-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathpreprocess_acl.py
66 lines (55 loc) · 2.3 KB
/
preprocess_acl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pandas as pd
import tqdm
import json
import openai
from factscore.openai_lm import call_ChatGPT
from factscore.factscorer import FactScorer
# File downloaded from https://github.com/shauryr/ACL-anthology-corpus
# https://drive.google.com/file/d/1CFCzNGlTls0H-Zcaem4Hg_ETj4ebhcDO/view?usp=sharing
df = pd.read_parquet('acl-publication-info.74k.parquet')
titles = df['title'].tolist()
full_text = df['full_text'].tolist()
acl_corpus = []
for x, y in zip(titles, full_text):
if x.strip() == "" or y.strip() == "":
continue
acl_corpus.append({"title": x, "text": y})
with open("acl_corpus.jsonl", 'w') as f:
for line in acl_corpus:
f.write(json.dumps(line) + "\n")
fs = FactScorer()
# this will create a database using your file
# once DB file is created, you can reuse it by only specifying `db_path`
fs.register_knowledge_source("acl_corpus",
data_path="acl_corpus.jsonl",
db_path=None)
prompt_titles = [
"Dense Passage Retrieval for Open-Domain Question Answering",
"AmbigQA: Answering Ambiguous Open-domain Questions",
"MetaICL: Learning to Learn In Context",
"Noisy Channel Language Model Prompting for Few-Shot Text Classification",
"Joint Passage Ranking for Diverse Multi-Answer Retrieval",
"Reformulating Unsupervised Style Transfer as Paraphrase Generation",
"Syntactically Supervised Transformers for Faster Neural Machine Translation",
"Hurdles to Progress in Long-form Question Answering",
"Generating Question-Answer Hierarchies",
"Do Long-Range Language Models Actually Use Long-Range Context?"
]
prompts_list = []
for title in prompt_titles:
prompts_list.append(f"Give me a summary of the research paper titled \"{title}\".")
with open("api.key", 'r') as f:
api_key = f.readline()
openai.api_key = api_key.strip()
responses = []
for ptitle, prompt in tqdm.tqdm(zip(prompt_titles, prompts_list)):
message = [{"role": "user", "content": prompt}]
response = call_ChatGPT(message, model_name="gpt-3.5-turbo-0301")
responses.append({
"topic": ptitle,
"output": response["choices"][0]["message"]["content"]
})
# # write the corpus to a jsonl file
with open("acl_chatgpt_outputs.jsonl", 'w') as f:
for line in responses:
f.write(json.dumps(line) + "\n")