-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelp_function.py
53 lines (43 loc) · 2.13 KB
/
help_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import open_clip
from torchvision import transforms
from torchvision.transforms import ToPILImage
import torch.nn.functional as F
class help_function:
def __init__(self):
self.clip_text_model = torch.jit.load('jit_models/clip_text_jit.pt', map_location=torch.device('cpu'))
self.decoder = torch.jit.load('jit_models/decoder_16w.pt', map_location=torch.device('cpu'))
self.mapper_clip = torch.jit.load('jit_models/mapper_clip_jit.pt', map_location=torch.device('cpu'))
self.mean_clip = torch.load('jit_models/mean_clip.pt')
self.mean_person = torch.load('jit_models/mean_person.pt')
self.encoder = torch.jit.load('jit_models/combined_encoder.pt', map_location=torch.device('cpu'))
self.tokenizer = open_clip.get_tokenizer('ViT-B-32')
self.transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def get_text_embedding(self, text):
text = self.clip_text_model(self.tokenizer(text))
return text
def get_image_inversion(self, image):
image = self.transform(image)
if not image.shape == torch.Size([3, 224, 224]):
image = image.reshape(1,3,image.shape[1],image.shape[2])
image = F.interpolate(image, [224,224], mode='bilinear', align_corners=True)
w_inversion = self.encoder(image.reshape(1,3,224,224)).reshape(1,16,512)
return w_inversion + self.mean_person
def get_text_delta(self,text_feachers):
w_delta = self.mapper_clip(text_feachers - self.mean_clip)
return w_delta
def image_from_text(self,text,image,power = 1.0):
w_inversion = self.get_image_inversion(image)
if power != 0:
text_embedding = self.get_text_embedding(text)
w_delta = self.get_text_delta(text_embedding)
w_edit = w_inversion + w_delta * power
else:
w_edit = w_inversion
image_edit = self.decoder(w_edit)
image_edit = ToPILImage()((image_edit[0]+0.5)*0.5).resize((512,512))
return image_edit