDQdLT05k6dSpurZMrlWQYBr16/Yovv9zK9dff\nQGbmAH75y54kJCSU7pOwdBHu91ZTfP0NFPXNNDGtiEh4lFnIa9as4bLLLuO+++5j//793H333Vxx\nxRVkZmbSo0cPnn76aZYtW0Zmpv6SlMrZuHEDW7dupkaNmrz33mree281tWvX5vbb+9K//wDa1r2Y\nlMfHYHiSKZj2jFafEpGYVOZFmz179uS+++4D4ODBg9StW5f169fTvXt3ALp160ZWVlZ4U0rMevXV\nV7j//rsBePHF2Xz44QYGD34Ih8PJyy/P4oYbruHma37BC3l57P3jCEKNGpucWEQkPMq9ikK/fv0Y\nMWIEY8eOxefzlZ6iTktLIzc3N2wBJXZ5vV7GjXucffv2AjBs2GBSU1N58sm/sHnzDl57bRE9ul7P\nlvx8hgItpk7kD3+4izVr3iX477dJFBGJcuX+UNeiRYvYvn07I0eO5MeLe5Vnoa/atT04nWWvRhRJ\nFV1BJZpZddZ585Zz8mQhACkpKRw9mkutWkmleQcM6MuAHVs49MFa5mdmMmfTJpYvf4Ply9+gYcOG\n/O53v+P3v/89zZo1A6w7Zzho1tgTL3NCfM1aEWUunblt2zbS0tKoV68ecOoUdlFREW+//TaJiYls\n2LCB+fPnM3PmzPP+DKstkxZvS7dZddbbbvsVH3/8Yenja67pwt///vYPOwSD1OlwKTavl2Nbd2Ik\nJvL55xtZsGA+f//7MgoLT83VqdM1fPLJR5ads7pZ+TWtbvEya7zMCfE3a0WUecp648aNzJkzB4Cj\nR4/i9Xrp3LkzK1euBGDVqlV06dKlElElnu3e/W1pGTds2AiA/v3vPGufnBXv8ZUzjaLet0NSEjab\njV/8oiPTpz/Dtm3ZtGvXHoAaNWpENryISBiUecq6X79+PProo2RmZuL3+3niiSe47LLLGD16NIsX\nL6Z+/fr06tUrElklhkyfPrn0zwUFBaSkpPLrX9961j7LN+Vi79SPUf2vOWv7u++u4tVX53D0aC4u\nl4sZM16ISGYRkXAqs5ATExOZPn36T7bPnTs3LIEkPixevAAAm81Gfn4eAwb8Hs/pmyTs2JPHP97P\n5mvPxeC5mAlf2bi1Th6tG9fGMAzGjXucHTu2A+B0Otm/fy+tWzcxaxQRkWphgXvVSTwaNGgocKqQ\nbTYbd945sPRrrRvX5q46J0of3/nLVrRufOo+wl988Tk7dmynfv0GAAQCAb7//vsIJhcRCQ8Vsphi\n//59ACxc+Dpr1nxChw6/OOvrG7ftp3/WIm6rF2TjjiOl2xcsmA9Afn4eNpuNiy+uR5cu10UuuIhI\nmGgta4m4778/xj//+TatW7fh+utvwHaOlbea7NrC9VmLODp3IhuOnLrm2Ov18sYbS6lVqxb5+fkA\n9O9/Bw6HtS6pExGpDB0hS8S98cZSiouL6d9/wDnLmGCQru8uInBJC4w6aXRsnQHAggWvUVBwgtTU\nHz5V3bfvHZGKLSISVipkibgFC+bjdDq5/fa+5/y64+sd2AsLCFx51Vnbx44dBcDevd8Bp64/btas\neXjDiohEiApZImrr1s1s27aFm2/uQXp6+jn3cX3xOQAlv+h41vbFi/9OcnJK6eMBA+4KW04RkUjT\ne8gSUQsWzAMgM/PO8+7j2Pk1AIHWl561/brrulGnTh0MI8Srry7kuuuuD1tOEZFI0xGyRIzf7+f1\n15eQkVGXG2646bz7OXZlcxzoOmo4GRk1StdL/+ijD9i79zt69foN11/f7dzvP4uIRCkVskTMypXv\nkJ+fz29/2x+n8/wnZ+Z/vpGmNhvbtn8FwOrVp5ZpXbjw1CVP/fsPCH9YEZEIUyFLxJw5Xf3va1af\npbiY53JzyTMMbrjhRgAmTZpAXt73vP32Cpo3v4Srrro6EnFFRCJKhSwRsX//PtaufY+OHa+mRYuW\n593PsftbBp/+c9Omzejduw9bt27mL395Er/ff/5LpUREopwKWSJi8eIFGIZBZuaFTzc7sndyF9C0\ndm1ee20u/fvfid1uZ+nSRdjtdn77234RySsiEmkqZAm7UCjEwoXz8Xg83HrrbRfc15GzExcw+reZ\nlJSU8I9/vMEvf9kDv9/PpZf+nIsvrheZ0CIiEabLniTssrI+Zs+e3XTq1Bm3O+GC+zpzsgHoPeB3\nTH/vXyxcOJ+EhFPfk56eEfasIiJm0RGyhN3TT08BICvrEy699MIrazlydmK4XNC0OaNHP0owGMTr\n9ZKUlMTzz/8tEnFFREyhQpawevPN5Xz44fulj0+cOM7BgwfOvbNh4MjOJti0Gbhc/Nd/3cbo0Y8C\nMHDg3Vx00blX9hIRiQUqZAmr7OxTq27VqZPG9OkzAZgxY9o597Xl5mI/cZxg8xal2zZt+gygzA+D\niYhEOxWyhNXhw4eBU7dcXLBgHhdffDHz5r3Kd9/t+cm+zpydAAQvOVXIhw4dZPXqVXTocAVt2lz6\nk/1FRGKJClnC6tFH/8TQocMB+OyzTzl06BCBQIC77rqDPXt2n7WvI/tUIQdOX6e8ZMkiQqEQ/fpd\nYCEREZEYoUKWsKpRoyaPP/5nBg68G4DWrdsAsG3bFjp2bMdvfvOfLF26CK/Xi+P0J6yDl7TAMAwW\nLpxHYmIivXvfblp+EZFIUSFLRPz3f48kISGBHTu2A9CuXXuuvroTH374Pg8++Afatm3JsLeWswEI\nNL+EDRvWs2tXDj17/ic1a9YyN7yISAToOmSJiPr1GzBu3FN89NEHDBo0hI4dT61H/c03OSxatIBF\ni/6X2fv3MxtofWsPkpOTAX2YS0Tih804c2+7MMrNLQj3U1RIenqq5TKFS7TMGjx5ks+b1mNOWhor\nTpygpKSEhg0b8emnW7Dbyz6REy1zVgfNGnviZU6Iv1krQkfIYgnuPbvpCXTr+V/sGfsE77zzJm3b\ntitXGYuIxAIVsliC48wlTy1akJaWxoABd5kbSEQkwnT4IZbgzD5TyOe/NaOISCxTIYslnLnkKfCj\nVbpEROKJClkswZGTjZGQQKhhI7OjiIiYQoUs5jMMHDnZBJs1B4fD7DQiIqZQIYvp7IcOYj9ZSPAS\nvX8sIvFLhSym+2ENa71/LCLxS4UspvthDWsdIYtI/FIhi+kc/3bbRRGReKRCFtM5f3SXJxGReKVC\nFnMZBo4d2wnWq4+RUrF1X0VEYokKWUxl378Px6GDBK640uwoIiKmUiGLqVyfrgeg5MqrTE4iImIu\nFbKYyrlxAwAlp++PLCISr1TIYirXp+sxXC4C7S43O4qIiKlUyGIerxfntq0E2rWHxESz04iImEqF\nLKZxbt2CLRCg5MqOZkcRETGdCllM49qyCYDA5R1MTiIiYj4VspjG+cXpQm5/hclJRETMp0IW0zi3\nfEEoJfXUbRdFROKcClnMUViIY+fXpz5dbdevoYiI/iYUU7i2bcFmGKc+YS0iIipkMYdjx3YAApf+\n3OQkIiLWoEIWUzh2nb7DU8tWJicREbEGFbKYwpmteyCLiPyYCllM4cjJJlj3YowaNc2OIiJiCc7y\n7DRlyhQ+++wzAoEA999/P23btmXUqFEEg0HS09OZOnUqbrc73FklVni92Pd+R8k1XcxOIiJiGWUW\n8rp168jOzmbx4sXk5eVx22230alTJzIzM+nRowdPP/00y5YtIzMzMxJ5JQY4vtmFzTAINtfpahGR\nM8o8Zd2xY0eeeeYZAGrUqIHP52P9+vV0794dgG7dupGVlRXelBJTnDmn3z9u2dLkJCIi1lHmEbLD\n4cDj8QCwbNkyunbtykcffVR6ijotLY3c3NwL/ozatT04nY5qiFt90tNTzY4QMZab9cAeAFKubE9K\nNWaz3JxhpFljT7zMCfE1a0WU6z1kgNWrV7Ns2TLmzJnDzTffXLrdMIwyvzcvz1u5dGGSnp5Kbm6B\n2TEiwoqzpm7eSiJwLP1nhKopmxXnDBfNGnviZU6Iv1krolyfsv7www+ZNWsWL7/8MqmpqXg8Hvx+\nPwCHDx8mIyOj4kklbjmyszE8HkL1G5gdRUTEMsos5IKCAqZMmcJLL71ErVq1AOjcuTMrV64EYNWq\nVXTpok/LSjmFQjh3ZRNo3kLXNl1ZAAANgElEQVRrWIuI/EiZp6zfeecd8vLyGD58eOm2SZMm8dhj\nj7F48WLq169Pr169whpSYod9/z5sPh/BSy4xO4qIiKWUWch9+/alb9++P9k+d+7csASS2OYoXaFL\nn7AWEfkxnTOUiCq95KmFCllE5MdUyBJRjuxTN5UI6AhZROQsKmSJKEfOTgybjWCz5mZHERGxFBWy\nRJQjeyehho3g9GIzIiJyigpZIsZ24jiOI4cJNtcnrEVE/p0KWSLmzCesAy1bmZxERMR6VMgSMbrk\nSUTk/FTIEjHOnFOfsNYlTyIiP6VClogpPWWtI2QRkZ9QIUvEOHJ2EqpZCyM93ewoIiKWo0KWyPB6\ncXyzi2Cr1mCzmZ1GRMRyVMgSEc4vt2ILBim5vL3ZUURELEmFLBHh3PIFAIHLO5icRETEmlTIEhGu\nLzYBKmQRkfNRIUtEOLd8geFJJnhJC7OjiIhYkgpZws/rxfH1DgJt24HDYXYaERFLUiFL2Dl3ZWML\nhQi0udTsKCIilqVClrDTGtYiImVTIUvYOc4smakVukREzkuFLGHnyDl9UwmtYS0icl4qZAk7Z3Y2\nhieZUL36ZkcREbEsFbKEVyiEY1c2geaXgF2/biIi56O/ISWs7Pv2YvP7dbpaRKQMKmQJK71/LCJS\nPipkCSvnmUueVMgiIhekQpawcmTrkicRkfJQIUtYOXJ2YthsBJs1NzuKiIilqZAlrJzZOwk1bAyJ\niWZHERGxNBWyhI0tPw977hECLXW6WkSkLCpkCRstmSkiUn4qZAmb0kLWJ6xFRMqkQpawOXPJkwpZ\nRKRsKmQJm9LbLuqUtYhImVTIEjaOnJ2EatXCSEszO4qIiOWpkCU8Skpw7P6WYItWYLOZnUZExPJU\nyBIWjt3fYgsECFzSwuwoIiJRQYUsYXHm/WNd8iQiUj4qZAkL3eVJRKRiVMgSFj9c8qRT1iIi5aFC\nlrBw5OzEcLkINmpidhQRkaigQpbqZxg4srMJNm0GLpfZaUREooIKWaqd7cgR7CeO6wNdIiIVoEKW\naufUB7pERCpMhSzV7sxNJXQNsohI+amQpdo5sr8GIKhCFhEpNxWyVDvX559hOBwE2vzc7CgiIlFD\nhSzVy+/HueULAm3bgcdjdhoRkaihQpZq5dyyGVtxMSVXXmV2FBGRqKJClmrl2rgBgEDHq01OIiIS\nXcpVyDt37uTGG29k/vz5ABw8eJABAwaQmZnJsGHDKC4uDmtIiR6uT9cDUKJCFhGpkDIL2ev1Mn78\neDp16lS6bebMmWRmZrJgwQIaN27MsmXLwhpSoodz4waCF9cj1OBnZkcREYkqZRay2+3m5ZdfJiMj\no3Tb+vXr6d69OwDdunUjKysrfAklatgPHcRx+BCBDr8Am83sOCIiUcVZ5g5OJ07n2bv5fD7cbjcA\naWlp5ObmhiedRBXnF5sACLTvYHISEZHoU2Yhl8UwjDL3qV3bg9PpqOpTVav09FSzI0RMxGbN+QqA\n5K6dSTbh369e09gUL7PGy5wQX7NWRKUK2ePx4Pf7SUxM5PDhw2edzj6XvDxvpcKFS3p6Krm5BWbH\niIhIzlrjk3UkAEcbt8KI8L9fvaaxKV5mjZc5If5mrYhKXfbUuXNnVq5cCcCqVavo0qVLZX6MxBLD\nwPXFJoING2FcdJHZaUREok6ZR8jbtm1j8uTJ7N+/H6fTycqVK5k2bRpjxoxh8eLF1K9fn169ekUi\nq1iYLTcX+9Fcim75ldlRRESiUpmFfNlllzFv3ryfbJ87d25YAkl0cuz5FoBgs+YmJxERiU5aqUuq\nhWPPbgCCjZuYmkNEJFqpkKValBZyk6bmBhERiVIqZKkWOkIWEakaFbJUC/vubzHsdkI/a2h2FBGR\nqKRClmrh2LeXUL36cHoFNxERqRgVslRdMIj94AFC9RuYnUREJGqpkKXK7EcOYwsGCTZQIYuIVJYK\nWarMfmA/AKF6KmQRkcpSIUuVlRayjpBFRCpNhSxV5ti/D4CgjpBFRCpNhSxVZt/7HQChhrrkSUSk\nslTIUmVapUtEpOpUyFJljj27CdWshVGrttlRRESilgpZqsYwcOzZrSUzRUSqSIUsVWI/fAib309I\nhSwiUiUqZKkS++7dgG4qISJSVSpkqRLHgdOXPOmmEiIiVaJCliqx7z+9KIjWsRYRqRIVslSJ/aBW\n6RIRqQ4qZKkSx+kjZK3SJSJSNSpkqRL7wf0YCQkYaWlmRxERiWoqZKkSx759hOrVB5vN7CgiIlFN\nhSyVd/Ik9qO5uuRJRKQaqJCl0hzf7QEg2FhrWIuIVJUKWSrNsftbQIuCiIhUBxWyVJpjz+lCbtLE\n3CAiIjFAhSyVdua2iyHddlFEpMpUyFJp9jPvITdsZHISEZHop0KWSnMcOEAoOQWjZi2zo4iIRD0V\nslSa/cC+U0tm6hpkEZEqUyFL5Xi92PPyTi0KIiIiVaZClkpxnL6pRLDBz0xOIiISG1TIUin2AwcA\ndIQsIlJNVMhSKUatWhiJiQSu7Gh2FBGRmOA0O4BEp0Dbyzm6az+4XGZHERGJCTpClspTGYuIVBsV\nsoiIiAWokEVERCxAhSwiImIBKmQRERELUCGLiIhYgApZRETEAlTIIiIiFqBCFhERsQAVsoiIiAWo\nkEVERCxAhSwiImIBNsMwDLNDiIiIxDsdIYuIiFiACllERMQCVMgiIiIWoEIWERGxABWyiIiIBaiQ\nRURELMBpdoBI2rBhA8OGDeOpp56iW7duAOzYsYMnn3wSgFatWjFu3DgTE1afp556is2bN2Oz2Rg7\ndizt2rUzO1K12rlzJ4MHD+auu+7izjvv5ODBg4waNYpgMEh6ejpTp07F7XabHbNaTJkyhc8++4xA\nIMD9999P27ZtY25Wn8/HmDFjOHbsGEVFRQwePJjWrVvH3Jw/5vf7+fWvf83gwYPp1KlTTM66fv16\nhg0bRosWLQBo2bIl9957b0zOumLFCmbPno3T6eShhx6iVatWFZ4zbo6Qv/vuO+bOncsVV1xx1vYJ\nEyYwduxYFi1aRGFhIe+//75JCavPhg0b2LNnD4sXL2bChAlMmDDB7EjVyuv1Mn78eDp16lS6bebM\nmWRmZrJgwQIaN27MsmXLTExYfdatW0d2djaLFy9m9uzZPPXUUzE565o1a7jsssuYP38+M2bMYNKk\nSTE554+9+OKL1KxZE4jd31+Aq666innz5jFv3jwef/zxmJw1Ly+P559/ngULFjBr1izefffdSs0Z\nN4Wcnp7Oc889R2pqaum24uJi9u/fX3r02K1bN7KyssyKWG2ysrK48cYbAWjevDnHjx+nsLDQ5FTV\nx+128/LLL5ORkVG6bf369XTv3h2IndcRoGPHjjzzzDMA1KhRA5/PF5Oz9uzZk/vuuw+AgwcPUrdu\n3Zic84xdu3aRk5PD9ddfD8Tu7++5xOKsWVlZdOrUiZSUFDIyMhg/fnyl5oybQk5KSsLhcJy1LS8v\njxo1apQ+TktLIzc3N9LRqt3Ro0epXbt26eM6derExFxnOJ1OEhMTz9rm8/lKTwfFyusI4HA48Hg8\nACxbtoyuXbvG7KwA/fr1Y8SIEYwdOzam55w8eTJjxowpfRzLs+bk5PDAAw/Qv39/Pv7445icdd++\nffj9fh544AEyMzPJysqq1Jwx+R7y0qVLWbp06Vnbhg4dSpcuXS74fbG6imisznU+sTjv6tWrWbZs\nGXPmzOHmm28u3R5rsy5atIjt27czcuTIs2aLpTmXL19O+/btadiw4Tm/HkuzNmnShCFDhtCjRw/2\n7t3LwIEDCQaDpV+PpVnz8/N57rnnOHDgAAMHDqzU729MFnKfPn3o06dPmfvVqVOH/Pz80seHDx8+\n6zRotMrIyODo0aOlj48cOUJ6erqJicLP4/Hg9/tJTEyMmdfxjA8//JBZs2Yxe/ZsUlNTY3LWbdu2\nkZaWRr169WjTpg3BYJDk5OSYmxNg7dq17N27l7Vr13Lo0CHcbndMvqYAdevWpWfPngA0atSIiy66\niK1bt8bcrGlpaXTo0AGn00mjRo1ITk7G4XBUeM64OWV9Li6Xi2bNmrFx40YAVq1aVeZRdDS45ppr\nWLlyJQBffvklGRkZpKSkmJwqvDp37lw6c6y8jgAFBQVMmTKFl156iVq1agGxOevGjRuZM2cOcOot\nF6/XG5NzAsyYMYPXX3+dJUuW0KdPHwYPHhyzs65YsYJXXnkFgNzcXI4dO0bv3r1jbtZrr72WdevW\nEQqFyMvLq/Tvb9zc7Wnt2rW88sorfPPNN9SpU4f09HTmzJlDTk4OTzzxBKFQiMsvv5xHHnnE7KjV\nYtq0aWzcuBGbzcaf/vQnWrdubXakarNt2zYmT57M/v37cTqd1K1bl2nTpjFmzBiKioqoX78+EydO\nxOVymR21yhYvXsyzzz5L06ZNS7dNmjSJxx57LKZm9fv9PProoxw8eBC/38+QIUO47LLLGD16dEzN\n+e+effZZGjRowLXXXhuTsxYWFjJixAhOnDhBSUkJQ4YMoU2bNjE566JFi0o/ST1o0CDatm1b4Tnj\nppBFRESsLK5PWYuIiFiFCllERMQCVMgiIiIWoEIWERGxABWyiIiIBaiQRURELECFLCIiYgEqZBER\nEQv4fxWNCc95dSAQAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1234974410>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VPXd/vH3rJlsbCGhghAEwlLZ\nK1oQrIgbPD4/LZVHjUqtSkUKgpVN3EsRWbSIWrEqtMUiYGytWwvVgisEAVFRMAkKsoQQMECWmWSW\n8/sDiCJL1plzZuZ+XZdXyZmZzP0xkbvnzDnfYzMMw0BERERMZTc7gIiIiKiQRURELEGFLCIiYgEq\nZBEREQtQIYuIiFiACllERMQCnJF4k+Li0ki8Ta01b55ESUmF2TEiIl5mjZc5QbPGoniZE+Jr1vT0\n1Do9Py73kJ1Oh9kRIiZeZo2XOUGzxqJ4mRPia9a6istCFhERsRoVsoiIiAWokEVERCxAhSwiImIB\nKmQRERELUCGLiIhYgApZRETEAmpcGCQ3N5fx48eTlZUFQOfOnbn11luZPHkywWCQ9PR05syZg9vt\nDntYERGRWFWrlbrOPfdc5s+fX/313XffTXZ2NkOHDuWxxx4jJyeH7OzssIUUERGJdfU6ZJ2bm8uQ\nIUMAGDx4MGvWrGnUUCIiIvGmVnvIBQUFjB49mkOHDjF27Fi8Xm/1Ieq0tDSKi4tP+/rmzZMst1xa\nXdcYjWbxMmu8zAmatVEdPgwbN8Inn0BlJTgcx/+TkAA9e0Lv3uByhS2GfqZSYyG3b9+esWPHMnTo\nUHbu3MnIkSMJBoPVjxuGUeObWG0h8fT0VMvd8CJc4mXWeJkTNGtDOT/dhOuD93F+shHnJ5twbiuo\n1euMxET8vfoQ6Hce/qP/GGlpjZJJP9PYVNf/41FjIbdq1Yphw4YB0K5dO1q2bMlnn32Gz+fD4/FQ\nVFRERkZG/dKKiESC30/C6/8k8U9P49rwUfXmUJOmVA36GYFefQj06ImRkgLBEASDEApiCwaxlZfj\n3PQxro9yceWuwb32QwAMp5PK4SOoGHMHwR+fbdZkEkNqLORXX32V4uJibrnlFoqLizlw4ADDhw9n\nxYoVXHnllaxcuZJBgwZFIquISJ3Y9u8ncfEiPIuew7G3EMNmo/LSy6kcPgJ/776EzuoANlvN3+j6\nkUe+X+lhnBs34Pool4RXXsaz/EU8y1+kcsgleMdOwD9gYO2+n8hJ2IwajjmXlZUxceJEDh8+jN/v\nZ+zYsXTr1o0pU6ZQWVlJ69atmTlzJq7TfLZitcMT8XbIJB5mjZc5QbPWSihE4jN/JHnm77D5fIRS\nUvFddz3eW24j1KFj44QLhXC/tYLEJx+v3mv29+lL2YzZBM45t07fSj/T2FTXQ9Y1FnJjsNq//Hj7\nhYiHWeNlTtCsNbHvLSR17Gjc764i1DKdijsn4rv2eozUJmFKCc7160h6aj7uN18Dh4Pyex7Ee/tY\nsNfuQhb9TGNTXQtZK3WJSMxwv/k6zX/2U9zvrqLyksv49p21eEfdHtYyBgiccy6HF73AoZdfI9Qi\njZSH7qXJjddg+/ZAWN9XYosKWUSiXyBAysQJNL0pG5vXS+kjj3L4heUY6ekRjeEfeAEl//2Aqp8N\nJuE/K2h+0UCca7VOg9SOCllEopthkPrbcST+dSGBs3tQ8p938d08yrSTq4yMDA4t+wfl0+7HvreQ\nZsP/B9d/3zIli0QXFbKIRLXkh+7Ds/Rv+Pv05eBr/ybYpavZkcBup2LCRA699E9wOGhyy0icn31i\ndiqxOBWyiEStxCfmkfTH+QSyOnNoycsYKdZaAco/6Gcc/uNz2CrKaZI9AvuunWZHEgtTIYtIVPL8\n7a+kTL+fYOs2HFr2j0ZbNauxVf3vlZQ/NANH0V6aXvcLbAdLzI4kFqVCFpGo4/h8MykTxxNq0YJD\ny18hdGZbsyOdlnf0WCp+fTvOL7fS5OYbIRQyO5JYkApZRKKLYZAybRK2YJDSp/5EsHMXsxPVSvlD\nD1N56eW433+XhJeWmh1HLEiFLCJRJeGVl3Gv+YDKy4dRNeRSs+PUnsNB2SOPYng8JD/8O6iw1k13\nxHwqZBGJHmVlJD94L0ZCAmW/m2l2mjoLndkW722/wVG4h6QFT5odRyxGhSwiUSP58UdxFO6h4jd3\nEGp/ltlx6qXijjsJtUwnaf4fsBftNTuOWIgKWUSign3PbhKffoJgmzOpuOMus+PUm5HahPIp92Cr\nKCdp1gyz44iFqJBFJCokPv0EtqoqKibdDUlJZsdpEN/1Iwl06IjnpaVQVmZ2HLEIFbKIWJ7twAES\nF/+ZYOs2+K6+xuw4Ded0UnnVL7BVVuJe9bbZacQiVMgiYnmJzy3AVlGBd8w4cLvNjtMoqob+DwAJ\n/3rd5CRiFSpkEbE0W1kpic8/Q6hFC7zX/9LsOI0m0LM3wdZtcL+1Avx+s+OIBaiQRcTSPH9ZhP3g\nQbyjbofkZLPjNB6bjarLh2E/eBDee8/sNGIBKmQRsa7KShIXPEkoOQXvLb82O02jq7z8yGFrVqww\nN4hYggpZRKzrL3/BUbQX3023YDRrbnaaRucfeAEVo0bD5ZebHUUswGl2ABGRkwoEYPZsjIQEvKN/\nY3aa8HA6KZ8xm6T0VCguNTuNmEx7yCJiSQmvvQLbtuG75npCrX5kdhyRsFMhi4j1hEIkPf4Y2O1U\njB1vdhqRiFAhi4jlJCx/EecXm+G666J2zWqRulIhi4il2A4fImX6AxiJifDww2bHEYkYFbKIWErS\n3FnYi/dRMf4uaNfO7DgiEaNCFhHLcOR9SeJzCwhmtqdizB1mxxGJKBWyiFiDYZAybTK2QICy6Y+A\nx2N2IpGIUiGLiCUk/PPvuN9dRdVFF1N12VCz44hEnApZRExnO3SQ5HunYng8lM6cCzab2ZFEIk6F\nLCKmS374dzj2FVFx5yRCZ3UwO46IKVTIImIq58b1eP78PIHOXaj4jRYBkfilQhYR8wQCpEycgM0w\nKJszD9xusxOJmEaFLCKmSXx2Aa7Nn+K97gb8/c83O46IqVTIImIK+66dJM+aQahFC8rvn252HBHT\n6faLImKKlHumYKsop3TmHIy0NLPjiJhOe8giEnHuf79Jwr9ep6r/+VRee73ZcUQsQYUsIpFVVkbK\n3RMxXC7KZv9B1xyLHKVCFpGISp4zE8fuXVT8ZjzBLl3NjiNiGSpkEYkYx+bPSPzTH4/cPOLOSWbH\nEbEUFbKIREYoROqk8diCQUpnPQaJiWYnErEUFbKIRITnr4twbViP76rh+C+62Ow4IpajQhaRsLMV\nFZH8+wcJpTahfPojZscRsSRdhywiYZfywN3YDx+idOZcQq1+ZHYcEUvSHrKIhJVr9X/x/D0Hf5++\n+G66xew4IpalQhaR8PH5SJnyWwy7nbK5j4PDYXYiEctSIYtI2CTNm4vz66/wjrqdQI9eZscRsTQV\nsoiEhSM/j6Qn/kCwdRsqpkwzO46I5amQRaTxGQYpkyZg8/spmzEbIyXV7EQilqdCFpFGl7D8Rdwf\nvk/lZUOpGnaF2XFEokKtCtnn83HxxRfz97//ncLCQm688Uays7MZP348VVVV4c4oIlHE9u0BUh68\nByMpibKH5+jmESK1VKtCfvrpp2natCkA8+fPJzs7myVLlpCZmUlOTk5YA4pIdEme/gD2AwconzSN\nUNt2ZscRiRo1FvK2bdsoKCjgwgsvBCA3N5chQ4YAMHjwYNasWRPWgCISPZxr15D4t78S6HY23l/f\nbnYckahSYyHPmjWLqVOnVn/t9Xpxu90ApKWlUVxcHL50IhI9qqpInTwBw2ajdO48cLnMTiQSVU67\ndOYrr7xC7969adu27UkfNwyjVm/SvHkSTqe1FgRIT4+fsz7jZdZ4mRMsOusjj8DWLXDbbTQf1ng3\nj7DkrGEQL3NCfM1aF6ct5NWrV7Nz505Wr17N3r17cbvdJCUl4fP58Hg8FBUVkZGRUeOblJRUNFrg\nxpCenkpxcanZMSIiXmaNlznBmrPad2ynxe9+h9EynW/vmobRSPmsOGs4xMucEH+z1sVpC3nevHnV\nf37iiSdo06YNH3/8MStWrODKK69k5cqVDBo0qH5JRSQ2GAYpU+/C5vVS+uh8jGbNzU4kEpXqfB3y\nuHHjeOWVV8jOzubgwYNcddVV4cglIlHC/dorJLz9H6ouGEzlL/7P7DgiUavWt18cN25c9Z8XLVoU\nljAiEl1spYdJuWcKRkICZbMf1TXHIg2glbpEpN6SZk7HUbSXivF3EezQyew4IlFNhSwi9eLctJHE\nhc8S6NiJinF3mh1HJOqpkEWk7oJBUibdiS0UomzOPEhIMDuRSNRTIYtInSUu/BOuTz7GN+Ja/AMv\nMDuOSExQIYtIndgL95A08/eEmjWj7MEZZscRiRm1PstaRAQg5Z4p2MtKj1xznJ5udhyRmKE9ZBGp\nNfd//k3C6//Ef+5P8V0/0uw4IjFFhSwitVNeTsrUiRhOJ6Vz5oFdf32INCb9FyUitZL82GwcO7/B\ne/s4gt1+bHYckZijQhaRGjm2fEHi008QbJdJ+V1TzI4jEpNUyCJyeqEQqZMmYAsEKJs5B5KSzE4k\nEpNUyCJyWp4li3GtW0vlFVdSdcnlZscRiVkqZBE5JVtxMcm/u49QSiplM2aZHUckpuk6ZBE5pZSH\n7sV+8CBlM2YROqO12XFEYpr2kEXkpFzvv4tn+Yv4e/XBe/OvzY4jEvNUyCJyospKUiZNwLDbKZs7\nDxwOsxOJxDwVsoicIOmJP+DcVoD35lEEevUxO45IXFAhi8hxHF8VkPT4owR/dAYVd99ndhyRuKFC\nFpHvGAYpk+/CVllJ2YxZGKlNzE4kEjdUyCJSLeHl5bjfXUXlxZdSdcWVZscRiSsqZBEBwHawhJT7\np2EkJlI2cy7YbGZHEokrKmQRASD59w9h319M+V1TCGW2NzuOSNxRIYsIzo9ySfzrQgJdu+G9fZzZ\ncUTikgpZJN75/aROnABA6ex54HKZHEgkPqmQReJc4jN/xLnlc7zXjyTw0/5mxxGJWypkkThm3/kN\nyXNnEkpLo/y+h8yOIxLXdHMJkXhlGKRMm4StooLSWY9htEgzO5FIXNMeskiccr/5Ogkr/kXVwAuo\n/L/rzI4jEvdUyCJxyFZWSso9kzHcbspm/0HXHItYgApZJA4lT38Ax57dVIy7k2CnLLPjiAgqZJG4\n41r7IYmLniPQpSsVEyaaHUdEjlIhi8QTr5eUCb/BsNko/cOTkJBgdiIROUqFLBJHkufMxPnVNry/\nHkPgnHPNjiMi36NCFokTzo9ySfzjfIKZ7Smfeq/ZcUTkB1TIInHAvnsXTW+6HoDSeU9BcrLJiUTk\nh7QwiEisKy+nyY3XYi/eR9mMWfjPH2R2IhE5Ce0hi8SyUIgmY2/DtflTvDf+Cu+to81OJCKnoD1k\niR+hEPY9u3HkfYmzIA9HXh6Ogjwcu3dhJCVhJKdgpKYSSm2CkZJCKKMV/gED8Z/XHxITzU5fL0mz\nZ5DwxqtUDRhI2cw5WgBExMJUyBLbDAPn+nV4XnyBhFdfwX740PEP22yEMlphP3QQW2kptmDw+NfP\nm4vh8eA/tz9VPxuM/8LBBM7uAXaLH1yqqiLl3ikk/vl5gpntObxwMbjdZqcSkdNQIUtMsu3bh+el\npXheXIwz70sAgq3b4LtoCMGsLgSzOhPI6kKwQ8fv9n4NA3y+I8VcVopj+1e431mN+51VuN898g/T\nIdjmTCqvvgbfNdmWXOXKXriHJreMxLV+HYFuZ3PoL0t04wiRKKBClphiK/mW5Ifuw7P8RWyBAIbb\nje+q4fiyR+If9DNwOE7zYhskJmIkJmJkZBDq0BH/RZdQzpGCd7+7Cvfq/+L+1xskPf4oSY8/iv8n\n5+AbcR2VP/8FRvMWkRrzlFxrPqDJrb/EXrwP3/ARlD46X2dUi0QJFbLEDPdr/yR16l3Yi/cR6NIV\n7023UDl8RKMUpZGRQeXV11B59TXg9ZLw7zfwLFuCa/V/Sd2wnpT776bqksvxXZNN1ZBLwOVqhIlq\nz3boIIkLniLp8UfBMCj7/SN4R92uz4xFoogKWaKeragIbv8VTV9+GSMhgbJ7H8I7Zhw4w/TrnZhI\n5c+vpvLnV2Mv2ktCznI8y5eQ8MarJLzxKqG0NHzDR1D5f9cR6Nk7rKVoK/mWxD89TeKzC7AfPkQo\nPYPDz/4Z/4CBYXtPEQkPm2EYRrjfpLi4NNxvUSfp6amWyxQusT6r+83XSZ0wBvvBg/jP60/pH540\n53Ndw8C5+VMSlr+I5+Xl2PfvByCY2Z6qn1105ISwQRdgNGve4LdKT09l/5avSfzTH0l87hnsZaWE\n0tKouP0OfDffipGS2uD3sIpY//09Jl7mhPibtS5UyDEulmd1v/oPmtx2MyR4sM2eRfHVN1jj7Ge/\nH/eqt0hYvhT3qrexlx4GwLDbCfTuQ9UFgwn06kOwWzeCmWed/nPto2ylh3Gt/RDX+++RlPsBxscf\nYzMMQukZVPxmPN5f3hyTnxXH8u/v98XLnBB/s9aFDllLVDpWxkZiEoeW/Z3mwy4Gq/xH7nJRdelQ\nqi4dCoEAzo834H5nFa53V+Navw7Xxg3VTzUSEwl07kqw248Jtj8L/H5sXi82bwU2rxe8Xhw7d+D8\nZNN3l2S5XPjP60/V/16J9/pfQlKSSYOKSGNSIUvU+WEZB/qdZ3akU3M6CfQ770jGiVOxlZXiXLcW\n5xdf4NzyOY6tW3Bu/QLXJx+f8lsYTieBvudQNXAQ/vMvoNnQIRwqD57y+SISnVTIElXcr78aPWV8\nEkZKKv6LLsF/0SXfbQwEcGz/Gvs3O8DjOXLZVWIShsdz5H+bNgWP57vnJyVBuUWOBohIo1EhS9Sw\n7/yG1HGjMTyJUVnGp+R0EuyUZclFRkQkclTIEh0Mg9RJE7CXl3F4/tOxU8YiIkfVWMher5epU6dy\n4MABKisrGTNmDF27dmXy5MkEg0HS09OZM2cObq2TK2GU8NJS3P99i6oLL6Lymmyz44iINLoaC3nV\nqlV0796dUaNGsXv3bm6++Wb69u1LdnY2Q4cO5bHHHiMnJ4fsbP0lKeFhKy4m5b6pGEnJlM59XKtP\niUhMqvGizWHDhjFq1CgACgsLadWqFbm5uQwZMgSAwYMHs2bNmvCmlLiWcu9k7CUllN9zP6F2mWbH\nEREJi1p/hnzttdeyd+9eFixYwK9+9avqQ9RpaWkUFxeHLaDEN8dXBXj+8TL+Pn3x3vxrs+OIiIRN\nrQt56dKlbNmyhUmTJvH9xb1qs9BX8+ZJOJ01r0YUSXVdQSWaRfWs83IAcE28i/QfNTvtU6N6zjrS\nrLEnXuaE+Jq1Lmos5M2bN5OWlsYZZ5xBt27dCAaDJCcn4/P58Hg8FBUVkZGRcdrvUVJS0WiBG0O8\nLd0WtbMGg7RYuAhbk6YcGHj6lbiies460qyxJ17mhPibtS5q/Ax5/fr1LFy4EID9+/dTUVHBgAED\nWLFiBQArV65k0KBB9Ygqcnru1W/j2FtI5fCrITHR7DgiImFV4x7ytddeyz333EN2djY+n4/777+f\n7t27M2XKFJYtW0br1q256qqrIpFV4oxnyQsA+K67weQkIiLhV2MhezweHn300RO2L1q0KCyBRABs\nhw/h/vcbBLr9mEDvvmbHEREJOwvcq07kRM71H2Hz+6m8bJiuOxaRuKBCFktyfZQLQKDfuSYnERGJ\nDBWyWJJr/ToA/D/pZ3ISEZHIUCGL9QSDODesJ9ApC6NFmtlpREQiQoUsluP4civ2slIC5+hwtYjE\nDxWyWI5r00ZAh6tFJL6okMVyHHlfAhDo+mOTk4iIRI4KWSzHsS0fgGBWlslJREQiR4UsluPIzyPU\nooVO6BKRuKJCFmupqsKxYzvBTp3NTiIiElEqZLEUx/avsQWDBDrpcLWIxBcVsliKIz8PgGBHFbKI\nxBcVsliKo+BoIXfuYnISEZHIUiGLpTgLjp5h3amTyUlERCJLhSyW4ijIw3C5CLZrb3YUEZGIUiGL\ndRgGjvx8gmd1AJfL7DQiIhGlQhbLsBUXYz98SCd0iUhcUiGLZTiPndClS55EJA6pkMUyjl3yFMjS\noiAiEn9UyGIZjuozrLWHLCLxR4UsEXXo0EH8fv9JH3PokLWIxDGn2QEkfmzatJFLL70Qp9NJ+/Zn\n0alTZzp1yiIr68j/9tu6lbT0DIxmzc2OKiIScSpkiZjc3DUAtGuXyf79xRQcPUT9felOFx3/3+V0\n6pRFp06dycrKomPHLNq1y8Tp1K+riMQu/Q0nEVFUVMTbb/8HgKeeepa+fX/CgQMHKCjIo6Agn21r\nP2T78hfZmuhh3bq1rF374Um/z759hyMZW0QkYlTIEhH33juF1av/C8AVV1zC4sVLufjiy2jZsiU/\n/ekA3E2a0HT5i5RNupuDvxrF119/RUFBfnVhL1/+oskTiIiElwpZIuLzzz/DZrORkJCAz+dj165d\nxz3uPHaXp6zOJCQk0LVrN7p27UZ5eTlbtnzO8uUvcskll5kRXUQkInSWtYSd3+/n66+/wjAMWrX6\nEQCdf3A3p607D/HZmd0J/GCVrtGjb2bYsIsBWL9+HXl5X0YmtIhIhKmQJex27NhOMBgEwGazAdDx\nB8X7UkInlpx/HaG27Y7bvmHDejyeRABKSkr48sstEUgsIhJ5KmQJu/yjh6MBvN4KmjRpSkZGBgBb\nd5Qw628b+bx5eza3OZtZSz9h644SAEpKvmX//mJatWpV/foOHXRbRhGJTSpkCbuVK/9V/ef9+/eT\nlZVVvafcNbM5I/t8d93xDZd1oWvmka+PXRZ17LkAHTp0jERkEZGIUyFL2B273AkgGAySlXX858fr\nN37NdWuW8gu+Yf3WfdXbt20rAKCiogKbzUbbtpkkJiZGJrSISISpkCXsNm3awplntiUxMZEpU+5h\nwoSJxz3e9vBestcsZXinRFq3TK7e/s47qwDYv78YwzDo3Fk3nRCR2KXLniTsQqEQRUV76dGjJ3fd\nNeWEx8/f9TFwZA3rfl0zqre//PLy6tcDdNIa1yISw7SHLGH3zTfb8fv9dOp08j1c5ynu8rRx4+dc\ndtlQALp378kNN9wU1pwiImZSIUvYHTs5K+tk9zk2DBxbtxA8ozVGSupxD515ZlvOPbc/AJMm3U2X\nLl3DnlVExCwqZAm7/PwjhfzDa48B7Lt34dhbSKDvOSd9bcHRWzLqcLWIxDoVsoTdsVI92R6y66Nc\nAPznnHvS1+bn51XfrlFEJJapkCXsCgrycTgcJy1V5/p1APj7nXfCY4ZhUFCQR/v2Z+FyucKeU0TE\nTCpkCbuCgjwyM9uTkJBwwmOuj3IxXC4CPXud8NiBAwc4ePCgDleLSFxQIUvYhEIh7rxzLAcOHMBu\nt/PR0cPT1SoqcG7+jEDP3uDxnPD67z4/1vXHIhL7VMgSNnl5X/K3v/0VOHLY+sorh+L3+6sfd372\nKbZAAP85/U76+tOenS0iEmO0MIiEzfdvKtGkSROcTudxnwW7Pj2yIEigV5/jXhcKhXjyycd5660V\nALRsmR6BtCIi5tIesoTNtm351X8uKys74dCzc9PRQu7d97jtH320jt///gHWrv0QgMmTfxvmpCIi\n5lMhS9h8fw85FAqdcHKW89NNhFJSCf7gDk75+V8CkJraBAC3W2dYi0jsUyFL2Bw7KSslJQX4wclZ\nZWU48r48cna13f6D1+UffUopoM+QRSQ+qJAlbD7+eCMAgUAAOL5YXZs/xWYYR86w/oFjRW4YBnDy\nFb5ERGKNClnCzufz4XK56Pm9a40dW7cAEPjx2Sc8Pz8/r3qvGrSHLCLxQYUsYfPnPy8BYOLEqWzc\n+AVnnNG6+jHH0RO+gp27HPcan8/H119/RVlZWfU2XYcsIvFAlz1J2Bz7LPjf/36TkpJv6dSpM1lZ\nnenUKYuueUdO3PrhLRftP/g82el00rmzCllEYp8KWcLmJz85hzPPbMvmzZ+yefOnxz2WYrPRxekk\nc/Jvyco6UtQdO2bRoUNHiooOMWTIILZu/YLXX19BixZpJk0gIhI5tSrk2bNns2HDBgKBALfddhs9\nevRg8uTJBINB0tPTmTNnDm63O9xZJcqcf/4gNm78nLKyUrZtK6CgIJ/8/DwKvtzC9jde4/NQiA1/\nf+m419hsNtq2bUdh4R46duxE374nX8VLRCTW1FjIa9euJT8/n2XLllFSUsLPf/5z+vfvT3Z2NkOH\nDuWxxx4jJyeH7OzsSOSVKJSSkkqvXn3odXRFLsfmz2jxxmuUXf9Ltt5xJ9u2HSnq/Pz86j/7/X7O\nP3+QyclFRCKnxkLu168fPXv2BI4sf+j1esnNzeWhhx4CYPDgwSxcuFCFLLXmPHpZE127kpnZnszM\n9lx00SXHPae8vJykpCQT0omImKPGQnY4HNV/Mebk5HDBBRfw/vvvVx+iTktLo7i4+LTfo3nzJJxO\nRyPEbTzp6almR4gYy826ZwcAKef0JuUU2eqT2XJzhpFmjT3xMifE16x1UeuTut566y1ycnJYuHAh\nl156afX2Y4s3nE5JSUX90oVJenoqxcWlZseICCvOmvrJZ3iAA+lnEmqkbFacM1w0a+yJlzkh/mat\ni1pdh/zee++xYMECnn32WVJTU0lKSsLn8wFQVFRERkZG3ZNK3HLk52MkJRFq3cbsKCIillFjIZeW\nljJ79myeeeYZmjVrBsCAAQNYseLIrfFWrlzJoEE6+UZqKRTCuS2fQMesE9awFhGJZzUesn7zzTcp\nKSlhwoQJ1dseeeQR7r33XpYtW0br1q256qqrwhpSYod99y5sXi/BTp3MjiIiYik1FvI111zDNddc\nc8L2RYsWhSWQxDbH0VsyBrUcpojIcXTMUCLq2CVPQd0wQkTkOCpkiShH/pH1rQPaQxYROY4KWSLK\nUZCHYbMR7NDR7CgiIpaiQpaIcuTnEWrbDrQKl4jIcVTIEjG2w4dw7Csi2FFnWIuI/JAKWSLm2BnW\ngc5dTE4iImI9KmSJGF3yJCJyaipkiRhnwZEzrHXJk4jIiVTIEjHVh6y1hywicgIVskSMoyCPUNNm\nGOnpZkcREbEcFbJERkUFjq9Hm7QeAAAMfUlEQVS2EezSFWw2s9OIiFiOClkiwvn5Z9iCQfy9epsd\nRUTEklTIEhHOTzcBEOjVx+QkIiLWpEKWiHBt+hhQIYuInIoKWSLC+ekmjKRkgp2yzI4iImJJKmQJ\nv4oKHF9uJdCjJzgcZqcREbEkFbKEnXNbPrZQiEC3H5sdRUTEslTIEnZaw1pEpGYqZAk7x7ElM7VC\nl4jIKamQJewcBUdvKqE1rEVETkmFLGHnzM/HSEomdEZrs6OIiFiWClnCKxTCsS2fQMdOYNevm4jI\nqehvSAkr+66d2Hw+Ha4WEamBClnCSp8fi4jUjgpZwsp57JInFbKIyGmpkCWsHPm65ElEpDZUyBJW\njoI8DJuNYIeOZkcREbE0FbKElTM/j1DbTPB4zI4iImJpKmQJG9vBEuzF+wh01uFqEZGaqJAlbLRk\npohI7amQJWyqC1lnWIuI1EiFLGFz7JInFbKISM1UyBI21bdd1CFrEZEaqZAlbBwFeYSaNcNISzM7\nioiI5amQJTz8fhzbvyaY1QVsNrPTiIhYngpZwsKx/WtsgQCBTllmRxERiQoqZAmLY58f65InEZHa\nUSFLWOguTyIidaNClrD47pInHbIWEakNFbKEhaMgD8PlItiuvdlRRESiggpZGp9h4MjPJ3hWB3C5\nzE4jIhIVVMjS6Gz79mE/fEgndImI1IEKWRqdUyd0iYjUmQpZGt2xm0roGmQRkdpTIUujc+R/CUBQ\nhSwiUmsqZGl0ro0bMBwOAt3ONjuKiEjUUCFL4/L5cH66iUCPnpCUZHYaEZGooUKWRuX89BNsVVX4\nzznX7CgiIlFFhSyNyrV+HQCBfueZnEREJLrUqpDz8vK4+OKLeeGFFwAoLCzkxhtvJDs7m/Hjx1NV\nVRXWkBI9XB/lAuBXIYuI1EmNhVxRUcH06dPp379/9bb58+eTnZ3NkiVLyMzMJCcnJ6whJXo4168j\n+KMzCLU50+woIiJRpcZCdrvdPPvss2RkZFRvy83NZciQIQAMHjyYNWvWhC+hRA373kIcRXsJ9PkJ\n2GxmxxERiSrOGp/gdOJ0Hv80r9eL2+0GIC0tjeLi4vCkk6ji3PQxAIHefUxOIiISfWos5JoYhlHj\nc5o3T8LpdDT0rRpVenqq2REiJmKzFnwBQPIFA0g24d+vfqaxKV5mjZc5Ib5mrYt6FXJSUhI+nw+P\nx0NRUdFxh7NPpqSkol7hwiU9PZXi4lKzY0REJGdt8uFaEoD9mV0wIvzvVz/T2BQvs8bLnBB/s9ZF\nvS57GjBgACtWrABg5cqVDBo0qD7fRmKJYeDa9DHBtu0wWrY0O42ISNSpcQ958+bNzJo1i927d+N0\nOlmxYgVz585l6tSpLFu2jNatW3PVVVdFIqtYmK24GPv+Yiov/x+zo4iIRKUaC7l79+4sXrz4hO2L\nFi0KSyCJTo4dXwMQ7NDR5CQiItFJK3VJo3Ds2A5AMLO9qTlERKKVClkaRXUhtz/L3