You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.(由于长期不活动,机器人自动关闭此问题,如果需要欢迎提问)
首先, Nice work!
我看评估的代码tests/model_spearman.py中, 在整个数据集上对pred和labels运行了spearmanr(x, y)方法, 数据集中的标签为1-5之间的整数, 而pred的余弦相似度为-1-1之间的连续浮点数.
由于spearman是按照秩次评估相关性的, 数据集中大量重复的label会不会导致大量等次的秩, 影响相关性的评估准确性?
一个想法, 是不是可以吧计算spearman相关性的步骤拆分成若干个小组, 每个小组里放6个label不相同的结果, 再与预测值计算相关度, 这样更能凸显出文本相似度之间的对比关系.
谢谢作者
The text was updated successfully, but these errors were encountered: