-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPolicy.py
55 lines (42 loc) · 2.19 KB
/
Policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import math
import sys
class Policy:
def __init__(self):
self.policy = {}
return
@staticmethod
def money_modification(money):
return math.floor(money)
def set_policy(self, age, money, portfolio, value):
money = Policy.money_modification(money)
if age not in self.policy.keys():
self.policy[age] = {}
if money not in self.policy[age].keys():
self.policy[age][money] = {}
self.policy[age][money][portfolio] = value
return
def get_policy(self, age, money, portfolio):
return self.policy[age][money][portfolio]
def print_policy(self, portfolio_start, age_start, money_start, portfolios, ages, monies, money_lower_bound, money_upper_bound):
decision_matrix = np.zeros((ages, monies, portfolios), dtype=np.int32) - 1
annotated_decision_matrix = np.zeros((ages, monies + 1, portfolios + 1), dtype=np.int32) - 1
# Trick so that we're able to concatenate these arrays later.
monies_column = np.zeros((1, monies), dtype=np.int32)
monies_column[0] = np.array(range(money_start, money_start + monies), dtype=np.int32)
portfolio_column = np.zeros((1, portfolios + 1), dtype=np.int32)
portfolio_column[0] = np.array(range(portfolio_start - 1, portfolio_start + portfolios), dtype=np.int32)
for age in self.policy.keys():
for money in self.policy[age].keys():
if money >= money_upper_bound or money <= money_lower_bound:
continue
for portfolio in self.policy[age][money].keys():
decision_matrix[age - age_start][money - money_start][portfolio - portfolio_start]\
= self.policy[age][money][portfolio]
# So that the decision matrix is descriptive
for age in self.policy.keys():
helper = np.concatenate((monies_column.T, decision_matrix[age - age_start]), axis=1)
annotated_decision_matrix[age - age_start] = np.concatenate((portfolio_column, helper), axis=0)
# To be able to print the whole 3D array
np.set_printoptions(threshold=sys.maxsize)
print(annotated_decision_matrix)