CAiIlFKhSyN\nQnvIIiINo0KWRmHf/jWG3U7ozLZmRxERiUoqZGkUjl07CZ3RGo6u4CYiInWjQpaGCwaxF+4h1LqN\n2UlERKKWClkazL6vCFswSLCNCllEpL5UyNJg9j27AQidoUIWEakvFbI0WHUhaw9ZRKTeVMjSYI7d\nuwAIag9ZRKTeVMjSYPad3wAQaqtLnkRE6kuFLA2mVbpERBpOhSwN5tixnVDTZhjNmpsdRUQkaqmQ\npWEMA8eO7VoyU0SkgVTI0iD2or3YfD5CKmQRkQZRIUuD2LdvB3RTCRGRhlIhS4M49hy95Ek3lRAR\naRAVsjSIfffRRUG0jrWISIOokKVB7IVapUtEpDGokKVBHEf3kLVKl4hIw6iQpUHshbsxEhIw0tLM\njiIiEtVUyNIgjl27CJ3RGmw2s6OIiEQ1FbLUX3k59v3FuuRJRKQRqJCl3hzf7AAgmKk1rEVEGkqF\nLPXm2P41oEVBREQagwpZ6s2x42ght29vbhARkRigQpZ6O3bbxZBuuygi0mAqZKk3+7HPkNu2MzmJ\niEj0UyFLvTn27CGUnILRtJnZUUREop4KWerNvmfXkSUzdQ2yiEiDqZClfioqsJeUHFkUREREGkyF\nLPXiOHpTiWCbM01OIiISG1TIUi/2PXsAtIcsItJIVMhSL0azZhgeD4Fz+pkdRUQkJjjNDiDRKdCj\nF/u37QaXy+woIiIxQXvIUn8qYxGRRqNCFhERsQAVsoiIiAWokEVERCxAhSwiImIBKmQRERELUCGL\niIhYgApZRETEAlTIIiIiFqBCFhERsQAVsoiIiAWokEVERCzAZhiGYXYIERGReKc9ZBEREQtQIYuI\niFiACllERMQCVMgiIiIWoEIWERGxABWyiIiIBTjNDhBJ69atY/z48Tz88MMMHjwYgK1bt/Lggw8C\n0KVLFx566CETEzaehx9+mE8++QSbzca0adPo2bOn2ZEaVV5eHmPGjOGmm27ihhtuoLCwkMmTJxMM\nBklPT2fOnDm43W6zYzaK2bNns2HDBgKBALfddhs9evSIuVm9Xi9Tp07lwIEDVFZWMmbMGLp27Rpz\nc36fz+fjiiuuYMyYMfTv3z8mZ83NzWX8+PFkZWUB0LlzZ2699daYnPXVV1/lueeew+l0cscdd9Cl\nS5c6zxk3e8jffPMNixYtom/fvsdtnzFjBtOmTWPp0qWUlZXxzjvvmJSw8axbt44dO3awbNkyZsyY\nwYwZM8yO1KgqKiqYPn06/fv3r942f/58srOzWbJkCZmZmeTk5JiYsPGsXbuW/Px8li1bxnPPPcfD\nDz8ck7OuWrWK7t2788ILLzBv3jweeeSRmJzz+55++mmaNm0KxO7vL8C5557L4sWLWbx4Mffdd19M\nzlpSUsJTTz3FkiVLWLBgAW+//Xa95oybQk5PT+fJJ58kNTW1eltVVRW7d++u3nscPHgwa9asMSti\no1mzZg0XX3wxAB07duTQoUOUlZWZnKrxuN1unn32WTIyMqq35ebmMmTIECB2fo4A/fr14/HHHweg\nSZMmeL3emJx12LBhjBo1CoDCwkJatWoVk3Mes23bNgoKCrjwwguB2P39PZlYnHXNmjX079+flJQU\nMjIymD59er3mjJtCTkxMxOFwHLetpKSEJk2aVH+dlpZGcXFxpKM1uv3799O8efPqr1u0aBETcx3j\ndDrxeDzHbfN6vdWHg2Ll5wjgcDhISkoCICcnhwsuuCBmZwW49tprmThxItOmTYvpOWfNmsXUqVOr\nv47lWQsKChg9ejTXXXcdH3zwQUzOumvXLnw+H6NHjyY7O5s1a9bUa86Y/Az5pZde4qWXXjpu27hx\n4xg0aNBpXxerq4jG6lynEovzvvXWW+Tk5LBw4UIuvfTS6u2xNuvSpUvZsmULkyZNOm62WJrzlVde\noXfv3rRt2/akj8fSrO3bt2fs2LEMHTqUnTt3MnLkSILBYPXjsTTrwYMHefLJJ9mzZw8jR46s1+9v\nTBbyiBEjGDFiRI3Pa9GiBQcPHqz+uqio6LjDoNEqIyOD/fv3V3+9b98+0tPTTUwUfklJSfh8Pjwe\nT8z8HI957733WLBgAc899xypqakxOevmzZtJS0vjjDPOoFu3bgSDQZKTk2NuToDVq1ezc+dOVq9e\nzd69e3G73TH5MwVo1aoVw4YNA6Bdu3a0bNmSzz77LOZmTUtLo0+fPjidTtq1a0dycjIOh6POc8bN\nIeuTcblcdOjQgfXr1wOwcuXKGveio8H555/PihUrAPj888/JyMggJSXF5FThNWDAgOqZY+XnCFBa\nWsrs2bN55plnaNasGRCbs65fv56FCxcCRz5yqaioiMk5AebNm8fLL7/M8uXLGTFiBGPGjInZWV99\n9VWef/55AIqLizlw4ADDhw+PuVkHDhzI2rVrCYVClJSU1Pv3N27u9rR69Wqef/55vvrqK1q0aEF6\nejoLFy6koKCA+++/n1AoRK9evbj77rvNjtoo5s6dy/r167HZbDzwwAN07drV7EiNZvPmzcyaNYvd\nu3fjdDpp1aoVc+fOZerUqVRWVtK6dWtmzpyJy+UyO2qDLVu2jCeeeIKzzjqretsjjzzCvffeG1Oz\n+nw+7rnnHgoLC/H5fIwdO5bu3bszZcqUmJrzh5544gnatGnDwIEDY3LWsrIyJk6cyOHDh/H7/Ywd\nO5Zu3brF5KxLly6tPpP69ttvp0ePHnWeM24KWURExMri+pC1iIiIVaiQRURELECFLCIiYgEqZBER\nEQtQIYuIiFiACllERMQCVMgiIiIWoEIWERGxgP8PhneplkhPcVcAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1234853490>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPX9/fHXrJmsEGKCgOwJiyIC\nFSwIVkSt0ParUikal1qVihSE/mQT0IqUHS2irVgRWrUIiNaqtQUXcGuI4o6iSVCQJYSAAbLMJJmZ\n+/sDCCJKtpncOzPn+XjwkLkzSc6bBI73zr2fazMMw0BERERMZTc7gIiIiKiQRURELEGFLCIiYgEq\nZBEREQtQIYuIiFiACllERMQCnE3xRYqLS5viy9RZamoCJSUVZsdoErEya6zMCZo1GsXKnBBbs6an\nJ9fr9TG5h+x0OsyO0GRiZdZYmRM0azSKlTkhtmatr5gsZBEREatRIYuIiFiACllERMQCVMgiIiIW\noEIWERGxABWyiIiIBaiQRURELKDWhUFyc3MZP348WVlZAHTp0oVbbrmFyZMnEwgESE9PZ+HChbjd\n7rCHFRERiVZ1WqmrX79+LFmypObxnXfeSXZ2NkOHDuX+++9n7dq1ZGdnhy2kiIhItGvQIevc3FyG\nDBkCwODBg8nJyQlpKBERkVhTpz3kgoICRo8ezaFDhxg7dixer7fmEHVaWhrFxcWn/PjU1ATLLZdW\n3zVGI1mszBorc4JmDanDh+H99+Gjj6CyEhyOE3/FxUHPntCrF7hcYYuh76nUWsgdOnRg7NixDB06\nlJ07d3LDDTcQCARqnjcMo9YvYrWFxNPTky13w4twiZVZY2VO0KyN5fz4Q1xvv4Xzo/dxfvQhzm0F\ndfo4Iz6e6nN64+97HtVHfxlpaSHJpO9pdKrv/3jUWsgtW7Zk2LBhALRr147TTjuNTz75BJ/Ph8fj\noaioiIyMjIalFRFpCtXVxL34L+L/+jCu996t2RxMaUbVoJ/gP6c3/rN7YiQlQSAIgQAEA9gCAWzl\n5Tg//ADXu7m4cnNwb/ofAIbTSeXwEVSMuZ3AmWeZNZlEkVoL+fnnn6e4uJibb76Z4uJiDhw4wPDh\nw1m3bh2XX34569evZ9CgQU2RVUSkXmz79xP/xAo8K5bh2FuIYbNReellVA4fQXWvPgQ7dgKbrfZP\ndO0NRz5f6WGc77+H691c4p57Bs+ap/CseYrKIZfgHTuB6gED6/b5RL6HzajlmHNZWRkTJ07k8OHD\nVFdXM3bsWLp3786UKVOorKykdevWzJ07F9cp3lux2uGJWDtkEguzxsqcoFnrJBgk/pG/kDj3Xmw+\nH8GkZHzXXIv35lsJduocmnDBIO5X1hH/0AM1e83VvftQNnsB/nP71etT6Xsanep7yLrWQg4Fq/3h\nx9oPRCzMGitzgmatjX1vIcljR+N+YwPB09Kp+P1EfFdfi5GcEqaU4Nz8Dgl/XoL7pRfA4aB8+j14\nbxsL9rpdyKLvaXSqbyFrpS4RiRrul14k9Sc/xv3GBiov+SnfvL4J76jbwlrGAP5z+3F4xZMceuYF\ngi3SSJo5g5TrR2L75kBYv65EFxWyiEQ+v5+kiRNodmM2Nq+X0nn3cfjJNRjp6U0ao3rgBZS89jZV\nPxlM3MvrSL1oIM5NWqdB6kaFLCKRzTBI/n/jiH98Of6zzqbk5Tfw3TTKtJOrjIwMDq3+J+XT7sa+\nt5Dmw3+G67VXTMkikUWFLCIRLXHmXXhW/YPq3n04+MJ/CXTtZnYksNupmDCRQ0//CxwOUm6+Aecn\nH5mdSixOhSwiESv+wcUk/GUJ/qwuHFr5DEaStVaAqh70Ew7/ZRm2inJSskdg37XT7EhiYSpkEYlI\nnn88TtKsuwm0bsOh1f8M2apZoVb1i8spnzkbR9Feml3zS2wHS8yOJBalQhaRiOP4dAtJE8cTbNGC\nQ2ueI3hGW7MjnZJ39Fgqfnsbzi8+J+Wm6yEYNDuSWJAKWUQii2GQNG0StkCA0j//lUCXrmYnqpPy\nmXOovPQy3G+9QdzTq8yOIxakQhaRiBL33DO4c96m8rJhVA251Ow4dedwUDbvPgyPh8Q590KFtW66\nI+ZTIYtI5CgrI/GeGRhxcZTdO9fsNPUWPKMt3lt/h6NwDwlLHzI7jliMCllEIkbiA/fhKNxDxe9u\nJ9iho9lxGqTi9t8TPC2dhCV/wl601+w4YiEqZBGJCPY9u4l/+EECbc6g4vY7zI7TYEZyCuVTpmOr\nKCdh/myz44iFqJBFJCLEP/wgtqoqKibdCQkJZsdpFN+1N+Dv1BnP06ugrMzsOGIRKmQRsTzbgQPE\nP/E3Aq3b4LtqpNlxGs/ppPKKX2KrrMS94VWz04hFqJBFxPLily3FVlGBd8w4cLvNjhMSVUN/BkDc\nf140OYlYhQpZRCzNVlZK/GOPEGzRAu+1vzY7Tsj4e/Yi0LoN7lfWQXW12XHEAlTIImJpnr+vwH7w\nIN5Rt0FiotlxQsdmo+qyYdgPHoQ33zQ7jViACllErKuykvilDxFMTMJ782/NThNylZcdOWzNunXm\nBhFLUCGLiHX9/e84ivbiu/FmjOapZqcJueqBF1AxajRcdpnZUcQCnGYHEBH5Xn4/LFiAEReHd/Tv\nzE4THk4n5bMXkJCeDMWlZqcRk2kPWUQsKe6F52DbNnwjryXY8nSz44iEnQpZRKwnGCThgfvBbqdi\n7Hiz04g0CRWyiFhO3JqncH62Ba65JmLXrBapLxWyiFiK7fAhkmb9ASM+HubMMTuOSJNRIYuIpSQs\nmo+9eB8V4++Adu3MjiPSZFTIImIZjrwviF+2lED7DlSMud3sOCJNSoUsItZgGCRNm4zN76ds1jzw\neMxOJNKkVMgiYglx/3oW9xsbqLroYqp+OtTsOCJNToUsIqazHTpI4oypGB4PpXMXgc1mdiSRJqdC\nFhHTJc65F8e+Iip+P4lgx05mxxExhQpZREzlfH8znr89hr9LVyp+p0VAJHapkEXEPH4/SRMnYDMM\nyhYuBrfb7EQiplEhi4hp4h9dimvLx3ivuY7q/uebHUfEVCpkETGFfddOEufPJtiiBeV3zzI7jojp\ndPtFETFF0vQp2CrKKZ27ECMtzew4IqbTHrKINDn3f18i7j8vUtX/fCqvvtbsOCKWoEIWkaZVVkbS\nnRMxXC7KFvxJ1xyLHKVCFpEmlbhwLo7du6j43XgCXbuZHUfEMlTIItJkHFs+If6vfzly84jfTzI7\njoilqJBFpGkEgyRPGo8tEKB0/v0QH292IhFLUSGLSJPwPL4C13ub8V0xnOqLLjY7jojlqJBFJOxs\nRUUk/vEegskplM+aZ3YcEUvSdcgiEnZJf7gT++FDlM5dRLDl6WbHEbEk7SGLSFi5Nr6G59m1VPfu\ng+/Gm82OI2JZKmQRCR+fj6Qp/w/Dbqds0QPgcJidSMSyVMgiEjYJixfh/OpLvKNuw3/2OWbHEbE0\nFbKIhIUjP4+EB/9EoHUbKqZMMzuOiOWpkEUk9AyDpEkTsFVXUzZ7AUZSstmJRCxPhSwiIRe35inc\n/3uLyp8OpWrYz82OIxIR6lTIPp+Piy++mGeffZbCwkKuv/56srOzGT9+PFVVVeHOKCIRxPbNAZLu\nmY6RkEDZnIW6eYRIHdWpkB9++GGaNWsGwJIlS8jOzmblypW0b9+etWvXhjWgiESWxFl/wH7gAOWT\nphFs287sOCIRo9ZC3rZtGwUFBVx44YUA5ObmMmTIEAAGDx5MTk5OWAOKSORwbsoh/h+P4+9+Ft7f\n3mZ2HJGIUmshz58/n6lTp9Y89nq9uN1uANLS0iguLg5fOhGJHFVVJE+egGGzUbpoMbhcZicSiSin\nXDrzueeeo1evXrRt2/Z7nzcMo05fJDU1AafTWgsCpKfHzlmfsTJrrMwJFp113jz4fCvceiupw0J3\n8whLzhoGsTInxNas9XHKQt64cSM7d+5k48aN7N27F7fbTUJCAj6fD4/HQ1FRERkZGbV+kZKSipAF\nDoX09GSKi0vNjtEkYmXWWJkTrDmrfcd2Wtx7L8Zp6XxzxzSMEOWz4qzhECtzQuzNWh+nLOTFixfX\n/P7BBx+kTZs2fPDBB6xbt47LL7+c9evXM2jQoIYlFZHoYBgkTb0Dm9dL6X1LMJqnmp1IJCLV+zrk\ncePG8dxzz5Gdnc3Bgwe54oorwpFLRCKE+4XniHv1ZaouGEzlL39ldhyRiFXn2y+OGzeu5vcrVqwI\nSxgRiSy20sMkTZ+CERdH2YL7dM2xSCNopS4RabCEubNwFO2lYvwdBDplmh1HJKKpkEWkQZwfvk/8\n8kfxd86kYtzvzY4jEvFUyCJSf4EASZN+jy0YpGzhYoiLMzuRSMRTIYtIvcUv/yuujz7AN+Jqqgde\nYHYckaigQhaRerEX7iFh7h8JNm9O2T2zzY4jEjXqfJa1iAhA0vQp2MtKj1xznJ5udhyRqKE9ZBGp\nM/fL/yXuxX9R3e/H+K69wew4IlFFhSwidVNeTtLUiRhOJ6ULF4Nd/3yIhJL+RolInSTevwDHzq/x\n3jaOQPczzY4jEnVUyCJSK8fWz4h/+EEC7dpTfscUs+OIRCUVsoicWjBI8qQJ2Px+yuYuhIQEsxOJ\nRCUVsoickmflE7je2UTlzy+n6pLLzI4jErVUyCLyg2zFxSTeexfBpGTKZs83O45IVNN1yCLyg5Jm\nzsB+8CBls+cTbNXa7DgiUU17yCLyvVxvvYFnzVNUn9Mb702/NTuOSNRTIYvIySorSZo0AcNup2zR\nYnA4zE4kEvVUyCJykoQH/4RzWwHem0bhP6e32XFEYoIKWURO4PiygIQH7iNweisq7rzL7DgiMUOF\nLCLHGQZJk+/AVllJ2ez5GMkpZicSiRkqZBGpEffMGtxvbKDy4kup+vnlZscRiSkqZBEBwHawhKS7\np2HEx1M2dxHYbGZHEokpKmQRASDxjzOx7y+m/I4pBNt3MDuOSMxRIYsIzndziX98Of5u3fHeNs7s\nOCIxSYUsEuuqq0meOAGA0gWLweUyOZBIbFIhi8S4+Ef+gnPrp3ivvQH/j/ubHUckZqmQRWKYfefX\nJC6aSzAtjfK7ZpodRySm6eYSIrHKMEiaNglbRQWl8+/HaJFmdiKRmKY9ZJEY5X7pReLW/YeqgRdQ\n+atrzI4jEvNUyCIxyFZWStL0yRhuN2UL/qRrjkUsQIUsEoMSZ/0Bx57dVIz7PYHMLLPjiAgqZJGY\n49r0P+JXLMPftRsVEyaaHUdEjlIhi8QSr5ekCb/DsNko/dNDEBdndiIROUqFLBJDEhfOxfnlNry/\nHYP/3H5mxxGRb1Ehi8QI57u5xP9lCYH2HSifOsPsOCLyHSpkkRhg372LZjdeC0Dp4j9DYqLJiUTk\nu7QwiEi0Ky8n5fqrsRfvo2z2fKrPH2R2IhH5HtpDFolmwSApY2/FteVjvNf/Bu8to81OJCI/QHvI\nEjuCQex7duPI+wJnQR6OvDwcBXk4du/CSEjASEzCSE4mmJyCkZREMKMl1QMGUn1ef4iPNzt9gyQs\nmE3cv5+nasBAyuYu1AIgIhamQpboZhg4N7+D56kniXv+OeyHD534tM1GMKMl9kMHsZWWYgsETvz4\nxYswPB6q+/Wn6ieDqb5wMP6zzga7xQ8uVVWRNGMK8X97jED7Dhxe/gS43WanEpFTUCFLVLLt24fn\n6VV4nnoCZ94XAARat8F30RACWV0JZHXBn9WVQKfOx/d+DQN8viPFXFaKY/uXuF/fiPv1DbjfOPKL\nWRBocwaVV43ENzLbkqtc2Qv3kHLzDbg2v4O/+1kc+vtK3ThCJAKokCWq2Eq+IXHmXXjWPIXN78dw\nu/FdMRxf9g1UD/oJOByn+GAbxMdjxMdjZGQQ7NSZ6osuoZwjBe9+YwPuja/h/s+/SXjgPhIeuI/q\nH52Lb8Q1VF75S4zUFk015g9y5bxNyi2/xl68D9/wEZTet0RnVItECBWyRA33C/8ieeod2Iv34e/a\nDe+NN1M5fERIitLIyKDyqpFUXjUSvF7i/vtvPKtX4tr4GsnvbSbp7jupuuQyfCOzqRpyCbhcIZio\n7myHDhK/9M8kPHAfGAZlf5yHd9Rtes9YJIKokCXi2YqK4Lbf0OyZZzDi4iibMRPvmHHgDNOPd3w8\nlVdeReWVV2Ev2kvc2jV41qwk7t/PE/fv5wmmpeEbPoLKX12Dv2evsJaireQb4v/6MPGPLsV++BDB\n9AwOP/o3qgcMDNvXFJHwsBmGYYT7ixQXl4b7S9RLenqy5TKFS7TP6n7pRZInjMF+8CDV5/Wn9E8P\nmfO+rmHg3PIxcWuewvPMGuz79wMQaN+Bqp9cdOSEsEEXYDRPbfSXSk9PZv/Wr4j/61+IX/YI9rJS\ngmlpVNx2O76bbsFISm7017CKaP/5PSZW5oTYm7U+VMhRLppndT//T1JuvQniPNgWzKf4quuscfZz\ndTXuDa8Qt2YV7g2vYi89DIBht+Pv1ZuqCwbjP6c3ge7dCbTveOr3tY+ylR7Gtel/uN56k4TctzE+\n+ACbYRBMz6Did+Px/vqmqHyvOJp/fr8tVuaE2Ju1PnTIWiLSsTI24hM4tPpZUoddDFb5S+5yUXXp\nUKouHQp+P84P3sP9+gZcb2zEtfkdXO+/V/NSIz4ef5duBLqfSaBDR6iuxub1YvNWYPN6wevFsXMH\nzo8+PH5JlstF9Xn9qfrF5Xiv/TUkJJg0qIiEkgpZIs53y9jf9zyzI/0wpxN/3/OOZJw4FVtZKc53\nNuH87DOcWz/F8flWnJ9/huujD37wUxhOJ/4+51I1cBDV519A86FDOFQe+MHXi0hkUiFLRHG/+Hzk\nlPH3MJKSqb7oEqovuuT4Rr8fx/avsH+9AzyeI5ddxSdgeDxH/tusGXg8x1+fkADlFjkaICIho0KW\niGHf+TXJ40ZjeOIjsox/kNNJIDPLkouMiEjTUSFLZDAMkidNwF5exuElD0dPGYuIHFVrIXu9XqZO\nncqBAweorKxkzJgxdOvWjcmTJxMIBEhPT2fhwoW4tU6uhFHc06twv/YKVRdeROXIbLPjiIiEXK2F\nvGHDBnr06MGoUaPYvXs3N910E3369CE7O5uhQ4dy//33s3btWrKz9Y+khIetuJiku6ZiJCRSuugB\nrT4lIlGp1os2hw0bxqhRowAoLCykZcuW5ObmMmTIEAAGDx5MTk5OeFNKTEuaMRl7SQnl0+8m2K69\n2XFERMKizu8hX3311ezdu5elS5fym9/8puYQdVpaGsXFxWELKLHN8WUBnn8+Q3XvPnhv+q3ZcURE\nwqbOhbxq1Sq2bt3KpEmT+PbiXnVZ6Cs1NQGns/bViJpSfVdQiWQRPevitQC4Jt5B+unNT/nSiJ6z\nnjRr9ImVOSG2Zq2PWgt5y5YtpKWl0apVK7p3704gECAxMRGfz4fH46GoqIiMjIxTfo6SkoqQBQ6F\nWFu6LWJnDQRosXwFtpRmHBh46pW4InrOetKs0SdW5oTYm7U+an0PefPmzSxfvhyA/fv3U1FRwYAB\nA1i3bh0A69evZ9CgQQ2IKnJq7o2v4thbSOXwqyA+3uw4IiJhVese8tVXX8306dPJzs7G5/Nx9913\n06NHD6ZMmcLq1atp3bo1V1xxRVNklRjjWfkkAL5rrjM5iYhI+NVayB6Ph/vuu++k7StWrAhLIBEA\n2+FDuP/7b/zdz8Tfq4/ZcUREws4C96oTOZlz87vYqqup/OkwXXcsIjFBhSyW5Ho3FwB/334mJxER\naRoqZLEk1+Z3AKj+UV+Tk4iINA0VslhPIIDzvc34M7MwWqSZnUZEpEmokMVyHF98jr2sFP+5Olwt\nIrFDhSyW4/rwfUCHq0UktqiQxXIceV8A4O92pslJRESajgpZLMexLR+AQFaWyUlERJqOClksx5Gf\nR7BFC53QJSIxRYUs1lJVhWPHdgKZXcxOIiLSpFTIYimO7V9hCwTwZ+pwtYjEFhWyWIojPw+AQGcV\nsojEFhWyWIqj4Gghd+lqchIRkaalQhZLcRYcPcM6M9PkJCIiTUuFLJbiKMjDcLkItOtgdhQRkSal\nQhbrMAwc+fkEOnYCl8vsNCIiTUqFLJZhKy7GfviQTugSkZikQhbLcB47oUuXPIlIDFIhi2Ucu+TJ\nn6VFQUQk9qiQxTIcNWdYaw9ZRGKPClksw6FD1iISw1TIYhnO/HyC6RkYzVPNjiIi0uRUyGINPh/2\nnTu0hrWIxCwVsliC48tt2AxDd3kSkZilQhZLqHn/OEt7yCISm1TIYgnOY3d50iVPIhKjVMhiCccu\nefJrlS4RiVEqZLEER0E+RlwcwbbtzI4iImIKFbKYzzBwFOQT6NQZHA6z04iImEKFLKaz7y3EXl6m\nM6xFJKapkMV0x9ew1vvHIhK7VMhiuuNrWGsPWURilwpZTKc1rEVEVMhiAU7d5UlERIUsJjMMHJ9v\nJdCqNUZSstlpRERMo0IWU9l378KxtxB/n3PNjiIiYioVspjK9W4uANXn9jM5iYiIuVTIYirn5ncA\nqO57nslJRETMpUIWU7nezcVwufD3PMfsKCIiplIhi3kqKnBu+QR/z17g8ZidRkTEVCpkMY3zk4+x\n+f1Un9vX7CgiIqZTIYtpXB9/AID/nN4mJxERMZ8KWUzj/PBoIffqY3ISERHzqZDFNM6PPySYlHzk\ntosiIjFOhSzmKCvDkffFkbOr7foxFBHRv4RiCteWj7EZxpEzrEVERIUs5nB8vhUA/5lnmZxERMQa\nVMhiCse2o3d46tLV5CQiItagQhZTOPN1D2QRkW9TIUtYVFdX8+67uezYsZ1AIHDS846CfAItT8dI\naWZCOhER63HW5UULFizgvffew+/3c+utt3L22WczefJkAoEA6enpLFy4ELfbHe6sEkFWrnyCSZMm\nAODxeOjUKZOsrC5kZmaR2a49fb/eQaf+55ucUkTEOmot5E2bNpGfn8/q1aspKSnhyiuvpH///mRn\nZzN06FDuv/9+1q5dS3Z2dlPklQjx8ccfAvDTnw5l79695Ofn8dlnW058Uc7btOl9JpmZWUfLuktN\naZ9+eitsNpsJyUVEzFFrIfft25eePXsCkJKSgtfrJTc3l5kzZwIwePBgli9frkKWGps25bBx42vY\nbDZmzJhJ167dMAyDwsI95Ofnsf2ZNWxf9Q8+7ZzJFxUVvP76Bl5/fcNJn2ffvsMmpBcRMYfNMAyj\nri9evXo1mzdv5q233iInJweAr7/+msmTJ7Nq1aof/Di/P4DT6Wh8WokIXbt2JS8vr+bx22+/zYAB\nA46/YOZMuOceWLcOLr2U0tJSvvjiCz7//HPeeustHnnkEQDq8aMpIhLx6vQeMsArr7zC2rVrWb58\nOZdeemnN9rr8o1lSUtGwdGGSnp5McXGp2TGaRFPPWllZSX7+kUuaUlNTKSkp4cCBshMyJH/0CR7g\nQPoZBI9ub9++K5WVkJ//FQBjxoyrV259T6NTrMwaK3NC7M1aH3U6y/rNN99k6dKlPProoyQnJ5OQ\nkIDP5wOgqKiIjIyM+ieVqPTVV1/W/E9as2bNAcjK6nLCa7bur+bjzB8RbN3mhO0jRlzOvffeDcDj\nj69g797CJkgsImINtRZyaWkpCxYs4JFHHqF58yP/wA4YMIB169YBsH79egYNGhTelBIx8vOPH6ou\nKyujRYsWpKWlHX9BMMia1j9m5cDrTljD+sCBAxQW7qF589Sajz148GCT5RYRMVuth6xfeuklSkpK\nmDBhQs22efPmMWPGDFavXk3r1q254oorwhpSIkdBwfFC/uabA5x7br+ax5/vKOFfr27lizZnAjD/\nH+9z+cCOdGufWlPkzZo15+DBEux2Ox07dmra8CIiJqq1kEeOHMnIkSNP2r5ixYqwBJLI9sAD99X8\nPhgMnnC4ulv7VFIzKrhz35E94+t+2pU2pyUCx4u8vLwMm81Ghw4diYuLa8LkIiLm0kpdElIVFSee\nwHfWWT1OeLy54BuuyVnF8DQvmz/fV7P92B7ygQP7MQzjpPedRUSinQpZQmrnzmIcDgfdu5/FY489\nzrXX/vqE59sVbyc7ZxWX929H66N7xwB/+9sy4PhZ+5mZKmQRiS11vuxJpC62b/+KQCBAnz4/4he/\nOPncgoGfvY5hsxHo1Jm+CQk1271e7wmv66K7QIlIjNEesoTUsUPPP7SH68jPI9i2HXyrjAG2bv2K\nX/7yVwBcddVI/u//rgxvUBERi1EhS0gdOzkrK+vk2yraDh/Csa+IQOfMk55LS0urWbt68uRpJCYm\nnvQaEZFopkKWkDrVHrLj6HP+HzgcXVCQR1xcHG3btgtfQBERi1IhS0gVFOThdrtp1679Sc8dK+TA\n95S1YRjk5+fTqVMmDofWPReR2KNClpA5XqqdcTpPPl/QWXBkjevA91zStHdvIeXlZWRmnnyoW0Qk\nFqiQJWSKivZSVlZ6yhO6APzf8/yxQ93f996ziEgsUCFLSOzbt48rr/wZANu3f8lrr71y0mscBXkE\nmzXHSE8/6bnazs4WEYl2KmQJiTff3Mi2bQUAbNnyCdOnTz7xBRUVOL7cRqBrNzh6NvW3HT87W4Us\nIrFJhSwh8e27PAG0/s6tFZ2ffoItEKD6nF4nbC8qKmL06Jv4z3/+DUDCd65PFhGJFSpkCYmCoyds\nHfPdk7OcH38IgP+c3idsf/HF53j22bXs2bMbgKlTJ4YxpYiIdamQJSTy8/Ow2Ww19zP+7qFn14cf\nACcX8neL/NjHi4jEGhWyNFogEGDr1k8xDIOUlBTg5JOznB9/iJGQSOA7e875+ScWss6yFpFYpUKW\nRvv2+8d79uwBvrOHXFGB44vP8Z/dE76z6EdBQR6pqS1qHussaxGJVSpkabROnTrX/N5ut9OjR09a\ntWpds825LR9bMIi/+5knfFxZWSl79uwmOTm5ZpvOshaRWKVClkZzu93ccccUAJ58cjWvvvomdvvx\nH60fWsM6NzcHgK+/3lGzrXNnHbIWkdik+yFLSGzf/hUAd9xxO926dSczswtZWV3IzOxCz48/IoWT\n17Du2LHTCY+7detOUlJSU0UWEbEUFbKExIgRI9m1ayfbtuXz8svrePnldSc8nwZkzrmXzH89S2Zm\nFzIzs8jKymLXrv107tyGTp3DyoUNAAAMSUlEQVQyeeGF/5oTXkTEAlTIEhIXXXQJF110CQDffHOA\ngoICtm3LJz8/jx1/f4wvysrY/MlH5H74/gkf53Q68fv9nHVWD1JSmpkRXUTEElTIEnItWqTRr18a\n/fqdB8Egpy1bir9HT/b951W2b/+K/Pw8Cgryav67e/duhg79udmxRURMpUKWsLLv2onN5yOQ1QW3\n202XLl3p8p2Tu0RERGdZS5g5jt404vvugSwiIsepkCWsnMcueVIhi4ickgpZwspxdGnM717yJCIi\nJ1IhS1g5CvIwbDYC31rNS0RETqZClrBy5ucRbNsePB6zo4iIWJoKWcLGdrAEe/E+/F10uFpEpDYq\nZAkbR4HePxYRqSsVsoRNTSHrDGsRkVqpkCVsjl3ypEIWEamdClnCpua2izpkLSJSKxWyhI2jII9g\n8+YYaWlmRxERsTwVsoRHdTWO7V8RyOoKNpvZaURELE+FLGHh2P4VNr8ff2aW2VFERCKCClnC4tj7\nx7rkSUSkblTIEha6y5OISP2okCUsjl/ypEPWIiJ1oUKWsHAU5GG4XATadTA7iohIRFAhS+gZBo78\nfAIdO4HLZXYaEZGIoEKWkLPt24f98CGd0CUiUg8qZAk5p07oEhGpNxWyhNyxm0roGmQRkbpTIUvI\nOfK/ACCgQhYRqTMVsoSc6/33MBwO/N3PMjuKiEjEUCFLaPl8OD/+EP/ZPSEhwew0IiIRQ4UsIeX8\n+CNsVVVUn9vP7CgiIhFFhSwh5dr8DgD+vueZnEREJLLUqZDz8vK4+OKLefLJJwEoLCzk+uuvJzs7\nm/Hjx1NVVRXWkBI5XO/mAlCtQhYRqZdaC7miooJZs2bRv3//mm1LliwhOzublStX0r59e9auXRvW\nkBI5nJvfIXB6K4JtzjA7iohIRKm1kN1uN48++igZGRk123JzcxkyZAgAgwcPJicnJ3wJJWLY9xbi\nKNqLv/ePwGYzO46ISERx1voCpxOn88SXeb1e3G43AGlpaRQXF4cnnUQU54cfAODv1dvkJCIikafW\nQq6NYRi1viY1NQGn09HYLxVS6enJZkdoMk02a8FnACReMIBEE/589T2NTrEya6zMCbE1a300qJAT\nEhLw+Xx4PB6KiopOOJz9fUpKKhoULlzS05MpLi41O0aTaMpZU/63iThgf/uuGE3856vvaXSKlVlj\nZU6IvVnro0GXPQ0YMIB169YBsH79egYNGtSQTyPRxDBwffgBgbbtME47zew0IiIRp9Y95C1btjB/\n/nx2796N0+lk3bp1LFq0iKlTp7J69Wpat27NFVdc0RRZxcJsxcXY9xdTednPzI4iIhKRai3kHj16\n8MQTT5y0fcWKFWEJJJHJseMrAAKdOpucREQkMmmlLgkJx47tAATadzA1h4hIpFIhS0jUFHKHjuYG\nERGJUCpkCQntIYuINI4KWULCvv0rDLud4BltzY4iIhKRVMgSEo5dOwm2ag1HV3ATEZH6USFL4wUC\n2Av3EGzdxuwkIiIRS4UsjWbfV4QtECDQRoUsItJQKmRpNPue3QAEW6mQRUQaSoUsjVZTyNpDFhFp\nMBWyNJpj9y4AAtpDFhFpMBWyNJp959cABNvqkicRkYZSIUujaZUuEZHGUyFLozl2bCfYrDlG81Sz\no4iIRCwVsjSOYeDYsV1LZoqINJIKWRrFXrQXm89HUIUsItIoKmRpFPv27YBuKiEi0lgqZGkUx56j\nlzzpphIiIo2iQpZGse8+uiiI1rEWEWkUFbI0ir1Qq3SJiISCClkaxXF0D1mrdImINI4KWRrFXrgb\nIy4OIy3N7CgiIhFNhSyN4ti1i2Cr1mCzmR1FRCSiqZCl4crLse8v1iVPIiIhoEKWBnN8vQOAQHut\nYS0i0lgqZGkwx/avAC0KIiISCipkaTDHjqOF3KGDuUFERKKAClka7NhtF4O67aKISKOpkKXB7Mfe\nQ27bzuQkIiKRT4UsDebYs4dgYhJGs+ZmRxERiXgqZGkw+55dR5bM1DXIIiKNpkKWhqmowF5ScmRR\nEBERaTQVsjSI4+hNJQJtzjA5iYhIdFAhS4PY9+wB0B6yiEiIqJClQYzmzTE8Hvzn9jU7iohIVHCa\nHUAik//sc9i/bTe4XGZHERGJCtpDloZTGYuIhIwKWURExAJUyCIiIhagQhYREbEAFbKIiIgFqJBF\nREQsQIUsIiJiASpkERERC1Ahi4iIWIAKWURExAJUyCIiIhagQhYREbEAm2EYhtkhREREYp32kEVE\nRCxAhSwiImIBKmQRERELUCGLiIhYgApZRETEAlTIIiIiFuA0O0BTeueddxg/fjxz5sxh8ODBAHz+\n+efcc889AHTt2pWZM2eamDB05syZw0cffYTNZmPatGn07NnT7EghlZeXx5gxY7jxxhu57rrrKCws\nZPLkyQQCAdLT01m4cCFut9vsmCGxYMEC3nvvPfx+P7feeitnn3121M3q9XqZOnUqBw4coLKykjFj\nxtCtW7eom/PbfD4fP//5zxkzZgz9+/ePyllzc3MZP348WVlZAHTp0oVbbrklKmd9/vnnWbZsGU6n\nk9tvv52uXbvWe86Y2UP++uuvWbFiBX369Dlh++zZs5k2bRqrVq2irKyM119/3aSEofPOO++wY8cO\nVq9ezezZs5k9e7bZkUKqoqKCWbNm0b9//5ptS5YsITs7m5UrV9K+fXvWrl1rYsLQ2bRpE/n5+axe\nvZply5YxZ86cqJx1w4YN9OjRgyeffJLFixczb968qJzz2x5++GGaNWsGRO/PL0C/fv144okneOKJ\nJ7jrrruictaSkhL+/Oc/s3LlSpYuXcqrr77aoDljppDT09N56KGHSE5OrtlWVVXF7t27a/YeBw8e\nTE5OjlkRQyYnJ4eLL74YgM6dO3Po0CHKyspMThU6brebRx99lIyMjJptubm5DBkyBIie7yNA3759\neeCBBwBISUnB6/VG5azDhg1j1KhRABQWFtKyZcuonPOYbdu2UVBQwIUXXghE78/v94nGWXNycujf\nvz9JSUlkZGQwa9asBs0ZM4UcHx+Pw+E4YVtJSQkpKSk1j9PS0iguLm7qaCG3f/9+UlNTax63aNEi\nKuY6xul04vF4Ttjm9XprDgdFy/cRwOFwkJCQAMDatWu54IILonZWgKuvvpqJEycybdq0qJ5z/vz5\nTJ06teZxNM9aUFDA6NGjueaaa3j77bejctZdu3bh8/kYPXo02dnZ5OTkNGjOqHwP+emnn+bpp58+\nYdu4ceMYNGjQKT8uWlcRjda5fkg0zvvKK6+wdu1ali9fzqWXXlqzPdpmXbVqFVu3bmXSpEknzBZN\ncz733HP06tWLtm3bfu/z0TRrhw4dGDt2LEOHDmXnzp3ccMMNBAKBmuejadaDBw/y0EMPsWfPHm64\n4YYG/fxGZSGPGDGCESNG1Pq6Fi1acPDgwZrHRUVFJxwGjVQZGRns37+/5vG+fftIT083MVH4JSQk\n4PP58Hg8UfN9PObNN99k6dKlLFu2jOTk5KicdcuWLaSlpdGqVSu6d+9OIBAgMTEx6uYE2LhxIzt3\n7mTjxo3s3bsXt9sdld9TgJYtWzJs2DAA2rVrx2mnncYnn3wSdbOmpaXRu3dvnE4n7dq1IzExEYfD\nUe85Y+aQ9fdxuVx06tSJzZs3A7B+/fpa96Ijwfnnn8+6desA+PTTT8nIyCApKcnkVOE1YMCAmpmj\n5fsIUFpayoIFC3jkkUdo3rw5EJ2zbt68meXLlwNH3nKpqKiIyjkBFi9ezDPPPMOaNWsYMWIEY8aM\nidpZn3/+eR577DEAiouLOXDgAMOHD4+6WQcOHMimTZsIBoOUlJQ0+Oc3Zu72tHHjRh577DG+/PJL\nWrRoQXp6OsuXL6egoIC7776bYDDIOeecw5133ml21JBYtGgRmzdvxmaz8Yc//IFu3bqZHSlktmzZ\nwvz589m9ezdOp5OWLVuyaNEipk6dSmVlJa1bt2bu3Lm4XC6zozba6tWrefDBB+nYsWPNtnnz5jFj\nxoyomtXn8zF9+nQKCwvx+XyMHTuWHj16MGXKlKia87sefPBB2rRpw8CBA6Ny1rKyMiZOnMjhw4ep\nrq5m7NixdO/ePSpnXbVqVc2Z1Lfddhtnn312veeMmUIWERGxspg+ZC0iImIVKmQRERELUCGLiIhY\ngApZRETEAlTIIiIiFqBCFhERsQAVsoiIiAWokEVERCzg/wNuKrpRV5vOLwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1232229850>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW9//HXrJlMNiAkSJCdsFRQ\nxKWCYkWsFWorahFN3Xe5KNbKIi51A9mkiFpRFNqLtUSj9fqr3oJasOrFIK6gQhKQRZYQ9iSTmWRm\nzu+PmFgUSUIy50zmvJ+PRx9lzmR5f5jgO+fMOd/jMAzDQEREREzjtDqAiIiI3ah8RURETKbyFRER\nMZnKV0RExGQqXxEREZOpfEVEREzmNuOblJWVm/FtmqRtWz/79gWsjmEKu8xqlznBPrPaZU7QrIko\nKyvtR5+z7Z6v2+2yOoJp7DKrXeYE+8xqlzlBs9qNbctXRETEKipfERERk6l8RURETKbyFRERMZnK\nV0RExGQqXxEREZOpfEVEREzW4CIbhYWFjB8/ntzcXAB69+7N9ddfz8SJE4lEImRlZTFr1iy8Xm/M\nw4qIiCSCRq1wdeqppzJv3rz6x3fddRd5eXmMGDGCOXPmUFBQQF5eXsxCioiIJJKjOuxcWFjI8OHD\nARg2bBgrV65s0VAiIiKJrFF7viUlJdx8880cOHCAcePGUVVVVX+YOTMzk7KysiN+ftu2/rhcTuxI\n624mGrvMapc5wT6zmjJnaSmsXg3r1kE0Ci7Xof9LSYGTT4a+fcEZu1Nl7PKagr1mPZwGy7dbt26M\nGzeOESNGsHXrVq688koikUj984ZhNPhN4nEB7aystLi84UMs2GVWu8wJ9pk1JnNGo3jefxfPh4W4\nP/0E92ef4NqxvXGfmtGGmpNPIXzyqdSc8lNqTjqltphbgF1eU7DPrEf6BaPB8u3QoQMjR44EoEuX\nLrRv3541a9YQDAbx+XyUlpaSnZ3dcmlFRGLAUX4Q35K/4nv2adxfb6zfHsnuQOjc8wifcCLhn/QH\njxsiUYhEIBrBEYng2LsXz0cf4lm9iqS33yTp7TcBiKamEbzqWqpuvIVoxxyrRpNWqMHyfe211ygr\nK+O6666jrKyMPXv2cNFFF7F06VIuuOACli1bxtChQ83IKiLSZM6NG0he+Ay+F57HWVGOkZRE1WWX\nUz3yV4RPGEj0mI6N+jrB624EwLFrV20RF64kqSAf/5OPkfzMnwhdfAmBsbcR6dsvluNIgnAYDRw3\nrqio4M477+TgwYPU1NQwbtw4+vXrx6RJkwiFQuTk5PDII4/g8Xh+9GvE4+EFuxz2APvMapc5wT6z\nNmvOQIDUB+7B9+fncBgGkWM6ErzmeqquuAajffuWCRgK4SvIJ/nJx3CXFNdu+sUIKqbNItq5S5O+\nlF1eU7DPrEc67Nxg+baEePxLtsuLD/aZ1S5zgn1mPdo53Ws+I+3m63AXFxHu05fAHRMJnX8BHGEn\noVmiUbxL/xf/E3PxfFhItE0byh97iuoRv2z0l7DLawr2mfVI5asVrkQkcUSjJD85jzbnnY27uIjA\njbew781/E7rwN7ErXgCnk+oRv2T/P5ZR/scncASDZFx1GSn3TILq6th9X2m1VL4ikhAc+/aSMXoU\nqQ/cQ7RtO/YveYXKh2eAz2diCAfB317JvqUrCOf2xv/MU7Q5/+c4N31tXgZpFVS+ItL6VVaSkTca\n77srCP1iBPtWrKTm7HMsixPp9xP2LXuH4Jg8PJ9+QtsRZ+PaWGJZHok/Kl8Rad2qq8m49nI8H31I\ncPSlHPzL31ruhKrmSEmh/PH5lD8yC+eePWRcejGO3butTiVxQuUrIq1XNErarTfhXf42oZ//gvK5\nT8Z0BaqjEbzuJirvmIBr09dkXHEJBOJv0SExX3z9lIqINJZhkDplAr6/v0zNTwdzcMFfYntSVTME\nJt1DcPSleD5aTfrN19Uu4CG2pvIVkVYp6eUXSV64gHC/4zjwfD74/VZH+nEOB+V/fILqoT8j6Z+v\nk/LAvVYnEoupfEWk1XFUlJPywL0YPh8HFi/ByGhjdaSGeb0cXPQ84V65JD/9JK4v1lqdSCyk8hWR\nVsf/6ExcpTsJ3HYH0S5drY7TaEZ6BhUPz8BhGKT+4W6I/RpHEqdUviLSqriKi0h+5k9EunQl8F/j\nrY7TZDVnn0P1sOF4/70c79vLrI4jFlH5ikjrYRik3j0RR00NFQ8+AsnJVic6KhX3T8VwOkm5/x4I\nh62OIxZQ+YpIq+FZ/jbeFf+i+qyzm7RucryJ9PsJwd9ehbtoPb7Ff7Y6jlhA5SsirYb/sUcBqLj3\nQXA4LE7TPJWT7sZISiL5LwutjiIWUPmKSKvgLvwA78r3CQ3/OZEBx1sdp9mM7Gyqh/4M95drcW7e\nZHUcMZnKV0RaBf+82r3ewPg7LU7ScqpHnA9A0j9ftziJmE3lKyJxz/XFWpLeXErNTwcTPm2w1XFa\nTOjcERgOB95/vmF1FDGZyldE4p7/8TkABMbfYXGSlmV06EB40Ml4Vr4Pe/ZYHUdMpPIVkbjm3LiB\npFdfIXzcAKqHn2t1nBYXGvFLHNEovP221VHERG6rA4iIHIn/yXk4otHavd5Wfobz4QR/exXu4iJ8\nJ59sdRQxkfZ8RSR+bd+OL/+vhLv3IPSrUVaniQkjM5Pyx+dDjx5WRxETqXxFJH798Y84qqupGnc7\nuFxWpxFpMSpfEYlLjn17Yf58Isd0JHjJZVbHEWlRKl8RiUv+WY9ARQVVt9wKSUlWxxFpUSpfEYk7\nri+/IHnRs5CbS9W1N1gdR6TFqXxFJL4YBqlTJuCIRGDuXO31SkJS+YpIXEn6n1fw/t97hM49D0aO\ntDqOSEyofEUkflRWknL/PRheb+39ekUSlMpXROJGyuzpuLZvIzD2NqI9elodRyRmVL4iEhdcX6wl\nef4TRLp0I3B74ty5SORwVL4iYr1olLQJt+OIRKiYMRv8fqsTicSUyldELOd7/i94Vq8i+OsLE/Lm\nCSLfp/IVEUs5du0i5aE/EE1Lp/Lh6VbHETGF7mokIpZK/cMUnAf2U/7ILKLHdLQ6jogptOcrIpbx\nvLMc38svUjPwRIJXX291HBHTqHxFxBrBIKmT7sBwOqmY/ZjuWiS2ovIVEUv4583BvXEDVdffRPj4\ngVbHETGVyldETOfaUIx/3hwiHXMITL7H6jgiplP5ioi5DIPUiXfgqK6mYupMjNQ0qxOJmE7lKyKm\nSnppCd533yF07nlU//JXVscRsYTKV0RM49i3l9T778bw+6l4ZDY4HFZHErGEyldETJPy8P04d++m\n8veTiXbuYnUcEcuofEXEFO5VhSQv/jPhfj+h6ub/sjqOiKVUviISezU1pE0YD0D5zLng8VgcSMRa\nKl8Ribnk+U/i/upLqq64mvBPT7M6jojlVL4iElPOLZtJmf0I0fbtqbznfqvjiMQF3VhBRGLHMEi9\n604cVVWUz34Mo207qxOJxAXt+YpIzHj/8RpJby6leujPCP1mjNVxROKGyldEYsJRfpDUuydieL1U\nzJija3pF/oPKV0Riwj9jKq6dOwjcdgeRXrlWxxGJK40q32AwyDnnnMMrr7zCjh07uOKKK8jLy2P8\n+PFUV1fHOqOItDLuzz8l+dmnCffoSeC2O6yOIxJ3GlW+Tz31FBkZGQDMmzePvLw8XnjhBbp27UpB\nQUFMA4pIKxOJkHrneBzRKBUz/wg+n9WJROJOg+W7YcMGSkpKOOusswAoLCxk+PDhAAwbNoyVK1fG\nNKCItC6+Pz+L59NPCF58CTVnnmV1HJG41GD5zpgxg8mTJ9c/rqqqwuv1ApCZmUlZWVns0olIq+Lc\nuYOUqQ8SzWhDxQPTrI4jEreOeJ3vq6++ysCBA+ncufNhnzcMo1HfpG1bP263q+npYiwryz73EbXL\nrHaZE+J01v+6DirK4emnaX9czxb5knE5Z4xoVvs4YvmuWLGCrVu3smLFCnbu3InX68Xv9xMMBvH5\nfJSWlpKdnd3gN9m3L9BigVtKVlYaZWXlVscwhV1mtcucEJ+zet9eRsZLL1Fz8qnsv2AMtEC+eJwz\nVjRr4jnSLxhHLN+5c+fW//nxxx+nU6dOfPLJJyxdupQLLriAZcuWMXTo0JZLKiKtUyBA6qTfY7hc\nlM+aC05dxShyJE3+F3Lrrbfy6quvkpeXx/79+xk1alQscolIK5IyZyauLZupunkckeP6Wx1HJO41\nem3nW2+9tf7PixYtikkYEWl9XF99SfKf5hE5tjOVd05u+BNERCtciUgzRKOkTfwdjnCYiumzISXF\n6kQirYLKV0SOmu9vz+MpXElo5K+oPneE1XFEWg2Vr4gcFcfu3aQ8eC/RlFQqps20Oo5Iq6LyFZGj\nknr/3Tj37SMw+W6iOZ2sjiPSqqh8RaTJPO/9G9+Lf6NmwAlUXXeT1XFEWh2Vr4g0TShE6sTfYTgc\nVMyeC+5GXzQhIt9S+YpIk/ifmIu7pJjgNdcTPvEkq+OItEoqXxFpNOfGDfjnzibS4Rgqp9xndRyR\nVkvlKyKNYxikTboDRyhE5cPTMdIzrE4k0mqpfEWkUZL+XoD3neVUn30OoV9faHUckVZN5SsiDXIc\n2E/qvXdh+HyUT38UHA6rI4m0aipfEWlQysMP4CzbReCOiUS7dbc6jkirp/IVkSNyr16F778XEu7T\nl8DY26yOI5IQVL4i8uPCYdIm/A6HYVAxay54vVYnEkkIKl8R+VHJzzyF+4s1VOVdQc1pQ6yOI5Iw\nVL4icljOb7aSMnMq0XbtqLzvQavjiCQUrQsnIoeVOmUijkCA8umPYrTLtDqOSELRnq+I/ID3f18n\n6Z+vUz3kDEJj8qyOI5JwVL4icqiKClKnTMDweGpPstI1vSItTuUrIodImTkN17ZvCNx6O5Hc3lbH\nEUlIKl8Rqeda8znJC54i0q07gfF3Wh1HJGGpfEWkViRC2oTxOCIRymfMgeRkqxOJJCyVr4gA4PvL\nQjwff0TwwoupGTbc6jgiCU3lKyI4SktJmfYg0fQMKh6cbnUckYSn63xFhNT7JuM8eIDyGXMwOnSw\nOo5IwtOer4jNeZa/je/vL1Nz0skEr7rW6jgitqDyFbGzqirSJt2B4XJRPusxcOo/CSJm0L80ERvz\nPzYb16avqbpxLJH+A6yOI2IbKl8Rm3IVrcf/+FwinY6lcsJdVscRsRWVr4gdRSKk/W4cjpoaKqbN\ngtRUqxOJ2IrKV8SGkhc+g+fDQoIXXET1iF9aHUfEdlS+Ijbj3LyJlKkPEG3btnavV0RMp+t8RezE\nMEj7/fja+/TOmouRlWV1IhFb0p6viI34/rIQ77+XEzrnXEK/GWN1HBHbUvmK2IRn5fuk3j2x9nCz\n7tMrYimVr4gNODdvIv3ay8EwOPjcYqKdjrU6koit6T1fkQTnKD9IxhVjcO7ZQ/msudSccabVkURs\nT+Ur9hIO49r8Na6iIlzFRbiL1+MqKcK5ezdGSipGWhrRtDSM1FSMtHSinbtQPfRnhAcOApfL6vRN\nF4mQdsv1uNd9ReD6m7R2s0icUPlK4guH8f7rTXwvPI/3raU4qqsPedrweIhmtse5dy+OinIchnHI\n8ylANKMNNWecSfXPhlF95llEe/Q0cYCj49izh/Sbr8X7znKqzzqbygcfsTqSiHxL5SsJy7WhGN8L\nz5OU/wKuXaUAhPv0JTxwEOHcPkRyexPp3ZtIl27g8dR+kmFAZSXOygocBw/i+uoLvO8sx/vOcpJe\nf42k11+r/Tr9jiM4Jo/gxZfE5S343J9/Svo1l+PauoXQuedR/tSz4NY/d5F44TCM7/2aHwNlZeWx\n/hZNlpWVFpe5YsEus9bN6dy4gbTJv8e74l9A7V5r6OLRBPOuIDzghKM7y9cwcH69Ee+/V+D915t4\n334TR00NhtNJ9bDhhMbkEfrFSEhObtmhfsSRXtOkJX8lbcLtUF1NYMJdBO6Y2GrvVmSXn13QrIko\nKyvtR5/Tr8KSOMJhkp+cR8qMh3EEg1QPOYPgldcQGvkr8Pma97UdDqI9ehLs0ZPg1dfh2LOHpFdf\nxvfS30h6+02S3n6TaHoGoQsuJDj6MsI/Pc30S3mc32wlZeY0fEv+SjSjDeWLnqf6nF+YmkFEGkfl\nKwnB9eUXMOE2Uj/8kGj79pQ/Pp/Qry+MWQEamZkEr7uR4HU34ipaj+/Fv5FUkE/y4j+TvPjPRLp2\nI3jJZQRHX0q0W/eYZKjj3LwJ/7w5+Jb8FUdNDeGf9OfAoueJdu8R0+8rIkdPh51tIKFnNQySn3iM\nlOkP4aipIfibMVQ8NB0jM9P8LJEInvffxZf/Akmvv4YjEAAgfNyA2hO1fjaMmtOGtMih6aysNPYW\nfkLyY3Pwvfg3HJEI4R49CfxuAqGLL0mY93cT+mf3ezRr4jnSYWeVrw0k7KyGgX/Gw6TMmUWkYw6u\nBc9QdmqcXMNaUUHSP/4H38sv4vng/3CEQgAYSUnUnDqY6jN/RqT/AML9jiPaMadRe+iO0lK8//cu\nnvfeJbnwfSgqAiCc25vAHRMJjbq4dV4OdQQJ+7N7GJo18eg9X0k8/1m83bqz/9U3yDyhL8TLP+jU\nVEKX/pbQpb+FQABP4cr6s6a9767A++6K+g+NZrQh0rcf4b4/IZqTA6EgjkAVjqoqHFUBHFVVuNZ/\nhbto/XdfPy2tdn3mSy4j9KtRCVe6IolO5Sutj2HgnzH1kOKN5nSyOtWP8/upGTacmmHDqQQcu3bh\nWfUB7nVf4v7qS1zrvsT9YSGewpU/+iUMfwrVw4ZTffqZ1Jx+Bm3POZOD+6rMm0FEWpTKV1od/6xH\nSJkzs7Z4//56fBfvYRjZ2VSf/2uqz//1dxuDQVzFRTjLdoHfj5GcjJHsx/D5av+/TZvvrkWGhHlP\nV8Su9C9YWhXPO8tJmT2dSNdutcWbKDcI8PmIDDieiNU5RMQUrfPKe7GnykrSfn8bhsvFwef+O3GK\nV0Rsp8E936qqKiZPnsyePXsIhUKMHTuWvn37MnHiRCKRCFlZWcyaNQuv12tGXrGxlOkP4dqymcBt\ndxA+fqDVcUREjlqD5bt8+XL69+/PDTfcwLZt27j22msZNGgQeXl5jBgxgjlz5lBQUEBeXp4ZecWm\n3KtXkfzMU4R79qLy95OsjiMi0iwNHnYeOXIkN9xwAwA7duygQ4cOFBYWMnz4cACGDRvGypU/fpam\nSLNVV5P2u3E4DIOKPz5h2vrJIiKx0ugTri699FJ27tzJ/Pnzueaaa+oPM2dmZlJWVhazgCJJb/w/\n3OvXUXXFNbUrRImItHKNLt8lS5bw1VdfMWHCBP5zUazGLJDVtq0ftzv+FgE40uojiaZVz/ryEgCS\np0wkuYE5WvWcTWSXWe0yJ2hWO2mwfNeuXUtmZiYdO3akX79+RCIRUlJSCAaD+Hw+SktLyc7OPuLX\n2Lcv0GKBW4pdljeD1j2rc9s3tFu2jPDJp7I/s9MRV7BqzXM2lV1mtcucoFkT0ZF+wWjwPd/Vq1ez\ncOFCAHbv3k0gEGDIkCEsXboUgGXLljF06NAWiipyKF/+CzgMg2DeFVZHERFpMQ3u+V566aXcfffd\n5OXlEQwGue++++jfvz+TJk0iPz+fnJwcRo0aZUZWsZtoFN/fnsfw+wldcKHVaUREWkyD5evz+Xj0\n0Ud/sH3RokUxCSRSx/3hKlybNxG85DKMtHSr44iItBitcCVxy/PB+wCEfjHS4iQiIi1L5Stxy/Nh\nIQDhU061OImISMtS+Up8Mgw8q1cR6dyF6DEdrU4jItKiVL4Sl1wbS3Du3UuN9npFJAGpfCUuuT9c\nBUDNySpfEUk8Kl+JS55PPwYgfNIpFicREWl5Kl+JS67iIgDCvftanEREpOWpfCUuuUqKiRzbGVJS\nrI4iItLiVL4SdxwV5bh2bCfSK9fqKCIiMaHylbjjKikGIKzyFZEEpfKVuFNXvpFevS1OIiISGypf\niTuuktqTrXTYWUQSlcpX4o67+Ns93959LE4iIhIbKl+JO66SYqIpqUQ7HGN1FBGRmFD5SnyJRHBt\nLCGSmwsOh9VpRERiQuUrccW5dQuOUEgnW4lIQlP5Slxxb6g701knW4lI4lL5SlypX1ZS5SsiCUzl\nK3HFVaxrfEUk8al8Ja64NhRjOBxEevS0OoqISMyofCWuuIuLiHbuCj6f1VFERGJG5Stxw3FgP86y\nXYRz9X6viCQ2la/Eje/WdFb5ikhiU/lK3Kg701knW4lIolP5Stxw1+355qp8RSSxqXwlbnx3ja/K\nV0QSm8pX4oZrQzHR9AyMrCyro4iIxJTKV+JDTQ2urzfqhgoiYgsqX4kLri2bcNTUEOmpM51FJPGp\nfCUuuEpKAAjrZCsRsQGVr8QFXWYkInai8pW44Cr5tny15ysiNqDylbjgLinGcLmIdOtudRQRkZhT\n+UpccJUUEenaDbxeq6OIiMScylcs5ygtxbl3rw45i4htqHzFcp7VqwAIDzrZ4iQiIuZQ+Yrl6sq3\n5uRTLU4iImIOla9YzvNhIYbTSc2JJ1kdRUTEFCpfsVZ1Ne7PPiH8k/6Qmmp1GhERU6h8xVLutZ/j\nCIUIn6JDziJiHypfsZT749UA1Jx0isVJRETMo/IVS3k++xSA8MBBFicRETGPylcs5f7sE6IpqUR6\n9rI6ioiIaVS+Yp3KSlxF6wkPOB5cLqvTiIiYRuUrlnGvXYMjGiV8wolWRxERMZXKVyzj+exjAMIn\nDLQ4iYiIuVS+YhnX+nUAtdf4iojYiMpXLOMqLsJwOon06Gl1FBERU6l8xTLukiKiXbqCz2d1FBER\nU6l8xRKOvXtw7t5NWLcRFBEbcjfmg2bOnMlHH31EOBzmpptuYsCAAUycOJFIJEJWVhazZs3Cq5ug\nSxO4SkoAiPRS+YqI/TRYvh988AHFxcXk5+ezb98+LrzwQgYPHkxeXh4jRoxgzpw5FBQUkJeXZ0Ze\nSRDukiIAIr1yLU4iImK+Bg87n3LKKTz22GMApKenU1VVRWFhIcOHDwdg2LBhrFy5MrYpJeG4imvL\nN5zbx+IkIiLma3DP1+Vy4ff7ASgoKODMM8/kvffeqz/MnJmZSVlZ2RG/Rtu2ftzu+FvBKCsrzeoI\npom7WbdsBKDt4EHQvuWyxd2cMWSXWe0yJ2hWO2nUe74Ab731FgUFBSxcuJBzzz23frthGA1+7r59\ngaNLF0NZWWmUlZVbHcMU8Thr2y++xNmuHXuMJGihbPE4Z6zYZVa7zAmaNREd6ReMRp3t/O677zJ/\n/nwWLFhAWloafr+fYDAIQGlpKdnZ2S2TVOwhFMK1eZNOthIR22qwfMvLy5k5cyZPP/00bdq0AWDI\nkCEsXboUgGXLljF06NDYppSE4tr0NY5IRJcZiYhtNXjY+Y033mDfvn3cfvvt9dumT5/OPffcQ35+\nPjk5OYwaNSqmISWxuEqKAYj01JnOImJPDZbvmDFjGDNmzA+2L1q0KCaBJPG56i4z6q09XxGxJ61w\nJaZz111mpPd8RcSmVL5iOldJEYbXW7uus4iIDal8xVyGgau4uPZORu5GX+kmIpJQVL5iKueuUpzl\nB3WZkYjYmspXTFW/rKTWdBYRG1P5iqnqyjeia3xFxMZUvmKq+suMVL4iYmMqXzFV3WVGkZ69LE4i\nImIdla+YylVSTOSYjhhp6VZHERGxjMpXzFNZieubrTrkLCK2p/IV07jXfQlAuE9fi5OIiFhL5Sum\ncX/6CQDhE060OImIiLVUvmIa9+efAipfERGVr5jG8+knGH6/3vMVEdtT+Yo5AgFc678iPOAEcLms\nTiMiYimVr5jC/cUaHNEoNScMtDqKiIjlVL5iCvf6dQBE+h1ncRIREeupfMUU9TdUyO1jcRIREeup\nfMUUrg3FAER6aVlJERHdzVxaRCgU4p13/kX79ln06pVLenrGIc+7iouItm+P0S7TooQiIvFD5Sst\nIj//Be68c3z94w4djiE3tze9euWS270HJ236ml4nnEhqNIrTqQMuImJvKl9pEWvXfg7Ab34zhj17\ndlNSUsx77/2b997793cf9OnH+Hvk0LNnLrm5ufTq1Zvc3N706NGT3r37kpSUZFF6ERFzqXyl2ZYv\nf5tly5bicDi4/PKrGDLkDAAqKyvZuHEDm/JfYMszf2LtcQNYBxQXr2fNms9+8HV27TpocnIREWuo\nfKXZ7rvvLrZv/waAUaNGsmTJK5x99jmkpKQwYMDx/PStpaQAB6bcS/XPzyMajfLNN1spKSli9eoP\nmT17urUDiIiYTG++SbPU1NSwYUMJAJmZ7QF+cPh43Zb9rDm2P+FetctKOp1OunTpSmZme6LRKADX\nXnuDialFRKyl8pVm2bJlE+FwGID09HQAevU6dO3ml7w9eeH0y4h26XrI9quuymPOnJkALF78ZzZu\nLDEhsYiI9VS+0izFxcX1fw4EKklPzyA7OxuAdZv3MeOvH/NF226s7XQcM5Z8xrrN+wDYv38f27dv\nIzOz9tKjmpoaAoEq8wcQEbGAyleapfjblasAdu/eTW5uLg6HA4C+Xdty5aB29c9f/os+9O3aFoCS\nktrSTktLr3++R4+eZkQWEbGcyleaZcaMh+v/HIlEfnDIefXHX3PZyiVczBZWr9tVv72ufCsrK3E4\nHHTu3AW/329OaBERi6l8pVlycjod8njAgOMPedz5wA7yVi7hol7J5LRPqd9et8e8d+8eDMMgV/f4\nFREbUflKs7z//mo8Hg/HHdefV175B1dddd0hz5/+zScARHJ7c0rf7Prtf/rTvNrtkQiAyldEbEXX\n+UqzbNmyiZqaGvr3P54zzjjzB8+7i769m1HP3EO215VunT59+sUupIhInNGerzRL3dnOP7bn6iop\nIpLTCVJTD9m+dWsZ119/EwBXXnkNF100OrZBRUTiiMpXmqXuvdvvn2gFQEUFru3biHxvrxdqF+Ko\nqKgA4JZbxulkKxGxFZWvNEtJSW35Hm7P1/3tohmR3offKy4uLsLj8dClS7eY5RMRiUcqX2mW4uIi\n3G433bp1/8Fzrm/3isO9frjnaxgGJSXFdO/eA4/HE/OcIiLxROUrR622QIvo1q37YQu0rnwjhzkk\nXVZWxoED++l5mEPSIiKJTuUG1u4SAAAL80lEQVQrR2337t3s37//8O/3Aq5vF9KIHOaQ9JEOV4uI\nJDqVrxyV0tJSzj77dADWr1/Hyy+/+IOPcRcXYfhTiHbM+cFz352opT1fEbEfla8clcLC/6O0dCcA\nX3+9gWnTHjz0AyIRXBtLat/v/Xat5/+kPV8RsTMtsiFHpaho/SGPjz228yGPnVu34AiFfnDIeefO\nHYwfP5YvvlgLQDh86GIbIiJ2oD1fOSp1e651vv++r/vb579fvkuX/i/Ll7/Nrl2lADzwwD0xTCki\nEp9UvnJUiouLcTgc9bcEzM099L1b17crX4W/V751pV1328GsrGxEROxG5StNFo1GWbPmMwzDoE2b\nNsAP37utP9P5e3vEdSdaGYYB6IQrEbEnla802TffbP3Bn79/2NlVvB7D6STSvcch20tKiklPz6h/\nrBOuRMSOVL7SZJ07dyE9vfZwc0ZGG047bcihJ1yFw3g+/5RIn77g89VvDgQCbN26hYyM78pXe74i\nYkcqX2kyh8PBLbfcCsBTTy3gtdf+icvlqn/e/eVaHIEANSf/9JDP++ijDzEMg61bt9RvU/mKiB3p\nUiM5KnUFeuON15Kbm0uvXr3Jze1Nr1696f/5JxwP1Jxy6iGf8/179vbt2482bdqaFVlEJG6ofOWo\nXH75VRw4cICSkiLWrPmcjz/+6JDnXUC32dPJfeP//Ucx57Ju3dcMGnQc3bp1Z9myd6wJLyJisUaV\nb1FREWPHjuXqq6/m8ssvZ8eOHUycOJFIJEJWVhazZs3C6/XGOqvEkZNPPpVFi54HIBwOs2XLJoqL\niykuLmLro9NZHwrx5cEDbPjnG8AbP/j8Pn366mdGRGyrwfINBAI89NBDDB48uH7bvHnzyMvLY8SI\nEcyZM4eCggLy8vJiGlTil9vtpkePXvTo0YvzBg6i/YP3Ejr3PA4szmfPnj2UlBRRUlJbzCUlRXzz\nzVYuvHC01bFFRCzTYPl6vV4WLFjAggUL6rcVFhbywAMPADBs2DAWLlyo8hUAPJ99DED4xJNwOBy0\nb9+e9u3bc9ppQyxOJiISPxosX7fbjdt96IdVVVXVHzLMzMykrKwsNumk1XF/+gkA4YEnWpxERCR+\nNfuEq7qVio6kbVs/brerwY8zW1ZWmtURTGParF+tASDj7KFgwd+vXtPEY5c5QbPayVGVr9/vJxgM\n4vP5KC0tJTv7yOvz7tsXOKpwsZSVlUZZWbnVMUxh2qyGQeaqDzE6HcteRzKY/Per1zTx2GVO0KyJ\n6Ei/YBzVIhtDhgxh6dKlACxbtoyhQ4ceXTJJKM4d23GW7SJ8gg45i4gcSYN7vmvXrmXGjBls27YN\nt9vN0qVLmT17NpMnTyY/P5+cnBxGjRplRlaJc+4vv71Hb/8BFicREYlvDZZv//79Wbx48Q+2L1q0\nKCaBpPVybt4EQKRHT2uDiIjEOa3tLC3GtWkTAJGu3SzNISIS71S+0mJcdXu+3Xoc+QNFRGxO5Sst\nxrV5E9HUNIx27ayOIiIS11S+0jIMo7Z8u3YDh8PqNCIicU3lKy3CsXcvjkAlkc5drI4iIhL3VL7S\nIlzbvwEg2qmTxUlEROKfyldahHP7dgAiOcdanEREJP6pfKVFOLd9u+ebk2NxEhGR+KfylRbh2lG7\n5xvtpD1fEZGGqHylRdTt+UY6as9XRKQhKl9pEa6tWzCcTqIqXxGRBql8pUU4N28iemxn8HqtjiIi\nEvdUvtJ8VVW4du7Qms4iIo2k8pVmc23dAuiGCiIijaXylWZzbdoIqHxFRBpL5SvNVnc3o6jKV0Sk\nUVS+0mzObdsAiBzb2eIkIiKtg8pXms1Zv66zFtgQEWkMla80m2v7dgyXi2h2B6ujiIi0CipfaTbn\n9m1Ej+kILpfVUUREWgWVrzRPJIJz5w6tbCUi0gQqX2kW565SHOEwEb3fKyLSaCpfaRbn5s2ALjMS\nEWkKla80i2vz14AW2BARaQqVrzSLa5PKV0SkqVS+0ix1q1upfEVEGk/lK83i2rwJw+3WAhsiIk2g\n8pVmcW7ZTDTnWHC7rY4iItJqqHzl6FVX49xVSuRY7fWKiDSFyleOmrN0Jw7DIJrTyeooIiKtispX\njlrd3YxUviIiTaPylaPm+vZuRhGVr4hIk6h85ag5t28HtOcrItJUKl85atGsLAy/n/CA462OIiLS\nqqh85aiFxuSxu3irrvEVEWkila80j8djdQIRkVZH5SsiImIyla+IiIjJVL4iIiImU/mKiIiYTOUr\nIiJiMpWviIiIyVS+IiIiJlP5ioiImEzlKyIiYjKVr4iIiMlUviIiIiZzGIZhWB1CRETETrTnKyIi\nYjKVr4iIiMlUviIiIiZT+YqIiJhM5SsiImIyla+IiIjJ3FYHMNuqVasYP34806ZNY9iwYQCsW7eO\n+++/H4A+ffrwwAMPWJiw5UybNo3PPvsMh8PBlClTOP74462O1KKKiooYO3YsV199NZdffjk7duxg\n4sSJRCIRsrKymDVrFl6v1+qYLWLmzJl89NFHhMNhbrrpJgYMGJBws1ZVVTF58mT27NlDKBRi7Nix\n9O3bN+Hm/E/BYJDzzz+fsWPHMnjw4ISctbCwkPHjx5ObmwtA7969uf766xNy1qaw1Z7vli1bWLRo\nEYMGDTpk+9SpU5kyZQpLliyhoqKCd955x6KELWfVqlVs3ryZ/Px8pk6dytSpU62O1KICgQAPPfQQ\ngwcPrt82b9488vLyeOGFF+jatSsFBQUWJmw5H3zwAcXFxeTn5/Pss88ybdq0hJx1+fLl9