forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathexample.py
executable file
·163 lines (140 loc) · 4.82 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
from pathlib import Path
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
def setup_model_parallel(seed: int) -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(seed)
return local_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
local_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert world_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def main(
ckpt_dir: str,
tokenizer_path: str,
temperature: float = 0.7,
# top_p: float = 0.95,
top_p: float = 0.0,
top_k: int = 40,
repetition_penalty: float = (1 / 0.85),
max_seq_len: int = 512,
max_gen_len: int = 256,
max_batch_size: int = 32,
seed: int = 1,
count: int = 5,
):
local_rank, world_size = setup_model_parallel(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
print("\n")
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print(json.dumps(dict(
seed=seed,
temp=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
max_seq_len=max_seq_len,
max_gen_len=max_gen_len,
)))
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
generator = load(
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
)
prompts = [
# For these prompts, the expected answer is the natural continuation of the prompt
# "I believe the meaning of life is",
# "Simply put, the theory of relativity states that",
# "Building a website can be done in a few simple steps:\n1.",
# "Here's how to build it in a few simple steps:\n1.",
"This is Captain Jean-Luc Picard",
"I am Lieutenant Commander Data",
"The Klingons are attacking",
# # Few shot prompts: https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api
# """Tweet: "I hate it when my phone battery dies."
# Sentiment: Negative
# ###
# Tweet: "My day has been 👍"
# Sentiment: Positive
# ###
# Tweet: "This is the link to the article"
# Sentiment: Neutral
# ###
# Tweet: "This new music video was incredibile"
# Sentiment:""",
# """Translate English to French:
#
# sea otter => loutre de mer
#
# peppermint => menthe poivrée
#
# plush girafe => girafe peluche
#
# cheese =>""",
]
i = 0
while i < count or count <= 0:
i += 1
for prompt in prompts:
print(f"\n============== sample {i} =================\n")
width = 0
def callback(text):
nonlocal width
text = text.replace('\n', '\n\n')
chars = []
for i, c in enumerate(text):
if c == ' ' and width >= 60:
chars.append('\n')
width = 0
else:
width += 1
chars.append(c)
if c == '\n':
width = 0
text = ''.join(chars)
print(text, end='', flush=True)
text, = generator.generate(
[prompt], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, token_callback=callback,
)
if __name__ == "__main__":
fire.Fire(main)