-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathaddCovariates.py
192 lines (134 loc) · 7.11 KB
/
addCovariates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import ee
import math
ee.Initialize()
class addCovariates():
def __init__(self):
self.jrcImage = ee.Image("JRC/GSW1_0/GlobalSurfaceWater")
self.elevation = ee.Image("USGS/SRTMGL1_003");
self.ndCovariatesList = [['blue', 'green'],['blue', 'red'],['blue', 'nir'],['blue', 'swir1'],['blue', 'swir2'],
['green', 'red'],['green', 'nir'],['green', 'swir1'],['green', 'swir2'],['red', 'swir1'],['red', 'swir2'],
['nir', 'red'],['nir', 'swir1'],['nir', 'swir2'],['swir1', 'swir2']]
rCovariatesList = [['swir1', 'nir'],['red', 'swir1']];
def ComputeNDCovariatesList(self,season):
l = [];
for index in self.ndCovariatesList:
currentIndex = self.ndCovariatesList.index(index)
list_ = [season + self.ndCovariatesList[currentIndex][0], season + self.ndCovariatesList[currentIndex][1]];
l.append(list_);
return l;
def addNDCovariates(self, season, image):
l = self.ComputeNDCovariatesList(season);
for index in l:
currentIndex = l.index(index)
image = image.addBands(image.normalizedDifference(index).rename(season + 'ND_'+ self.ndCovariatesList[currentIndex][0] + '_' + self.ndCovariatesList[currentIndex][1]));
return image;
def ComputeRCovariatesList(season):
l = [];
for index in rCovariatesList:
list_ = [season + rCovariatesList[index][0], season + rCovariatesList[index][1]];
l.append(list_);
return l;
def addRCovariates(season, image):
l = ComputeRCovariatesList(season);
for index in l:
image = image.addBands(image.select(l[index][0]).divide(image.select(l[index][1]))
.rename(season + '_R_' + rCovariatesList[index][0] + '_' + rCovariatesList[index][1]));
return image;
def addEVI(season, image):
evi = image.expression('2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', {
'NIR' : image.select(season + '_nir'),
'RED' : image.select(season + '_red'),
'BLUE': image.select(season + '_blue')}).float();
return image.addBands(evi.rename(season + '_EVI'));
def addSAVI(season, image):
#// Add Soil Adjust Vegetation Index (SAVI)
#// using L = 0.5;
savi = image.expression('(NIR - RED) * (1 + 0.5)/(NIR + RED + 0.5)', {
'NIR': image.select(season + '_nir'),
'RED': image.select(season + '_red')}).float();
return image.addBands(savi.rename(season + '_SAVI'));
def addIBI(season, image):
# // Add Index-Based Built-Up Index (IBI)
ibiA = image.expression('2 * SWIR1 / (SWIR1 + NIR)', {
'SWIR1': image.select(season + '_swir1'),
'NIR' : image.select(season + '_nir')
}).rename(['IBI_A']);
ibiB = image.expression('(NIR / (NIR + RED)) + (GREEN / (GREEN + SWIR1))', {
'NIR' : image.select(season + '_nir'),
'RED' : image.select(season + '_red'),
'GREEN': image.select(season + '_green'),
'SWIR1': image.select(season + '_swir1')
}).rename(['IBI_B']);
ibiAB = ibiA.addBands(ibiB);
ibi = ibiAB.normalizedDifference(['IBI_A', 'IBI_B']);
return image.addBands(ibi.rename([season + '_IBI']));
# // Function to compute the Tasseled Cap transformation and return an image
def getTassledCapComponents(season, image):
coefficients = ee.Array([
[0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863],
[-0.2848, -0.2435, -0.5436, 0.7243, 0.0840, -0.1800],
[0.1509, 0.1973, 0.3279, 0.3406, -0.7112, -0.4572],
[-0.8242, 0.0849, 0.4392, -0.0580, 0.2012, -0.2768],
[-0.3280, 0.0549, 0.1075, 0.1855, -0.4357, 0.8085],
[0.1084, -0.9022, 0.4120, 0.0573, -0.0251, 0.0238]]);
bands = ee.List([season + '_blue', season + '_green', season + '_red', season + '_nir', season + '_swir1', season + '_swir2']);