O/fn+ef\nf565c+cyffr0hJzzPz311FNkZGQAifvzC3DqqaeyePFiFi9ezL333pvQszaWrco3KyuLJ554grS0\ntPpt1dXVbNu2rX6vcNiwYaxcudKqiC1m5cqVnHPOOQD07NmTAwcOUFFRYXGqluP1elmwYAHZ2dn1\n2woLCxk+fDiQOK8jwCmnnMJjjz0GQHp6OlVVVQk568iRI7nhhhsA2LFjBx06dEjIOets2LCBkpIS\nzjrrLCBxf34Px06z/hhblW9ycjIul+uQbfv27SM9Pb3+cWZmJmVlZWZHa3G7d++mbdu29Y/btWuX\nEHPVcbvd+Hy+Q7ZVVVXVH7pKlNcRwOVy4ff7ASgoKODMM89M2FkBLr30Uu68806mTJmS0HPOmDGD\nyZMn1z9O5FlLSkq4+eabueyyy3j//fcTetbGStj3fF966SVeeumlQ7bdeuutDB069Iifl6irbSbq\nXD8mEed96623KCgoYOHChZx77rn12xNt1iVLlvDVV18xYcKEQ2ZLpDlfffVVBg4cSOfOnQ/7fCLN\n2q1bN8aNG8eIESPYunUrV155JZFIpP75RJq1KRK2fEePHs3o0aMb/Lh27dqxf//++selpaWHHMps\nrbKzs9m9e3f94127dpGVlWVhotjz+/0Eg0F8Pl/CvI513n33XebPn8+zzz5LWlpaQs66du1aMjMz\n6dixI/369SMSiZCSkpJwcwKsWLGCrVu3smLFCnbu3InX603I1xSgQ4cOjBw5EoAuXbrQvn171qxZ\nk5CzNoWtDjsfjsfjoUePHqxevRqAZcuWNbh33BqcfvrpLF26FIAvvviC7OxsUlNTLU4VW0OGDKmf\nOVFeR4Dy8nJmzpzJ008/TZs2bYDEnHX16tUsXLgQqH3bJBAIJOScAHPnzuXll1/mxRdfZPTo0Ywd\nOzZhZ33ttdd47rnnACgrK2PPnj1cdNFFCTlrU9jqrkYrVqzgueeeY+PGjbRr146srCwWLlxISUkJ\n9913H9FolBNOOIG77rrL6qgtYvbs2axevRqHw8Ef/vAH+vbta3WkFrN27VpmzJjBtm3bcLvddOjQ\ngdmzZzN58mRCoRA5OTk88sgjeDweq6M2W35+Po8//jjdu3ev3zZ9+nTuueeehJo1GAxy9913s2PH\nDoLBIOPGjaN///5MmjQpoeb8vscff5xOnTpxxhlnJOSsFRUV3HnnnRw8eJCamhrGjRtHv379EnLW\nprBV+YqIiMQD2x92FhERMZvKV0RExGQqXxEREZOpfEVEREym8hURETGZyldERMRkKl8RERGTqXxF\nRERM9v8Bo2tKTRYgT1wAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1232612950>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VPXd/vH3LJlMNraQRILsu7Jp\nhQqKmOJPH3Cjtj5iikurVkQUrGzirmUXRLB1QUDFImD0odqq4AZSG8IiICCQBBQQA0QMkGUmycyc\n3x9ABAUSYGbO5Mz9ui4vyUkmuT9OLm/O9j02wzAMREREJGzsZgcQERGJNipfERGRMFP5ioiIhJnK\nV0REJMxUviIiImGm8hUREQkzZzh+SGFhcTh+zBmrXz+eoqIys2OEXLTMCZrViqJlTtCsVpGSknTS\nz2nPF3A6HWZHCItomRM0qxVFy5ygWaOByldERCTMVL4iIiJhpvIVEREJM5WviIhImKl8RUREwkzl\nKyIiEmYqXxERkTCrdpGNnJwchg4dSps2bQBo27Ytd955JyNHjsTv95OSksLkyZNxuVwhDysiImIF\nNVrhqnv37kyfPr3q44ceeojMzEz69u3L1KlTycrKIjMzM2QhRURErOSMDjvn5OTQp08fADIyMsjO\nzg5qKBERESur0Z5vfn4+gwYN4uDBgwwZMgSPx1N1mDk5OZnCwsJTvr5+/fiIX0LsVGtwWkm0zAma\n1YpCPqdhwLffwurV8M03YLcf/sfh+Omf5GS4+GJo0gRstpBFiZb3FKJr1qOqLd/mzZszZMgQ+vbt\ny65du7j11lvx+/1VnzcMo9ofEumLZqekJEX8wx+CIVrmBM1qRSGZ0+vF9clHxKxdg3P9WpxfrcNe\nVFSjl/rPaYSv26+p7Nadyou64+tyAcTEBCVWtLynYO1ZT/WXimrLNy0tjX79+gHQtGlTGjZsyIYN\nG/B6vbjdbvbu3Utqamrw0oqIhJh9TwHuOTOJe30O9v37q7b7m7fA2zsDX+cL8LdpCzbAHwC/HwJ+\nbH4/9t27iVm9kphVOcS+t4jY9xYdfm16Yzx/Hoz3ltswkuqYNJnUFtWW77vvvkthYSF33HEHhYWF\n7N+/nxtuuIHFixdz/fXXs2TJEnr16hWOrCIiZ8W5eiVxr7xI7LuLsPl8BOrXp+zeoVRk9MHXuQtG\nvfo1+j4eAMPAvnMHMatyiMn+Avfbb5H4xMPET52E9/Y78Nw1iEDaOSGdR2ovm1HNceOSkhKGDx/O\noUOHqKysZMiQIXTo0IFRo0ZRXl5Oeno648ePJ+YUh1si/ZCClQ97HCta5gTNakVnM6d97x4Sh91L\n7CcfAeBr3wHPXffg/d3/Qnx8UPLZin4k7rXZxL38AvYfCjFcLrw330LpY0+e9p5wtLynYO1ZT3XY\nudryDYZI/w9r5Tf/WNEyJ2hWKzrTOV0fvk/SA/di37+fil69KRv6IJW9eofuYimvF/fCN4n7+3Sc\n27fha9GS4ldew9epS42/RbS8p2DtWU9VvlrhSkSsqayMxBEPUPfWAdhKSigeP5mDWe9SednlIb1K\nGbcb761/pGj5SsqGDMP5zXbq9bsC9+yZh6+mFkHlKyIW5MjdSv0rehH32ix853WkaMkyvHfcHdrS\n/bmYGEofe4qD897CSEggafSD1LnzNmyHDoYvg0Qsla+IWIp95w7q/v46nPl5lN19L0Uffoq/w3mm\n5am44iqKPv2Cyl/3IPa9RdS7vh+24kOm5ZHIoPIVEcuwFRZS98brcewpoOSpcZQ+PR7cbrNjEUhv\nzIH/+zeegbfh3LSBOn+6BSorzY4lJlL5iogl2IoPUXfADTi/2U7Z0AfxDBpidqTjOZ2UTHqW8iv/\nB9eyz0h68H6dA45iKl8Rqf28XurcejMxG9bjueV2Ssc8ZnaiE3M6OfTSHCq7XoB7/j+Inzze7ERi\nEpWviNR6CWOfxPXFcsqvvo6SSc+G98Kq05WQwME33sLftDkJz0wgNmuB2YnEBCpfEanVHFs2E/fK\ni/ibt+DQ32cefvhBhDNSUzk4/20CCYkkPjpaV0BHIZWviNRehkHiwyOx+f2U/HUCxMWZnajG/K3b\n4Bn6F+z79xP/3FSz40iYqXxFpNZy/eufuJYvo/yKK6m4sq/ZcU5b2d334m98LnEv/x37zh1mx5Ew\nUvmKSO1UVkbi4w9juFyU/nWC2WnOTFwcpQ8/jq28nISxT5idRsJI5SsitVL8y3/H8d0uPIOG4G/Z\n2uw4Z6z8hhsPX/38f2/jXLPK7DgSJipfEal9ysqIe+lvBOrUpWzoX8xOc3bsdkoffQqAuNdmmxxG\nwkXlKyK1jnve69j378dzx12WeHB95SW98Kedg2vJB+DzmR1HwkDlKyK1S2Ul8X+fgREXh+euwWan\nCQ67nYqr+mH/8UdiVuWYnUbCQOUrIrVK7NsLD5/rHXgbRsOGZscJmoq+/QBwffBvk5NIOKh8RaT2\nCASIn/EshtOJ5577zE4TVBWX9iaQkEjsB//Sms9RQOUrIrWG6/1/4czLpfz3NxE4t4nZcYIrNpaK\nPv8Px45vYds2s9NIiDnNDiAiUiOGQfz0KRg2G2X31/IrnE+ibOiDGHXrEnfOOeDR3q+Vac9XRGqH\nTz4hZt1aKq6+Dn/rNmanCQl/p86UTJkOiYlmR5EQU/mKSO0w/vDj92r9fb0iqHxFpBZwrlkFn35K\nxeW/wdflArPjiJw1la+IRDbDIPGJRwAoGzbc5DAiwaHyFZGIFvv2QmJysuG3v6Wy56VmxxEJCpWv\niEQsW0kxCU8+iuF2w1Q981asQ+UrIhErfupkHHv3UDZkGDRvbnYckaBR+YpIRHLk5xH30t/wN2lK\n2X0PmB1HJKhUviISeQyDxFEPYquspOTJcRAXZ3YikaBS+YpIxIl9eyGu5Uspv+JKKq6+1uw4IkGn\n8hWRiGI7UETiY2Mw4uIomTAFbDazI4kEncpXRCJKwtNPYP+hkNIHRxNo2szsOCIhofIVkYjhXJlD\n3Nw5+Dqch+eeIWbHEQkZla+IRIbKSpJGDAOgeNI0iIkxOZBI6Kh8RSQixL30d5ybN+EZeBu+X19s\ndhyRkFL5iojp7Lt2kvDMeAING1L66JNmxxEJOafZAUQkyhkGiQ8Nx1ZWRvGkZzHqNzA7kUjIac9X\nREzlev9fxC75kIpLL6P8xgFmxxEJC5WviJjGVlJM4pgRGC4XJZOe1T29EjVUviJimviJY3EUfE/Z\nfQ/gb93G7DgiYaPyFRFTOL9aR9zMF/G1bEXZ0AfNjiMSVipfEQk/v5/E4UOxBQKUTJwKbrfZiUTC\nSuUrImHnfvUVYtatxXvDjVT2zjA7jkjYqXxFJKzsewpIGPsUgbr1KHlqvNlxREyh+3xFJKwSHn0I\ne0kxxZOnYaSmmh1HxBTa8xWRsIn59CPc/3yHyou6473ldrPjiJhG5Ssi4eHxkDTyQQyHg+LJ08Cu\n//1I9NJvv4iERfyzk3Hs/BbP3ffiP7+j2XFETKXyFZGQc2zdQvzfnsN/bhNKRzxkdhwR06l8RSS0\nAgESRwzDVllJyfhnICHB7EQipqtR+Xq9Xq644greeecdCgoKuOWWW8jMzGTo0KFUVFSEOqOI1GLu\n+f/AteK/lPe7loqr+podRyQi1Kh8X3jhBerWrQvA9OnTyczMZN68eTRr1oysrKyQBhSR2su2fz8J\nTz5CICGRknGTzI4jEjGqLd9t27aRn5/P5ZdfDkBOTg59+vQBICMjg+zs7JAGFJHaK/HJR7AXFVE2\nagyB9MZmxxGJGNWW78SJExk9enTVxx6PB5fLBUBycjKFhYWhSycitVbMf/+De/4/qOzYGc+dg8yO\nIxJRTrnC1aJFi+jatStNmjQ54ecNw6jRD6lfPx6n03H66cIoJSXJ7AhhES1zgmY1VXk5jP4L2GzE\nzJpJSqP6Qfm2ETdnCGlWaztl+S5dupRdu3axdOlS9uzZg8vlIj4+Hq/Xi9vtZu/evaTWYHm4oqKy\noAUOhZSUJAoLi82OEXLRMidoVrPFPzuZhC1b8PzpLkpadIAg5IvEOUNFs1rDqf5SccrynTZtWtWf\nZ8yYQePGjVm7di2LFy/m+uuvZ8mSJfTq1St4SUWk1rN/s534ZyfjT02jdMxjZscRiUinfZ/vfffd\nx6JFi8jMzOTAgQP0798/FLlEpDYyDJJG/QWb10vpXydg1KlrdiKRiFTjpxrdd999VX+eM2dOSMKI\nSO0Wu+htXEs/pSKjD+XX32B2HJGIpRWuRCQobAcPkPDoQxhuN8UTpoDNZnYkkYil8hWRoEgY9xSO\nfXspe2AEgRYtzY4jEtFUviJy1pxfrsb96ix8bdtRdu9Qs+OIRDyVr4icHZ+PxOHDsBkGJZOnwZFF\neETk5FS+InJW4ma+SMzGr/DcPJDKHpeYHUekVlD5isgZs3+3i4SJYwk0aEDpY0+bHUek1qjxrUYi\nIj+XOGYktrJSisdPxkhONjuOSK2hPV8ROSOuD/5N7If/pqLHJZQP+IPZcURqFZWviJy+khISx4zA\niIk5fJGV7ukVOS0qXxE5bQmTx+PY/R1lQ4bib9vO7DgitY7KV0ROi2PjBuJe/jv+Zs0pGzbC7Dgi\ntZLKV0RqLhAgacQwbH4/xROnQlyc2YlEaiWVr4jUmPv1OcSsWYW3/w1U/uYKs+OI1FoqXxGpEdu+\nfST89QkCSXUofXqC2XFEajXd5ysiNZL42EPYDx2keMIUAmnnmB1HpFbTnq+IVCtm6ae433mLygt/\nhfe2P5kdR6TWU/mKyKl5vSSO+guG3X74nl6Hw+xEIrWeyldETil+2jM4v9mO56578HXqYnYcEUtQ\n+YrISTnycol/fhr+9MaUjnrY7DgilqHyFZETMwwSRwzDVlFBybjJkJhodiIRy1D5isgJxS58E9d/\n/0P5VX2p6HeN2XFELEXlKyK/YPtxP4lPPIwRH394r1dEgkrlKyK/kPD049j376d0xBgCTZqaHUfE\nclS+InIc54ps4v7xOr7zOuL58z1mxxGxJJWviPykooKkEUMBKJ78LMTEmBxIxJpUviJSJe7F53Fu\n3YLn1j/h6/Zrs+OIWJbKV0QAsO/4loQpEwk0TKH0kcfNjiNiaXqwgogcvqd39IPYPB6Kp87AqFff\n7EQilqY9XxHB9d4iYj/5iIrLMii/4Uaz44hYnspXJMrZin4k6aERGG43JZOmgM1mdiQRy1P5ikS5\nxMfGYC/cR+mIMfhbtjY7jkhUUPmKRLGYTz/CvWAelV0uwHPPELPjiEQNla9IlLKVFJM0fBiG00nx\ns8+DU9dfioSLylckSiU8/jCO73ZRdv9f8HfsZHYckaii8hWJQu45rxA391V853Wk7IERZscRiToq\nX5EoE/P5UhLHjCDQsCEH586H2FizI4lEHZWvSBRxbM+nzp23gt3OwTnz9MQiEZPoCguJXh4Pju3b\ncOZtxZGXiyM/F2duLrbSEgJJdTCSkjASEzESkzCS6uBv25aKyzLwt21XK++FtR0oos7Am7AfOMCh\n6S/g+/XFZkcSiVoqX4kupaXEvrcI95tvELPiv9gM47hPG/HxBJLq4CgsxF5acsJv4W+UTuVll1PR\nO4OKyzIwUlPDkfysOHK3Uuf2TJz5eZQNvp/yAX8wO5JIVFP5ivUZBs7VK3G/+Qax//d2ValWXtQd\n33kd8bdti691W/xt2xFIbwz2I2dj/H5spSXYSkqwHThAzNo1xHz+Ga7Pl+JeMA/3gnkAVFzSC+9N\nmVRccx1GYpJZU56U671/knT/PdhLSygbNITSR580O5JI1FP5iqU5V2STNOovODdvAsDf+FxKB92L\nd8AfCDRrfuoXOxwYdepi1KkL6Y3xn3c+3j/cCoEAzk0biFn6Ga6PPsT1xXJcXyzHGP0g5f2uxfu/\nN1PZqzc4HKEf8FR8PhLGP038jGcx4hM49PIcyvv/ztxMIgKofMWqiotJHP0gcbNnYthseK+/AW/m\nLVRedvnZl6Ldjq9TF3yduuC5bxj2Hd/ifms+7oVv4s5agDtrAf5G6ZT//ia8N2UePkccZs6v1pHw\n+MO4vliOr0VLDr06D3+H88KeQ0ROzGYYPzvpFQKFhcWh/hFnJSUlKeIzBkO0zBnz6UfUG/kA7NyJ\nr207ip99PjwPhjcMnCtzcC+cR+w//w/7oYMAVHa9AO9NmZT3/z1GcnLQf+yx76vzy9XET51E7JIP\nASi/qi/Fz7+EUbde0H9uuEXL7y9oVqtISTn5aSiVL9Z+849l+TkrKkgcMYy4N98Ap5PS+x+g7IGR\n5tzH6vEQu+QDYhfMw/XZJ9j8fgynk8qLulPZO4OK3hn4ul4YlCUdUxomUvT+JyRMnYjr048BqOx+\nMaXDR1PZO6NWXpl9Ipb//T2GZrUGlW81rPzmH8vSc1ZUUOfOW4n98H0qO3cl5vVXKUxvaXYqAGx7\n9+J+5y1i//k2zrVfVl1hHahTl8pLL6PykkvxndcRX4fzMBrUYM/YMLB/sx3XF8uJ+eJz3NlfQEEB\nABU9L6Vs+GgqL+llmdI9ytK/vz+jWa1B5VsNK7/5x7LsnBUV1LnzNmI//DcVvS7n4Nz5pDRLi8hZ\nbUU/EvOfz3Et/QzXss9w7Pz2uM/7U9PwdzgPX/vzMBo0AI8Hm6cMW9mRf5eW4ly/Fsf3u396UWoq\n3p6X4r39Tip7XhrWecLJsr+/J6BZreFU5asLrqR2O0HxEh9vdqqTMuo3oOLa/lRc2x8A+zfbiVmz\nCueWzTi2fI1z89e4lh0u5pMJJCdTfm1/Ki7pReUlvWhwyUUU/3Die5JFJDKpfKX28vmoc9fttaZ4\nTyTQoiXlLVpSfsw2W/EhHFs2YystxYiLh/g4DHccRtyRfzdo8NO9yGC5w8si0UDlK7VW3AvPE/vB\nv6jo1btWFu/JGEl1wnN1toiYRg9WkFrJsS2PhMnjCDRM4dArr1mmeEUkOlS75+vxeBg9ejT79++n\nvLycwYMH0759e0aOHInf7yclJYXJkyfjcrnCkVcEAgES/3I/Nq+XQ8+/hFG/gdmJREROS7Xl+9ln\nn9GxY0fuuusudu/ezZ/+9CcuvPBCMjMz6du3L1OnTiUrK4vMzMxw5BXBPfdVXNlfUN73mqoLl0RE\napNqDzv369ePu+66C4CCggLS0tLIycmhT58+AGRkZJCdnR3alCJH2Au+J+HJRwnUqUvJxCm62EhE\naqUaX3A1YMAA9uzZw4svvsgf//jHqsPMycnJFBYWhiygyLHiZr6IvaSY4snTCJzTyOw4IiJn5LQW\n2di8eTMjR46ksLCQFStWALBjxw5GjRrF/PnzT/o6n8+P02nyE16k9vP5oEkTKC+H778Ht9vsRCIi\nZ6TaPd+NGzeSnJxMo0aN6NChA36/n4SEBLxeL263m71795JazcPEi4rKghY4FKy8wsqxavucriUf\nUHfPHjx3/JmS4koorjzp19b2WU9HtMwaLXOCZrWKU61wVe0539WrVzN79mwAfvjhB8rKyujZsyeL\nFy8GYMmSJfTq1StIUUVOzj3vDQC8mbeYnERE5OxUu+c7YMAAHn74YTIzM/F6vTz22GN07NiRUaNG\nsWDBAtLT0+nfX1ecSmjZCgtxLfkA3/md8HXqYnYcEZGzUm35ut1upkyZ8ovtc+bMCUkgkROJ/efb\n2Hw+vJkDzY4iInLWtMKV1Aqu7P8CUH5VP5OTiIicPZWvRD7DwLkqB3/aOQSaNDU7jYjIWVP5SsSz\nf7cLx54CfBd116IaImIJKl+JeDGrVwJQeVF3k5OIiASHylcinnNVDgCVesyeiFiEylciXszaLzGc\nTnyddYuRiFiDylcim2HgyMvF36KllpMUEctQ+UpEsxUWYj90EH/rtmZHEREJGpWvRDRnfi4A/jYq\nXxGxDpWvRDRH3uHy9bVuY3ISEZHgUflKRHPk5wHgV/mKiIWofCWiOY4edlb5ioiFqHwlojnz8gik\npGLUq292FBGRoFH5SuTyerHv2qHzvSJiOSpfiViO7duwGYZuMxIRy1H5SsSqOt/bRnu+ImItKl+J\nWE5d6SwiFqXylYhVdY9vK5WviFiLylciliM/DyM2lkDTZmZHEREJKpWvRCbDwJGfh79lK3A4zE4j\nIhJUKl+JSPY9BdhLS3Sls4hYkspXIlLV+V5d6SwiFqTylYhUtaazLrYSEQtS+UpEcuhRgiJiYSpf\niUjOPD1QQUSsS+UrEcmRn4e/UTpGYpLZUUREgk7lK5GntBTH7u+01ysilqXylYjj3J4P6JCziFiX\nylcijkPne0XE4lS+EnGO3mbk0wIbImJRKl+JOLrNSESsTuUrEceRn48RH08gvbHZUUREQkLlK5El\nEMC5LQ9fy9Zg16+niFiT/u8mEcX+/W5sHg9+reksIham8pWI4tzyNYCeZiQilqbylYjiXL0SgMpf\nXWRyEhGR0FH5SkSJWXW4fH0XqnxFxLpUvhI5fD6cX67B1649Rr36ZqcREQkZla9EDMfmr7GXllB5\nUXezo4iIhJTKVyJGzJHzvb5uvzY5iYhIaKl8JWLEfLkagMpfdTM5iYhIaKl8JWI4v1qHEZ+gByqI\niOWpfCUylJbi2LqFys5dwOEwO42ISEipfCUiODdtxBYI4OvS1ewoIiIhp/KViBCz/ksAfF0uMDmJ\niEjoqXwlIjjXrQVUviISHVS+EhEcW7dguN34W7YyO4qISMipfMV8hoEzPw9/y9a62EpEooLKV0xn\nL/geW1kpvjZ6kpGIRAeVr5jOkZcLoPt7RSRqOGvyRZMmTWLNmjX4fD7uvvtuOnXqxMiRI/H7/aSk\npDB58mRcLleos4pFOfJVviISXaot3xUrVpCXl8eCBQsoKirit7/9LT169CAzM5O+ffsydepUsrKy\nyMzMDEdesSCn9nxFJMpUe9i5W7duPPfccwDUqVMHj8dDTk4Offr0ASAjI4Ps7OzQphRLc+TlAeBr\npfIVkehQ7Z6vw+EgPj4egKysLC677DL+85//VB1mTk5OprCw8JTfo379eJzOyL6KNSUlyewIYRGR\nc27PgyZNSGnRKKjfNiJnDZFomTVa5gTNanU1OucL8PHHH5OVlcXs2bO58sorq7YbhlHta4uKys4s\nXZikpCRRWFhsdoyQi8Q5bSXFNNy9m4reGRwMYrZInDVUomXWaJkTNKtVnOovFTW62nn58uW8+OKL\nzJw5k6SkJOLj4/F6vQDs3buX1NTU4CSVqOPIP3LIWbcZiUgUqbZ8i4uLmTRpEi+99BL16tUDoGfP\nnixevBiAJUuW0KtXr9CmFMv66TYjla+IRI9qDzu///77FBUVMWzYsKptEyZM4JFHHmHBggWkp6fT\nv3//kIYU63JsO7zn69eer4hEkWrL96abbuKmm276