-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathtrack.py
185 lines (145 loc) · 6.71 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
import os
import hydra
import torch
import numpy as np
from hydra.core.config_store import ConfigStore
from omegaconf import DictConfig
from phalp.configs.base import FullConfig
from phalp.models.hmar.hmr import HMR2018Predictor
from phalp.trackers.PHALP import PHALP
from phalp.utils import get_pylogger
from phalp.configs.base import CACHE_DIR
from hmr2.datasets.utils import expand_bbox_to_aspect_ratio
warnings.filterwarnings('ignore')
log = get_pylogger(__name__)
class HMR2Predictor(HMR2018Predictor):
def __init__(self, cfg) -> None:
super().__init__(cfg)
# Setup our new model
from hmr2.models import download_models, load_hmr2
# Download and load checkpoints
download_models()
model, _ = load_hmr2()
self.model = model
self.model.eval()
def forward(self, x):
hmar_out = self.hmar_old(x)
batch = {
'img': x[:,:3,:,:],
'mask': (x[:,3,:,:]).clip(0,1),
}
model_out = self.model(batch)
out = hmar_out | {
'pose_smpl': model_out['pred_smpl_params'],
'pred_cam': model_out['pred_cam'],
}
return out
class HMR2023TextureSampler(HMR2Predictor):
def __init__(self, cfg) -> None:
super().__init__(cfg)
# Model's all set up. Now, load tex_bmap and tex_fmap
# Texture map atlas
bmap = np.load(os.path.join(CACHE_DIR, 'phalp/3D/bmap_256.npy'))
fmap = np.load(os.path.join(CACHE_DIR, 'phalp/3D/fmap_256.npy'))
self.register_buffer('tex_bmap', torch.tensor(bmap, dtype=torch.float))
self.register_buffer('tex_fmap', torch.tensor(fmap, dtype=torch.long))
self.img_size = 256 #self.cfg.MODEL.IMAGE_SIZE
self.focal_length = 5000. #self.cfg.EXTRA.FOCAL_LENGTH
import neural_renderer as nr
self.neural_renderer = nr.Renderer(dist_coeffs=None, orig_size=self.img_size,
image_size=self.img_size,
light_intensity_ambient=1,
light_intensity_directional=0,
anti_aliasing=False)
def forward(self, x):
batch = {
'img': x[:,:3,:,:],
'mask': (x[:,3,:,:]).clip(0,1),
}
model_out = self.model(batch)
# from hmr2.models.prohmr_texture import unproject_uvmap_to_mesh
def unproject_uvmap_to_mesh(bmap, fmap, verts, faces):
# bmap: 256,256,3
# fmap: 256,256
# verts: B,V,3
# faces: F,3
valid_mask = (fmap >= 0)
fmap_flat = fmap[valid_mask] # N
bmap_flat = bmap[valid_mask,:] # N,3
face_vids = faces[fmap_flat, :] # N,3
face_verts = verts[:, face_vids, :] # B,N,3,3
bs = face_verts.shape
map_verts = torch.einsum('bnij,ni->bnj', face_verts, bmap_flat) # B,N,3
return map_verts, valid_mask
pred_verts = model_out['pred_vertices'] + model_out['pred_cam_t'].unsqueeze(1)
device = pred_verts.device
face_tensor = torch.tensor(self.smpl.faces.astype(np.int64), dtype=torch.long, device=device)
map_verts, valid_mask = unproject_uvmap_to_mesh(self.tex_bmap, self.tex_fmap, pred_verts, face_tensor) # B,N,3
# Project map_verts to image using K,R,t
# map_verts_view = einsum('bij,bnj->bni', R, map_verts) + t # R=I t=0
focal = self.focal_length / (self.img_size / 2)
map_verts_proj = focal * map_verts[:, :, :2] / map_verts[:, :, 2:3] # B,N,2
map_verts_depth = map_verts[:, :, 2] # B,N
# Render Depth. Annoying but we need to create this
K = torch.eye(3, device=device)
K[0, 0] = K[1, 1] = self.focal_length
K[1, 2] = K[0, 2] = self.img_size / 2 # Because the neural renderer only support squared images
K = K.unsqueeze(0)
R = torch.eye(3, device=device).unsqueeze(0)
t = torch.zeros(3, device=device).unsqueeze(0)
rend_depth = self.neural_renderer(pred_verts,
face_tensor[None].expand(pred_verts.shape[0], -1, -1).int(),
# textures=texture_atlas_rgb,
mode='depth',
K=K, R=R, t=t)
rend_depth_at_proj = torch.nn.functional.grid_sample(rend_depth[:,None,:,:], map_verts_proj[:,None,:,:]) # B,1,1,N
rend_depth_at_proj = rend_depth_at_proj.squeeze(1).squeeze(1) # B,N
img_rgba = torch.cat([batch['img'], batch['mask'][:,None,:,:]], dim=1) # B,4,H,W
img_rgba_at_proj = torch.nn.functional.grid_sample(img_rgba, map_verts_proj[:,None,:,:]) # B,4,1,N
img_rgba_at_proj = img_rgba_at_proj.squeeze(2) # B,4,N
visibility_mask = map_verts_depth <= (rend_depth_at_proj + 1e-4) # B,N
img_rgba_at_proj[:,3,:][~visibility_mask] = 0
# Paste image back onto square uv_image
uv_image = torch.zeros((batch['img'].shape[0], 4, 256, 256), dtype=torch.float, device=device)
uv_image[:, :, valid_mask] = img_rgba_at_proj
out = {
'uv_image': uv_image,
'uv_vector' : self.hmar_old.process_uv_image(uv_image),
'pose_smpl': model_out['pred_smpl_params'],
'pred_cam': model_out['pred_cam'],
}
return out
class HMR2_4dhuman(PHALP):
def __init__(self, cfg):
super().__init__(cfg)
def setup_hmr(self):
self.HMAR = HMR2023TextureSampler(self.cfg)
def get_detections(self, image, frame_name, t_, additional_data=None, measurments=None):
(
pred_bbox, pred_bbox, pred_masks, pred_scores, pred_classes,
ground_truth_track_id, ground_truth_annotations
) = super().get_detections(image, frame_name, t_, additional_data, measurments)
# Pad bounding boxes
pred_bbox_padded = expand_bbox_to_aspect_ratio(pred_bbox, self.cfg.expand_bbox_shape)
return (
pred_bbox, pred_bbox_padded, pred_masks, pred_scores, pred_classes,
ground_truth_track_id, ground_truth_annotations
)
@dataclass
class Human4DConfig(FullConfig):
# override defaults if needed
expand_bbox_shape: Optional[Tuple[int]] = (192,256)
pass
cs = ConfigStore.instance()
cs.store(name="config", node=Human4DConfig)
@hydra.main(version_base="1.2", config_name="config")
def main(cfg: DictConfig) -> Optional[float]:
"""Main function for running the PHALP tracker."""
phalp_tracker = HMR2_4dhuman(cfg)
phalp_tracker.track()
if __name__ == "__main__":
main()