# // Make an Array Image, with a 1-D Array per pixel.
arrayImage1D = image.select(bands).toArray();
# // Make an Array Image with a 2-D Array per pixel, 6 x 1
arrayImage2D = arrayImage1D.toArray(1);
componentsImage = ee.Image(coefficients).matrixMultiply(arrayImage2D).arrayProject([0]).arrayFlatten([[season + '_brightness', season + '_greenness', season + '_wetness', season + '_fourth', season + '_fifth', season + '_sixth']]).float();
# // Get a multi-band image with TC-named bands
return image.addBands(componentsImage);
# // Function to add Tasseled Cap angles and distances to an image. Assumes image has bands: 'brightness', 'greenness', and 'wetness'.
def getTassledCapAngleAndDistance (season, image):
brightness = image.select(season + '_brightness');
greenness = image.select(season + '_greenness');
wetness = image.select(season + '_wetness');
# // Calculate tassled cap angles and distances
tcAngleBG = brightness.atan2(greenness).divide(Math.PI).rename([season + '_tcAngleBG']);
tcAngleGW = greenness.atan2(wetness).divide(Math.PI).rename([season + '_tcAngleGW']);
tcAngleBW = brightness.atan2(wetness).divide(Math.PI).rename([season + '_tcAngleBW']);
tcDistanceBG = brightness.hypot(greenness).rename([season + '_tcDistanceBG']);
tcDistanceGW = greenness.hypot(wetness).rename([season + '_tcDistanceGW']);
tcDistanceBW = brightness.hypot(wetness).rename([season + '_tcDistanceBW']);
image = image.addBands(tcAngleBG).addBands(tcAngleGW).addBands(tcAngleBW).addBands(tcDistanceBG).addBands(tcDistanceGW).addBands(tcDistanceBW);
return image;
def computeTassledCap(season, image):
image = getTassledCapComponents(season, image);
image = getTassledCapAngleAndDistance(season, image);
return image;
def addTopography (self,image):
# // Calculate slope, aspect and hillshade
topo = ee.Algorithms.Terrain(self.elevation);
# // From aspect (a), calculate eastness (sin a), northness (cos a)
deg2rad = ee.Number(math.pi).divide(180);
aspect = topo.select(['aspect']);
aspect_rad = aspect.multiply(deg2rad);
eastness = aspect_rad.sin().rename(['eastness']).float();
northness = aspect_rad.cos().rename(['northness']).float();
# // Add topography bands to image
topo = topo.select(['elevation','slope','aspect']).addBands(eastness).addBands(northness);
image = image.addBands(topo);
return image;
def addJRCDataset (self,image):
# // Update the mask.
jrcImage = self.jrcImage.unmask(0);
image = image.addBands(jrcImage.select(['occurrence']).rename(['occurrence']));
image = image.addBands(jrcImage.select(['change_abs']).rename(['change_abs']));
image = image.addBands(jrcImage.select(['change_norm']).rename(['change_norm']));
image = image.addBands(jrcImage.select(['seasonality']).rename(['seasonality']));
image = image.addBands(jrcImage.select(['transition']).rename(['transition']));
image = image.addBands(jrcImage.select(['max_extent']).rename(['max_extent']));
return image;
def addCovariates (self,season, image):
image = self.addNDCovariates(season, image);
# /*image = addRCovariates(season, image);
# image = addEVI(season, image);
# image = addSAVI(season, image);
# image = addIBI(season, image);
# image = computeTassledCap(season, image);*/
return image;
def addJRCAndTopo(self,image):
image = self.addTopography(image);
image = self.addJRCDataset(image);
return image;