xfY5c+aEJJBEF2eeyldEoo9WuBJTOfJzCSQm\nEUg7x+woIiJho/IV8/h8OLbl42/TBmw2s9OIiISNyldMY9+5A1tFhS62EpGoo/IV0ziPrums870i\nEmVUvmIaLSspItFK5SumqXqaUdt2JicREQkvla+YxpmXi+Fw4G/ewuwoIiJhpfIV0zjyc/E3bQax\nsWZHEREJK5WvmMK2fz/2H3/UxVYiEpVUvmIKreksItFM5SumcH69EQBf+w4mJxERCT+Vr5jCuX4t\nAL4uF5icREQk/FS+YoqY9esw4uJ0zldEopLKV8LP48GxdTO+jp3BWe2DtURELEflK2Hn3LQBm99P\nZVcdchaR6KTylbBzrl8HgK9zV5OTiIiYQ+UrYefcuhkA/3nnm5xERMQcKl8JO0e+HqggItFN5Sth\n58jPw9+kKcTHmx1FRMQUKl8JK1vxIRx7CvC31l6viEQvla+EVdUhZ93fKyJRTOUrYVW1prPO94pI\nFFP5Slgd3fP1t21nchIREfOofCWsnEf2fH16mpGIRDGVr4SVIz+XQJ26GKmpZkcRETGNylfCx+fD\nsX0b/jZtwGYzO42IiGlUvhI2jp3fYqusxK9DziIS5VS+EjaOvCO3GekeXxGJcipfCZuq24y05ysi\nUU7lK2HjyD9SvlpgQ0SinMpXwsaZl4vhcOBv3sLsKCIiplL5SngYBo68rYeL1+UyO42IiKlUvhIW\ntv37sR84oEPOIiKofCVMnPla01lE5CiVr4TF0SudfVrTWURE5Svh8dNtRtrzFRFR+UpYVN1mpPIV\nEVH5Sng483IJNEzBqN/A7CgiIqZT+Uroeb3Yd+7ApyudRUQAla+EgWP7NmyGoUPOIiJHqHwl5LSs\npIjI8VS+EnLOPJWviMixVL4SclX3+GqBDRERQOUrYeDYlo8RG0ugSVOzo4iIRASVr4RWIIAzLxd/\ny1bgcJidRkQkIqh8JaQcuVuxlZXi69TF7CgiIhFD5SshFbMqB4DKbr82OYmISORQ+UpIqXxFRH7J\naXYAqd02bPiKp556lObNW9K16wV06XIB7dq1JyYmBgDn6pUEkurgb9fe5KQiIpGjRuWbm5vL4MGD\nuf322xk4cCAFBQWMHDkSv99PSkoKkydPxuVyhTqrRKA335zLsmWfsWzZZ7z22uFtbreb88/vRNf2\nHeiVn0eXbt05B9DlViIih1VbvmVlZTz99NP06NGjatv06dPJzMykb9++TJ06laysLDIzM0MaVCKP\n3+9n7dovcTgcvPvuh3z99Sa++mod69atZf36taxZs4pZAKtWEt+qMR07dq7aO+7a9UJatWqN3a4z\nHyISfar9P5/L5WLmzJmkpqZWbcvJyaFPnz4AZGRkkJ2dHbqEEpEMw6B374tZs2YVMTExfPDBv/nD\nH25lypTpfPLJcrZv/56lA2/jb8AfemfQrFkLVq9eycsvv8C99/6ZSy65iHPOqceAATeYPYqISNhV\nW75OpxO3233cNo/HU3WYOTk5mcLCwtCkk4i1a9dOcnO3AlBeXs7zz0+joOD7qs+73W4u3reXwcC0\nv81k2bJstm//nn/96yPGjZtEq1atAfjyy9VmxBcRMdVZX3BlGEa1X1O/fjxOZ2Sf8UtJSTI7QlgE\na85ly7ZU/TktLY2SkhK6du1QdRh5Q/4P7NlbRqdzz6Xh+a2OfGUSzZqlkZ6eTEnJAcaNG8dzzz0X\nsv/20fKeQvTMGi1zgma1ujP/KUU1AAAMHElEQVQq3/j4eLxeL263m7179x53SPpEiorKzihcuKSk\nJFFYWGx2jJAL5pyff/7fqj/v2bOHnj0vZf/+0qptr72zlpi2V/JEyQoOHfMzt2/Pp0ePX1X9pS0r\naxF9+/42KJmOFS3vKUTPrNEyJ2hWqzjVXyrO6GqXnj17snjxYgCWLFlCr169ziyZ1Frr1q0FwHFk\nycjOnbsCsGVHERP/8SVb95axsUlHHj3vJrbsKKp63cqVORiGgdsdB8CKFV+EObmIiPmq3fPduHEj\nEydOZPfu3TidThYvXswzzzzD6NGjWbBgAenp6fTv3z8cWSVCGIbB8uVLAUhJSWXPngK6dr0AgPbN\n6pMUH8Ojs1YCcHuHWFKa1a967fr1h0u7vNwLQJcuXcOYXEQkMlRbvh07dmTu3Lm/2D5nzpyQBJLI\nt2/fvqo/79lTAFBVvgCrtuzj98VfE7PxK7LP+zPXHfPadevW4nA48Pv9AHTpcgEiItFGN1nKaUtL\nSyMj4/CtZs2bt+Dqq6+jefOWVZ9vnJLIzZve5+YVC2jUolHVdp/Px6ZNG0hJSava1rXrheELLiIS\nIbS8pJyRc889/GzeWbNep9PPnljUrX0qjh3fEkhvTLdOjau2r1+/Fq/Xy549P92SpMPOIhKNtOcr\nZ2T9+rXExsbSrl2HX36yvBz797vxN2t+3Oa1a9cc93FqahrnnNMIEZFoo/KV01ZeXs7mzZs4//yO\nJ1zT27FrJzbD+EX53nnnIF59dR42m420tHP4618nhCmxiEhkUfnKadu8eROVlZUnvFhq7949DBr5\nAG8AlY3P/cXn69Wrh2EY/O53/0v//r8LQ1oRkcij8pXTdvQe3xNdLDV27JO89Z/PuQXo+Y/XWbLk\ng+NWQVu/ft2R1+oqZxGJXipfOW1H79U9urDGUbm5W1m48E3aNUjmNmDznj0MHHgT11xzJdnZXxx5\n7ZeAbjESkeim8pXTtm7dWtxuN+3atT9ue27uVgKBANuKfsQNLHx2Bn37XsOqVTlcf31f5sx5hXXr\n1lK3bj2aN29hTngRkQig8pXT4vF42LLlazp27IzTefydaldffS2zZr1OS3ccLwG3jH6Q1q3b8Jvf\nXAFAZWUF27dvo0uXC7DZbCakFxGJDCpfOS2bNm3A7/ef8JytzWbj2mv7s/7cc3k5Lo76DZKZMeNZ\nPv30YwDatGkH6N5eERGVr5yWoxdMnfScrWEQu/s7bm/VhuzsLxk0aAgAw4YNZ+PGDYAuthIRUfnK\naTl6sdXJloW07duHrayMQPMWxMXF8dRT49i37xBjxjxW9VpdbCUi0U7lK6dl/fq1xMcn0Lp1mxN+\n3rHjW4BfLLABhy/UatCgAU2aNA1hQhGRyKfylRorLS1l69YtdOrUueo5vj/n2PEN8MvyLSr6kZ07\nv9XFViIiqHzlNGzcuIFAIHDKc7Yn2/PV4hoiIj9R+UqN1WSBjJOX79HzvXqEoIiIyldq7NhlJb/7\nbhc7d+74xdfYd38HQOBn6zr/9Frt+YqIqHylxr766vCh44UL59G798V069aZYcPuZfeRwgWwf7+b\nQMMUiI097rXr16+lYcMUGjVKD2tmEZFIpPKVGmvRoiUA06ZNobi4GMMwmDdvLr/6VUeuvfYq3nt3\nEYd2f4f/Z3u9hYWFfPfdLrp21cVWIiIAzuq/ROSw11+fT0HB91x88YV4vR7atm3H7t27KS0tIScn\nm5ycbO4AWuZtpfOfb6dz5wvo2vUCfvihEND9vSIiR6l8pcZsNhvp6Y25//4HeO65KeTmbqVt23b8\n8Y93snr1Kt5+eyFO4IDfz6JF77Bo0TvHvf5kC3OIiEQbla+ctuHDR3PzzQOZMmUi8+bN5aGHRlR9\nbhQwavhDbO1/A+vXr2XdurWsX7+W8vJyeva8xLzQIiIRROUrZ6Rx43OZOnUG99xzHxMm/JX33lsE\nwHAg0KIFzZo1p1mz5lx33W/NDSoiEoF0wZWclTZt2jJr1uvMnbuARf9zNfWAwAmWlhQRkZ+ofCUo\nrrqqL//j9wEnXtdZRER+ovKVoHHs+JZA3XoY9eqbHUVEJKKpfCU4AgEcO3fgb97C7CQiIhFP5StB\nYS/ch83rJaDHBYqIVEvlK0Fh/343wC9WtxIRkV9S+UpQ2HcfLt9A48YmJxERiXwqXwkKR8GRPd90\nla+ISHVUvhIUVXu+Kl8RkWqpfCUo7AUqXxGRmlL5SlAEUlLxN21OIO0cs6OIiEQ8la8ERenTE/hx\nxZfgcJgdRUQk4ql8JThsNnDqOR0iIjWh8hUREQkzla+IiEiYqXxFRETCTOUrIiISZipfERGRMFP5\nioiIhJnKV0REJMxUviIiImGm8hUREQkzla+IiEiYqXxFRETCzGYYhmF2CBERkWiiPV8REZEwU/mK\niIiEmcpXREQkzFS+IiIiYabyFRERCTOVr4iISJg5zQ5gppUrVzJ06FDGjRtHRkYGAFu2bOGJJ54A\noF27djz55JMmJgyecePGsX79emw2G2PGjKFz585mRwqq3NxcBg8ezO23387AgQMpKChg5MiR+P1+\nUlJSmDx5Mi6Xy+yYQTFp0iTWrFmDz+fj7rvvplOnTpab1ePxMHr0aPbv3095eTmDBw+mffv2lpvz\nWF6vl2uuuYbBgwfTo0cPy82ak5PD0KFDadOmDQBt27blzjvvtNycNRW1e747d+5kzpw5XHjhhcdt\nHzt2LGPGjGH+/PmUlJSwbNkykxIGz8qVK9mxYwcLFixg7NixjB071uxIQVVWVsbTTz9Njx49qrZN\nnz6dzMxM5s2bR7NmzcjKyjIxYfCsWLGCvLw8FixYwCuvvMK4ceMsOetnn31Gx44deeONN5g2bRoT\nJkyw5JzHeuGFF6hbty5g3d/f7t27M3fuXObOncujjz5q2TlrImrLNyUlheeff56kpKSqbRUVFeze\nvbtqrzAjI4Ps7GyzIgZNdnY2V1xxBQCtWrXi4MGDlJSUmJwqeFwuFzNnziQ1NbVqW05ODn369AGs\n8z4CdOvWjeeeew6AOnXq4PF4LDlrv379uOuuuwAoKCggLS3NknMetW3bNvLz87n88ssB6/7+/ly0\nzHkiUVu+cXFxOByO47YVFRVRp06dqo+Tk5MpLCwMd7Sg++GHH6hfv37Vxw0aNLDEXEc5nU7cbvdx\n2zweT9XhK6u8jwAOh4P4+HgAsrKyuOyyyyw7K8CAAQMYPnw4Y8aMsfScEydOZPTo0VUfW3XW/Px8\nBg0axM0338wXX3xh2TlrIirO+b711lu89dZbx22777776NWr1ylfZ9WVN60618lYcd6PP/6YrKws\nZs+ezZVXXlm13Wqzzp8/n82bNzNixIjjZrPSnIsWLaJr1640adLkhJ+3yqzNmzdnyJAh9O3bl127\ndnHrrbfi9/urPm+VOWsqKsr3xhtv5MYbb6z26xo0aMCBAweqPt67d+9xhzJrq9TUVH744Yeqj/ft\n20dKSoqJiUIvPj4er9eL2+22zPt41PLly3nxxRd55ZVXSEpKsuSsGzduJDk5mUaNGtGhQwf8fj8J\nCQmWmxNg6dKl7Nq1i6VLl7Jnzx5cLpcl39O0tDT69esHQNOmTWnYsCEbNmyw3Jw1FbWHnU8kJiaG\nli1bsnr1agCWLFlS7d5xbXDJJZewePFiADZt2kRqaiqJiYkmpwqtnj17Vs1slfcRoLi4mEmTJvHS\nSy9Rr149wJqzrl69mtmzZwOHT5uUlZVZck6AadOm8fbbb7Nw4UJuvPFGBg8ebMlZ3333XWbNmgVA\nYWEh+/fv54YbbrDcnDUVtU81Wrp0KbNmzWL79u00aNCAlJQUZs+eTX5+Po899hiBQIAuXbrw0EMP\nmR01KJ555hlWr16NzWbj8ccfp3379mZHCpqNGzcyceJEdu/ejdPpJC0tjWeeeYbRo0dTXl5Oeno6\n48ePJyYmxuyoZ23BggXMmDGDFi1aVG2bMGECjzzyiKVm9Xq9PPzwwxQUFOD1ehkyZAgdO3Zk1KhR\nlprz52bMmEHjxo259NJLLTdrSUkJw4cP59ChQ1RWVjJkyBA6dOhguTlrKmrLV0RExCw67CwiIhJm\nKl8REZEwU/mKiIiEmcpXREQkzFS+IiIiYabyFRERCTOVr4iISJipfEVERMLs/wOhg6SER+7D5gAA\nAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f1231f81910>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW9//HXbFkmC0tIkIAk7FBB\nBUULihWxVGytaLVgql7rUi2C2BYUcK+CbCKCrXhVsNWLoNFy+bVaqK1YtTEsIhUESdDEsBowkIRk\nMtv5/YFEuUUSksl850zez8eDh8xJJvP+mJD345w553sclmVZiIiISNQ4TQcQERFpbVS+IiIiUaby\nFRERiTKVr4iISJSpfEVERKJM5SsiIhJl7mi8SHl5VTReJmratfNSUVFjOkaL0Gz2pNnsSbPZU2Nn\ny8xM+9aPac+3Cdxul+kILUaz2ZNmsyfNZk+RmE3lKyIiEmUqXxERkShT+YqIiESZyldERCTKVL4i\nIiJRpvIVERGJMpWviIhIlDW4yEZhYSETJ06kV69eAPTu3Zubb76Zu+66i1AoRGZmJnPmzCEhIaHF\nw4qIiMSDRq1wdc4557BgwYL6x1OnTiUvL49Ro0Yxb9488vPzycvLa7GQIiIi8aRJh50LCwsZMWIE\nAMOHD6egoCCioUREROJZo/Z8i4uLue222zh06BDjx4+ntra2/jBzRkYG5eXlJ3x+u3beuFtq7ERr\ndtqdZrMnzdYElgVlZbBhAxQXH9nmcn39x+2Gbt3g3HOhbdsWiaDvmz01d7YGyzc3N5fx48czatQo\nysrKuP766wmFQvUftyyrwReJt8W1MzPT4u5mEUdpNnvSbI1kWXje/Seed9/Gs+lD3Js24jxwoOGn\nORyE+vQlMPjcI3+Gnk+4a06z4+j7Zk+Nne1EBd1g+Xbs2JFLL70UgK5du9KhQwc++ugjfD4fSUlJ\n7Nu3j6ysrJOILSISZYcPk5S/nORnF+H+ZFv95lDXHOqGnE/gzIGEevcFpwNCYQiFIBzCEQjg+mQb\nnnWFeDZuwL1tK8kvPI/lcOC/5IfUjJ9IcPC5BgcTu2qwfFeuXEl5eTk33XQT5eXlHDhwgCuvvJJV\nq1Zx+eWXs3r1aoYNGxaNrCIiJ8W5ayfJzz5N0v/8AefBg1geD76f/BTf1WMInjEIKyOj8V8sGMT9\n8Wbc6wpJemUZiW/8mcQ3/kzgnO9SM/5O/CMvAaeu3pTGcVgNHDeurq5m0qRJVFZWEggEGD9+PP36\n9ePuu++mrq6O7OxsHn30UTwez7d+jXg79KDDKfak2eypSbNZFkkvPE/qfVNw1NYS7tCB2utvxPfz\nmwl3PKX5oSwLz/v/IvnJ+ST+bRUAwX6nUbnoOUL9vtPoL6Pvmz1F4rBzg+UbCfH2DdAPlT1pNns6\n2dkcBw6Q9qvxJP71L4TbtuXw/Q/ju2oMJCW1SD7Xtq14Fz5O0ivLsJKSqJ4xB9/PrgeHo8Hn6vtm\nT5EoXx0jEZG44Xnr77T73ndJ/Otf8J9/ARVrCvBd+18tVrwAob79qPrdf3PoDy9hJSaR9usJpP3y\nZhzV8Vk8EhkqXxGJC0nPPU3bMVfgrPiS6vt+y6FX/pdwdueovb5/1A+p+Me7BM4aTNJrr9D24gtw\n7SiK2uuLvah8RcT2El99mbSpkwlldeTg629SO+HOI9fpRln41K4cXPlXasbdgfvTHbQZ8xMcX3wR\n9RwS+1S+ImJrCX9fTdqE2wint+HQ8j8RPGOg2UAeD4cffITDk6fi+ryENtdeDYcPm80kMUflKyK2\n5V5bSPqN14HbTeWLywmd1t90pHo1k6ZQm3cdng83kv6LGyAYNB1JYojKV0Rsybln95G9Sr+fymf/\nQOC7Q01HOpbDQfWc+fgvvIjEv60idepk04kkhqh8RcSWUh66F+fBg1Q/Mgv/yFGm4xyfx0Plc38k\neNoAkv/wHJ41/zCdSGKEyldEbMdT8B5Jr+UTGDgI389vNh3nhKy0dCoXPIXlcJD6wD1Hlq6UVk/l\nKyL2EgySOmUSANWPzrXFko6hAafjG/sz3Fu3kPTSi6bjSAyI/Z9aEZFvSPrDc7i3bqE27zqCg842\nHafRaqbeh+X14p35CFRXm44jhql8RcQ2HNVVpMyeQTi9DYfvedB0nJMSPqUTNbdPxPXFPry/e8J0\nHDFM5SsitpH0hyU4Kyqo/eV4rMxM03FOWs24Owi3a0fSi3+AcNh0HDFI5Ssi9lBXR/KiJwmnpFJ7\n0y9Mp2malBT8I0fh2rcX94cfmE4jBql8RcQWkpYvxbVvL74bbsJq2850nCaru+SHACT89XXDScQk\nla+IxL5gEO/Cx7ESE6m97XbTaZrFf+FFWElJJL7xZ9NRxCCVr4jEvMSVf8JVWoJvzM8IdzzFdJzm\nSUnB/73huD/ZBsXFptOIISpfEYltloV3weNYTic1t99hOk1E1P34iiN/+eQTs0HEGLfpACIiJ/T6\n67g/3ozvyqsJd+tuOk1E1F01hoo+fWl30fmwX9f8tkba8xWR2PboowDU3PFrw0EiyOEgePqZ4HCY\nTiKGqHxFJGZ53v8XvPcedSMvIfSd00zHEYkYla+IxCbLwvvowwDU3PEbw2FEIkvlKyIxKXHFqyQU\nvAc//jHBc841HUckolS+IhJ7qqtJeeAerMREePxx02lEIk7lKyIxJ2X+XFx791Bz+0ToHh9nOIt8\nk8pXRGKK69Nikhc9SajLqfF1hrPIN6h8RSR2WBapd/8Gh99P9UPTwes1nUikRah8RSRmJP4pn4S3\n38J/0cX4f3S56TgiLUblKyIxwXHoIKn3TcVKSqJq5mNagELimspXRGJCyiMP4Sz/gsO/uZtwbjfT\ncURalMpXRIxzr19L0h8XE+zTl9pfTjAdR6TFqXxFxKxAgLRJd+KwLKrnzIeEBNOJRFqcyldEjEp+\nZhHujzdT+7PrCXx3qOk4IlGh8hURY5w7y0iZPZ1wRgaH73vIdByRqNH9fEXEmNRpk3HU1FA18zGs\n9hmm44hEjfZ8RcSIhNf/TOJfX8c/9HzqxuSZjiMSVSpfEYm+6mpSp03G8nionv24rumVVkflKyJR\nlzJ7Bq7du6iZcCeh3n1MxxGJOpWviESV66N/k/zMU4Ryu1EzcZLpOCJGqHxFJHpCIdLuuhNHKETV\n7MchOdl0IhEjVL4iEjVJf1yCZ8N6fFdeReDCi0zHETFG5SsiUeHYt4+U6Q8RTm9D9UOPmo4jYpSu\n8xWRqEi9fwrOykNUzZqH1bGj6TgiRmnPV0RanOetv5P0p1cJnHU2vv+60XQcEeNUviLSsmprSbvr\nV1guF1VzngCnfu2I6F+BiLQo7xNzcZWWUPuLcYT6DzAdRyQmqHxFpMW4tn+Cd+F8Qp27cHjyVNNx\nRGJGo8rX5/Nx8cUX89prr7Fnzx6uu+468vLymDhxIn6/v6UziogdWRapd/0KRyBA9Yw5kJpqOpFI\nzGhU+T711FO0adMGgAULFpCXl8fSpUvJyckhPz+/RQOKiD0lLl9Kwr/epe6SH+If9UPTcURiSoPl\nu2PHDoqLi7nwwgsBKCwsZMSIEQAMHz6cgoKCFg0oIvbjOHCA1AfvwfKmUD1jtuk4IjGnwet8Z82a\nxX333ceKFSsAqK2tJSEhAYCMjAzKy8sbfJF27by43a5mRo0tmZlppiO0GM1mTzE125Q74csvYe5c\nMgZ+p9lfLqZmizDNZk/Nne2E5btixQrOPPNMTj311ON+3LKsRr1IRUXNySeLYZmZaZSXV5mO0SI0\nmz3F0mye9/9F28WLCZ42gIq8G6GZuWJptkjTbPbU2NlOVNAnLN81a9ZQVlbGmjVr2Lt3LwkJCXi9\nXnw+H0lJSezbt4+srKyTTy4i8cnvJ3XSRCyHg6q588GtRfREjueE/zLmz59f//eFCxfSuXNnNm7c\nyKpVq7j88stZvXo1w4YNa/GQImIP3t8vwL39E2r/6yaCZw02HUckZp30db4TJkxgxYoV5OXlcfDg\nQUaPHt0SuUTEZpwln+GdN5twZhaH733AdByRmNboY0ITJkyo//uSJUtaJIyI2JRlkTblNzh8Pqoe\nfxKrTVvTiURimla4EpFmS1z5JxL+8Sb+C4ZTd+XVpuOIxDyVr4g0i6PyECn3TsFKTKRq9jxwOExH\nEol5Kl8RaZaURx/GtW8vNXdOIty9h+k4Irag8hWRJnNv3EDS4mcI9uxFzfg7TccRsQ2Vr4g0TTBI\n6qQ7cVgW1XPmQ2Ki6UQitqHyFZEmSX7uaTwfbcI3Jo/AebreX+RkqHxF5KQ5d+/CO3M64XbtqH7g\nEdNxRGxHa7+JyElLvedunIerqXrkSawOHUzHEbEd7fmKyElJWP0GiX9ZSeDcIfiuudZ0HBFbUvmK\nSOMdPkzqlElYbjdVc+aDU79CRJpC/3JEpNFS5s7EtbOM2tsnEurbz3QcEdtS+YpIo7i2bCZ50ZOE\nuuZy+FeTTccRsTWVr4g0LBwmbdJEHKEQ1bPmgtdrOpGIral8RaRBSS88j2fDOnw/vgL/iJGm44jY\nnspXRE7I8cUXpDzyIOG0dA4/MtN0HJG4oOt8ReSEUh+YhvPQQaoenUP4lE6m44jEBe35isi38rz9\nFkmvvkzgzIH4brjZdByRuKHyFZHj8/lIvfvXWE4n1XOfAJfLdCKRuKHyFZHj8i6Yh/vTHdTefCvB\n0880HUckrqh8ReQ/uIqL8C6YR6hTNjVT7jUdRyTuqHxF5FiWRerdv8bh91P9yCys1DTTiUTijspX\nRI6RmL+chHfepu77P8D/ox+bjiMSl1S+IlLPUfElqQ9Mw0pOpvrRueBwmI4kEpdUviJSL+WRB3Hu\n38/hSVMJd80xHUckbql8RQQAd+H7JL/wPMF+p1F72+2m44jENZWviEAgQNpddwIcuU+vx2M4kEh8\nU/mKCN6Fj+Pe+jG11/2c4Dnnmo4jEvdUviKtnOuTbXjnzSZ0SicO3/+Q6TgirYLKV6Q1C4VIu/P2\nI9f0zn4cq01b04lEWgWVr0grlvzc00fu03vFT/BfcqnpOCKthspXpJVybdtKyozfEm7fnurpc0zH\nEWlVdD9fkVbIceAAba4dg6OmhsqFT2N16GA6kkiroj1fkdbG7yf9xmtxfV7C4d/cjf+yy00nEml1\ntOcr8m38flwln+Hcsxsr2YuVloaVmvrVf9PAbcN/Pl/dNCGh4D3qLhtNzeSpphOJtEo2/O0h0gL8\nfhLeXI3ng/W4tn+Cq3g7rs8+xREKfetTgj16EvjecPzfu4jAeedjpbeJYuAmsCy8cx4l+X/+SOD0\nM6lcuAicOvglYoLKV1o119aPSVr6Akn5y3AeOFC/PdymLcGBZxHs3Ydw5y44fD4c1VU4qqtxVFXh\nqDyEe9OHJC9+huTFz2C5XAQHnoX/4pH4fvJTwjm55oY6Dkd1FWl3jCPxz/9LKLszlX98Cbxe07FE\nWi2Vr7Q+oRCJL79E8vPP4tn4AQDhjAxqbhuP/wejCPbqg5WZ2fAdfQIB3BvWk/D2P0h4+y3cGzfg\nWb+WlJmP4B9yHnU/vYa6H4/GSkuPwlDfzlW0nfQb8nAXbcc/9Hwq//t5rKwso5lEWjuVr7Qqru2f\nkPar8XjWFWI5ndR9/wf4rrkO/8hLICHh5L6Yx0Pwu0MIfncINXffg+PQQRLe+AtJL79Ewrv/JKHg\nPVKnTqLu0h/h+2kege8NB5erZQY7Hssi8X9fI/XXd+CsrqLmtvEcvu8hrdssEgNUvtI6BAIwfTrt\nfvtbHH4/vsuv5PBD0wlnd47YS1ht2lI39mfUjf0ZzrLPScpfTuLypSS9lk/Sa/mEOp5C3VVj8P30\nGkL9vhOx1/3PIBYJq97A+9gsPJs2Ynm9VD69mLorrmq51xSRk+KwLMtq6RcpL69q6ZeIqszMtLib\n6ah4nM318RbSb/8F7i0fEep4CtWz5uG/9EfReXHLwr1hHUkvv0TiildxHjwIQKD/6fi/P5LA9y4i\ncPY5J7/X/X9kZqZRvu8QCa//mZTHZuHe8hGWw3HkjOa77yHUq3ckpjEiHn8mj9Js9tTY2TIz0771\nYyrfJtAPlX24//0hba768ZHSu+km9k95wNz6xXV1JKx+48hh6b//DUcwCIDlTcE/9DwC3xtOYNDZ\nhPp958ilTI3g3L0Lz3vvkL7hfUJ/exNX2edHSveKn1Bz52RCffu15ERREW8/k9+k2ewpEuWrw84S\nt44Wr+PQISoXLiJ9/K1YJn8ZJCbiv2w0/stG46iqxPOv9/B8dbJW4purSXxzdf2nhk7tSrBvP0L9\nTiPUqRMOXx2O2hocPh/U1uA8dAj3ukLcn31a/xxHm7b4xuRRc8evbb2nK9IaqHwlLrk/2lRfvFUL\nF1H302tMRzqGlZaO/wej8P9gFIcB566deN55G/eWj3Bv3Yp76xYS/7YK/rbqW79GOC2dupGXEBg6\njNTLLuFAdvfontAlIk2m8pW449qymTY/uexI8S54KuaK93jCnbscOVnrG9sc+/fj/mQrzvIvjqyw\nlZz81R8vltdLuGtO/SpbqZlpEKeH+ETikcpX4ktdHem33Yjz4EEqFzxF3Zg804mazOrQgUCHYaZj\niEgL0NpyEle8TzyG+5Nt1N5wE3Vjf2Y6jojIcTW451tbW8uUKVM4cOAAdXV1jBs3jr59+3LXXXcR\nCoXIzMxkzpw5JDTzUgmR5nJ9vAXvE48Ryu58ZDEJEZEY1WD5vvXWW/Tv359bbrmFXbt2ceONNzJo\n0CDy8vIYNWoU8+bNIz8/n7w8+x7ekzgQCpH26/E4AgGq5zxufElHEZETafCw86WXXsott9wCwJ49\ne+jYsSOFhYWMGDECgOHDh1NQUNCyKUUakPTHJXg+2IDvyqvxf/8S03FERE6o0SdcjR07lr1797Jo\n0SJ+/vOf1x9mzsjIoLy8/ITPbdfOi9sdX5dAnOjiabuz3WyWBX98Djwekn6/kKQT5LfdbCdBs9mT\nZrOn5s7W6PJdtmwZW7duZfLkyXxzUazGLJBVUVHTtHQxSiu3xBb3xg2027KFustGU+n0fuslN3ac\nrbE0mz1pNnuKxApXDR523rx5M3v27AGgX79+hEIhUlJS8Pl8AOzbt48s3Z5MDEpa+iIAvrxrDScR\nEWmcBst3/fr1LF68GID9+/dTU1PD0KFDWbXqyMo7q1evZtgwXYsohtTUkPjaK4Q6ZeO/cITpNCIi\njdJg+Y4dO5Yvv/ySvLw8fvGLX3D//fczYcIEVqxYQV5eHgcPHmT06NHRyCryHxLf+DPOqkp8Y/K0\ntKKI2EaD7/kmJSXx2GOP/cf2JUuWtEggkZOR8PZbANRdfqXhJCIijacVrsTW3OsKCaelt+zN6UVE\nIkzlK7blOHAA945igmedDU79KIuIfeg3ltiWZ8NaAAJnn2M4iYjIyVH5im151n1VvoPPNZxEROTk\nqHzFttwffgBAcNBZhpOIiJwcla/Ylqu4iFCnbKw2bU1HERE5KSpfsafDh3Ht2kmoZ2/TSURETprK\nV2zJ/WkxAKFevQwnERE5eSpfsSVX0XYAgr205ysi9qPyFVtyFRcBEOqhPV8RsR+Vr9iSq/jInm9I\ne74iYkMqX7Eld1ERljeFcKds01FERE6aylfsJxzGtaOIYI+eWlZSRGxJv7nEdpw7y3D4fDrTWURs\nS+UrtqOTrUTE7lS+Yjvuoydb9VT5iog9qXzFdlxFR/Z8g736GE4iItI0Kl+xHdeOrw47d+9hOImI\nSNOofMV2XEXbCZ3aFbxe01FERJpE5Su24qiqxLVvr97vFRFbU/mKrRw90zmo8hURG1P5iq0cvaGC\nbiUoInam8hVbqb/GV3u+ImJjKl+xFffR8tUNFUTExlS+Yiuu4u2EU9MIdzzFdBQRkSZT+Yp9hEK4\nPt1BqGdPcDhMpxERaTKVr9iG8/NSHH6/1nQWEdtT+Ypt1K/p3FvLSoqIval8xTZcxcUABHWZkYjY\nnMpXbMN1dM9XZzqLiM2pfMU2XEXbsZxOQt26m44iItIsKl+xB8vCvX0b4a45kJhoOo2ISLOofMUW\nXJ/twPnllwQGnWU6iohIs6l8xRbcawsBCAw+13ASEZHmU/mKLXjWrwMgePY5hpOIiDSfyldswbOu\nECs5meB3+puOIiLSbCpfiXmOqkpc2z4mMPAs8HhMxxERaTaVr8Q897834bAsggN1spWIxAeVr8Q8\n94cbAQieOdBwEhGRyFD5Ssxz//tI+QbOUPmKSHxQ+UrMc3+4kXDbtoRzck1HERGJCJWvxDTHoYO4\nP/uU4OkDdQ9fEYkbKl+Jae6tHwMQHHC64SQiIpGj8pWY5io6ciejYJ++hpOIiESOyldi2tHyDfXs\nZTiJiEjkqHwlptXfw1flKyJxxN2YT5o9ezYbNmwgGAxy6623MmDAAO666y5CoRCZmZnMmTOHhISE\nls4qrZC7aDvhzCystu1MRxERiZgGy/f999+nqKiI5cuXU1FRwRVXXMGQIUPIy8tj1KhRzJs3j/z8\nfPLy8qKRV1oTnw9n2ecEzh1iOomISEQ1eNh58ODBPPHEEwCkp6dTW1tLYWEhI0aMAGD48OEUFBS0\nbEpplVyffYojHCbUs7fpKCIiEdXgnq/L5cLr9QKQn5/PBRdcwLvvvlt/mDkjI4Py8vITfo127by4\n3a4IxI0dmZlppiO0mJiZ7e0yAJIHDiA5QpliZrYWoNnsSbPZU3Nna9R7vgBvvvkm+fn5LF68mJEj\nR9ZvtyyrwedWVNQ0LV2MysxMo7y8ynSMFhFLs3k3bCIFONSpK/4IZIql2SJNs9mTZrOnxs52ooJu\n1NnO77zzDosWLeKZZ54hLS0Nr9eLz+cDYN++fWRlZTUyskjj1V/jq8POIhJnGizfqqoqZs+ezdNP\nP03btm0BGDp0KKtWrQJg9erVDBs2rGVTSqvkKi7CSkoi3OVU01FERCKqwcPOr7/+OhUVFdx55531\n22bOnMm9997L8uXLyc7OZvTo0S0aUlohy8JdtJ1Qtx7giq/zBUREGizfMWPGMGbMmP/YvmTJkhYJ\nJALg3LMbR81hgr37mI4iIhJxWuFKYpKWlRSReKbylZhUv6xkL51sJSLxR+UrMcldpPIVkfil8pWY\n5CoqAiDYvafhJCIikafylZjkKt5OqMupkJJiOoqISMSpfCXmOKqrcO3ZrZOtRCRuqXwl5riKvzrk\nrPd7RSROqXwl5nx9mZHKV0Tik8pXYo5LZzqLSJxT+UrMcW/5CIBgn36Gk4iItAyVr8QWy8Lz4UZC\nnbtgZWaaTiMi0iJUvhJTnHv34Cz/guAZA01HERFpMSpfiSnuDzcCEDzjTMNJRERajspXYop705Hy\nDWjPV0TimMpXYkr9yVYDzjCcRESk5ah8Jaa4irYTbt9eJ1uJSFxT+UrsqKvDVVqixTVEJO6pfCVm\nuEo+wxEKaVlJEYl7Kl+JGVpWUkRaC5WvxAx38dHy1d2MRCS+qXwlZhzd89VhZxGJdypfiRmu4u1Y\nCQmEu+aYjiIi0qJUvhIbLAtXURGh7j3A7TadRkSkRal8JSY49+3FWV2lk61EpFVQ+UpM+Pr9Xp1s\nJSLxT+UrMaH+MqMeKl8RiX8qX4kJrqOXGfXuYziJiEjLU/lKTHAX6RpfEWk9VL4SE1w7igl1ysZK\nTTMdRUSkxal8xbzDh3HtLNOZziLSaqh8xTj3p8UAhHr2NJxERCQ6VL5iXP1lRjrZSkRaCZWvGKe7\nGYlIa6PyFeNcxUUAhHRDBRFpJVS+Ypy7aDuWN4Vwp2zTUUREokLlK2aFw7g+LSbYsxc4HKbTiIhE\nhcpXjHKWfY7D59OZziLSqqh8xSj30WUle+lMZxFpPVS+YtTXdzPSyVYi0nqofMUoV/HRBTZUviLS\neqh8xShX8XYsh4NQ9x6mo4iIRI3KV8yxLNzbPibcNQeSkkynERGJGpWvGOP6bAfOL78kcNbZpqOI\niESVyleMca8tBCAw+FzDSUREokvlK8Z41q0FIHj2OYaTiIhEV6PKd/v27Vx88cW8+OKLAOzZs4fr\nrruOvLw8Jk6ciN/vb9GQEp886wuxvF6C3+lvOoqISFQ1WL41NTU8/PDDDBkypH7bggULyMvLY+nS\npeTk5JCfn9+iISX+OCoP4dq2lcDAs8DjMR1HRCSqGizfhIQEnnnmGbKysuq3FRYWMmLECACGDx9O\nQUFByyWUuOT+9yYclkVw4Fmmo4iIRJ27wU9wu3G7j/202tpaEhISAMjIyKC8vLxl0knccn+4EYDA\nwEGGk4iIRF+D5dsQy7Ia/Jx27by43a7mvlRMycxMMx2hxURltm0fAdDmomEQxf+X+r7Zk2azJ832\n7ZpUvl6vF5/PR1JSEvv27TvmkPTxVFTUNClcrMrMTKO8vMp0jBYRrdnaF67F0b49B7ztIUr/L/V9\nsyfNZk+a7cQF3aRLjYYOHcqqVasAWL16NcOGDWvKl5FWylHxJa7SEoJnDNQ9fEWkVWpwz3fz5s3M\nmjWLXbt24Xa7WbVqFXPnzmXKlCksX76c7OxsRo8eHY2sEifcn2wDIHjaAMNJRETMaLB8+/fvzwsv\nvPAf25csWdIigST+OUs+AyDUrbvhJCIiZmiFK4k619Hyze1mOImIiBkqX4k6V2kJAKGcXKM5RERM\nUflK1LlKS7DcbsLZnU1HERExQuUrUecqLSHcuQu4m32ZuYiILal8Jbrq6nCWf0Goy6mmk4iIGKPy\nlahy7tkNoEPOItKqqXwlqlxflW+ocxfDSUREzFH5SlQ5d+0EINwp23ASERFzVL4SVc7dXx127qzD\nziLSeql8JapcZZ8DEMrWYWcRab1UvhJVrtIjq1uFc3PNBhERMUjlK1HlLC0h3KEDVmr83udTRKQh\nKl+JnlAIV9nnhHK0prOItG4qX4ka5+5dOIJBreksIq2eylei5usbKuSYDSIiYpjKV6Km/hrfzlpa\nUkRaN5WvRI1r9y5A1/iKiKh8JWqOLrAR6qTyFZHWTfd0k4h6442/sGTJM2RndyY3txs5Oblf/elG\n2q4yQHu+IiIqX4moxYv/m7fffuu4H0t3OunudNL5ztvJyfm6mHNzc+nSpSsJCQlRTisiYobKVyKm\ntraWHTuK6dAhk5Ur/0pp6WeVJQeIAAAL80lEQVSUlHxGSUkJpaUl7Fr9Btstiw//8v+O+/zOnbuw\ncePHUU4tIhJ9Kl+JmMsu+wE7d5bhcDiYNGki+fkrGTHiyI+Yo+JLOvTJxTfyEnbMe5LS0s8oLT1S\nyv/4x5usW1dIRcWXhicQEYkOla9EhN/v56OPNgHgdrv517/epbq6irZt2wGw/YMi9nTpT4/cbmRl\nZZGVlcXgweeybdtWKisrWbeukFtuuc3kCCIiUaOznSUidu4sw7IsANLT02nTpm198QKs2HyQpUPG\nEv4/q1vdeuuNPPXUQgB+//uFlJeXRy2ziIgpKl+JiNKvVq8CqKysJOerkt1WWsGs//mArbUeNp/a\nn4fqerGttAKAcDjMjh1FpKWlAxAIBAiHQ9GOLiISdSpfiYhvlm8gEKgv37457bh2ZO/6j11/ThZ9\nc47sEe/Zsxu/309qaioASUlJZGV1jFpmERFTVL4SES+99MIxj3Nzv75z0bptX/DTvWu5pmAZhdVf\nX050tLADgQAAOTm5OByOlg8rImKYTriSiKitrT3mcd++/er/3jkzlZEbV+DctYu/Zj9Sv/1o+VZW\nHgKOLWwRkXimPV+JiH/+s5D09HS6ds0hP38lV1xxVf3HBvfNwrlrF+HsbAb3zarfvnDh48CRM6WB\n+kPVIiLxTuUrEXHwYAWVlZX07duPCy64ELf764MqjuoqnJWHCGcfu6zktdfecMzjIUPOj0ZUERHj\nVL4SEUcPIR9v79W5dy8Aoc5djtk+btwEnnrqWQAefngmP/zhZS2aUUQkVug9X4mIb5ZvKBRi584y\niou3U1S0naJtW9nZIZMxHTK58lue17Nnz6jmFRExSeUrEVFS8hkAH364kU6d2h33cyreepMrp953\nzLaj5auTrUSkNVH5SkQcLdGjq1wBTJ48leRkLwC/+918iouLsSzrmMuJSktLcDgcdOnSNap5RURM\nUvlKRJSUlABwzTXX8eqrL9O+fXuefHL+MZcgeb0phEKhY07GKi0tITu7M4mJidGOLCJijMpXIqK0\ntISOHU9h0KCz6NjxFKqqKunZsze9evX66r+9Ofvsc44p3rq6Onbv3sWQIecZTC4iEn0qX2m2QCDA\nrl1lnHXWYFJTU/nww604HA6czhOfTF9W9jmWZen6XhFpdVS+0mw7d5YRCoXqS9TlcjXqeaWlR07S\n0slWItLa6DpfabamnrF89H1i7fmKSGuj8pVmO9ECGydy9PIkla+ItDYqX2m2r8v35PZ8m/o8ERG7\nU/lKsx3dg83NzT2p55WWlpCSkkpGRkYLpBIRiV0qX2m20tISkpOTycrq2OjnWJZFaWkJubnddA9f\nEWl1VL7SLJZlUVLyGZ07dzlmdauGlJeXU1NzWO/3ikirpEuNpFl8Ph9VVZVUVVWSk9ORrl1zyMnJ\nJScnl65dc2nbtg3hsEVVVSWff17Kp5/u4IorrqJ79x6ATrYSkdZJ5SvNkpyczMyZj/H+++9RWlpC\naWkJRUXbT/ic9evXcf75FwAqXxFpnZpcvjNmzGDTpk04HA6mTZvG6aefHslcYiM33ngLN954S/3j\nyspD3HvvVJYtexGAAQPO4PDhaioqKqio+JLKykO8/vr/A6Bv335GMouImNSk8l27di2lpaUsX76c\nHTt2MG3aNJYvXx7pbGJT6eltuOmmW1i27EUyMjIoKfmMqqrK+o97PB6ef34pYGldZxFplZpUvgUF\nBVx88cUA9OjRg0OHDlFdXU1qampEw4l99e7dl44dT6Gi4ku6d+9Bz57D62+ycPbZ59CtW3fTEUVE\njGlS+e7fv5/TTjut/nH79u0pLy9X+Uq95ORkPvhgCw6H45g7GYmISIROuGroEpN27by43Y1bbN8u\nMjPTTEdoMZrNnjSbPWk2e2rubE0q36ysLPbv31//+IsvviAzM/NbP7+ioqYpLxOzMjPTKC+vMh2j\nRWg2e9Js9qTZ7Kmxs52ooJu0yMZ5553HqlWrANiyZQtZWVk65CwiItJITdrzHTRoEKeddhpjx47F\n4XDwwAMPRDqXiIhI3Grye76TJk2KZA4REZFWQ2s7i4iIRJnKV0REJMpUviIiIlGm8hUREYkyla+I\niEiUqXxFRESiTOUrIiISZQ6roYWZRUREJKK05ysiIhJlKl8REZEoU/mKiIhEmcpXREQkylS+IiIi\nUabyFRERibIm31KwNVq7di0TJ05kxowZDB8+HIBt27bx4IMPAtCnTx8eeughgwmbZ8aMGWzatAmH\nw8G0adM4/fTTTUdqlu3btzNu3DhuuOEGrr32Wvbs2cNdd91FKBQiMzOTOXPmkJCQYDpmk8yePZsN\nGzYQDAa59dZbGTBgQFzMVltby5QpUzhw4AB1dXWMGzeOvn37xsVsR/l8Pn70ox8xbtw4hgwZEhez\nFRYWMnHiRHr16gVA7969ufnmm+NiNoCVK1fy7LPP4na7ueOOO+jTp0+zZ9OebyN9/vnnLFmyhEGD\nBh2zffr06UybNo1ly5ZRXV3N22+/bShh86xdu5bS0lKWL1/O9OnTmT59uulIzVJTU8PDDz/MkCFD\n6rctWLCAvLw8li5dSk5ODvn5+QYTNt37779PUVERy5cv59lnn2XGjBlxM9tbb71F//79efHFF5k/\nfz4zZ86Mm9mOeuqpp2jTpg0QPz+TAOeccw4vvPACL7zwAvfdd1/czFZRUcHvfvc7li5dyqJFi/j7\n3/8ekdlUvo2UmZnJk08+SVpaWv02v9/Prl276vcQhw8fTkFBgamIzVJQUMDFF18MQI8ePTh06BDV\n1dWGUzVdQkICzzzzDFlZWfXbCgsLGTFiBGDv79XgwYN54oknAEhPT6e2tjZuZrv00ku55ZZbANiz\nZw8dO3aMm9kAduzYQXFxMRdeeCEQPz+TxxMvsxUUFDBkyBBSU1PJysri4YcfjshsKt9GSk5OxuVy\nHbOtoqKC9PT0+scZGRmUl5dHO1pE7N+/n3bt2tU/bt++vW1nAXC73SQlJR2zrba2tv7QkJ2/Vy6X\nC6/XC0B+fj4XXHBB3Mx21NixY5k0aRLTpk2Lq9lmzZrFlClT6h/H02zFxcXcdtttXHPNNbz33ntx\nM9vOnTvx+Xzcdttt5OXlUVBQEJHZ9J7vcbzyyiu88sorx2ybMGECw4YNO+Hz4mmlznia5XjiYb43\n33yT/Px8Fi9ezMiRI+u3x8Nsy5YtY+vWrUyePPmYeew824oVKzjzzDM59dRTj/txO8+Wm5vL+PHj\nGTVqFGVlZVx//fWEQqH6j9t5NoCDBw/y5JNPsnv3bq6//vqI/EyqfI/j6quv5uqrr27w89q3b8/B\ngwfrH+/bt++Yw5x2kpWVxf79++sff/HFF2RmZhpMFHlerxefz0dSUpKtv1cA77zzDosWLeLZZ58l\nLS0tbmbbvHkzGRkZdOrUiX79+hEKhUhJSYmL2dasWUNZWRlr1qxh7969JCQkxM33rWPHjlx66aUA\ndO3alQ4dOvDRRx/FxWwZGRkMHDgQt9tN165dSUlJweVyNXs2HXZuBo/HQ/fu3Vm/fj0Aq1evbnDv\nOFadd955rFq1CoAtW7aQlZVFamqq4VSRNXTo0PoZ7fy9qqqqYvbs2Tz99NO0bdsWiJ/Z1q9fz+LF\ni4Ejb4XU1NTEzWzz58/n1Vdf5eWXX+bqq69m3LhxcTPbypUree655wAoLy/nwIEDXHnllXEx2/nn\nn8/7779POBymoqIiYj+TuqtRI61Zs4bnnnuOTz/9lPbt25OZmcnixYspLi7m/vvvJxwOc8YZZzB1\n6lTTUZts7ty5rF+/HofDwQMPPEDfvn1NR2qyzZs3M2vWLHbt2oXb7aZjx47MnTuXKVOmUFdXR3Z2\nNo8++igej8d01JO2fPlyFi5cSLdu3eq3zZw5k3vvvdf2s/l8Pu655x727NmDz+dj/Pjx9O/fn7vv\nvtv2s33TwoUL6dy5M+eff35czFZdXc2kSZOorKwkEAgwfvx4+vXrFxezwZG3QY6e0fzLX/6SAQMG\nNHs2la+IiEiU6bCziIhIlKl8RUREokzlKyIiEmUqXxERkShT+YqIiESZyldERCTKVL4iIiJRpvIV\nERGJsv8P6Eq1PMVrg7EAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f12348e55d0>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"metadata": {
"id": "ngCLXNAp0EBq",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
""
]
}
]
}