-
Notifications
You must be signed in to change notification settings - Fork 55
/
extract_100m_features.py
520 lines (471 loc) · 19.4 KB
/
extract_100m_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
"""
Extract howto100m features given a directory of frames.
"""
import argparse
import os
from pathlib import Path
import h5py
import torch as th
from tqdm import tqdm
from PIL import Image
class FramesLoader:
def __init__(self, input_path):
print(f"Checking {input_path} for frames")
input_files = sorted(os.listdir(input_path))
num_frames = {}
for frame_dir in tqdm(input_files, desc="Checking frames"):
full_frame_dir = Path(input_path) / frame_dir
if not full_frame_dir.is_dir():
continue
n_frames = 0
for frame_file in sorted(os.listdir(full_frame_dir)):
if not frame_file.endswith(".jpg"):
continue
n_frames += 1
num_frames[frame_dir] = n_frames
print(f"Found {len(num_frames)} videos with {sum(num_frames.values())} frames total")
self.input_path = input_path
self.num_frames = num_frames
def get_frames(self, video_id):
# returns a stack of all frames for the video, float32, range [0, 1]
frames = []
for n_frame in range(self.num_frames[video_id]):
frame_file = Path(self.input_path) / video_id / f"frame_{n_frame + 1:010d}.jpg"
# noinspection PyTypeChecker
decoded_arr = np.array(Image.open(str(frame_file)))
if decoded_arr.ndim == 2:
# grayscale image, repeat to get 3 channels
decoded_arr = np.stack([decoded_arr] * 3, axis=-1)
decoded_arr = decoded_arr.astype(np.float32) / 255 # shape (h, w, 3)
tensor = th.permute(th.from_numpy(decoded_arr), (2, 0, 1)) # shape (3, h, w)
frames.append(tensor)
stacked_frames = th.stack(frames) # shape (len_video, 3, h, w)
frames = th.permute(stacked_frames, (1, 0, 2, 3)) # shape (3, len_video, h, w)
return frames
@th.no_grad()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("frames_path", type=str, help="Path to video frames")
parser.add_argument("output_file", type=str, help="Path to output features")
parser.add_argument("--cuda", action="store_true")
parser.add_argument("--num_cuda", type=int, default=1)
parser.add_argument("--kernel", type=int, default=32)
parser.add_argument("--stride", type=int, default=16)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--layer", type=str, default="video_embedding",
help="Options 'video_embedding', 'mixed_5c', "
"'video_embedding,mixed_5c' or 'before_mean'")
args = parser.parse_args()
path = Path(args.frames_path)
batch_size = args.batch_size
kernel = args.kernel
stride = args.stride
# load model
print("Load model...")
net = S3D("pretrained_models/s3d_dict.npy", 512)
net.load_state_dict(th.load("pretrained_models/s3d_howto100m.pth"))
net = net.eval()
if args.cuda:
net = net.cuda()
output_names = [args.layer]
if "," in args.layer:
output_names = args.layer.split(",")
# load frames
print(f"Assuming frames at 16 FPS and 256x256 resolution in {path}. Load frames")
frames_loader = FramesLoader(path)
video_keys = list(frames_loader.num_frames.keys())
# make frame features
vid_h5_file = Path(args.output_file)
os.makedirs(vid_h5_file.parent, exist_ok=True)
print(f"Appending to file {vid_h5_file}")
vid_h5 = h5py.File(vid_h5_file, "a")
pbar = tqdm(total=len(video_keys))
last_shape = None
for key in video_keys:
data_id = key
if data_id not in vid_h5:
# preload all frames for this video
num_frames = frames_loader.num_frames[data_id]
frames = frames_loader.get_frames(data_id)
# input frames: shape (3, len_video, 256, 256)
def feed_batch(input_list):
batch_input = th.stack(input_list, dim=0)
try:
if args.cuda:
if args.num_cuda > 1:
res = nn.parallel.data_parallel(net, batch_input, range(args.num_cuda))
else:
res = net(batch_input.cuda())
else:
res = net(batch_input)
except RuntimeError as e:
raise RuntimeError(
f"Input {batch_input.shape} failed! Video {key} frames {frames.shape}") from e
# print(f"result {result.shape}")
results_list = []
for layer in output_names:
results_list.append(res[layer])
res = th.cat(results_list, dim=-1)
return res
# given some number of frames, get 32 frames with stride 16
frames_collector = []
results_collector = []
for pointer in range(0, num_frames, stride):
frames_single = frames[:, pointer:pointer + kernel, :, :]
if frames_single.shape[1] < kernel:
# last frames are less than kernel size.
if num_frames > kernel:
# if total video is longer than kernel, add the last frames
frames_single = frames[:, -kernel:, :, :]
else:
# otherwise ignore the too short video, will be handled below
frames_single = None
if frames_single is not None:
frames_collector.append(frames_single)
if len(frames_collector) == batch_size:
results_batch = feed_batch(frames_collector)
results_collector.append(results_batch)
frames_collector = []
# feed trailing batch if exists
if len(frames_collector) > 0:
results_collector.append(feed_batch(frames_collector))
if len(results_collector) == 0:
# video was too short, less than kernel size. simply input entire video
print(f"WARNING: Low amount of data for {data_id} only {frames.shape[1]} frames.")
# must be multiple of 16 otherwise it will not work
frames = frames[:, :16, :, :]
results_collector.append(feed_batch([frames]))
results = th.cat(results_collector, dim=0)
last_shape = results.shape
# shape (new_num_frames, 512)
# write to h5
vid_h5[data_id] = results.detach().cpu().numpy()
del results
del frames_collector
del results_collector
del frames
pbar.set_description(refresh=False, desc=f"shape {last_shape}")
pbar.update()
vid_h5.close()
pbar.close()
print(f"File {vid_h5_file} shapes:")
vid_h5 = h5py.File(vid_h5_file, "r")
for key, data in vid_h5.items():
print(key, data.shape)
break
print("Done!")
"""
Source: https://github.com/ArrowLuo/VideoFeatureExtractor/blob/master/videocnn/models/s3dg.py
Contains a PyTorch definition for Gated Separable 3D network (S3D-G)
with a text module for computing joint text-video embedding from raw text
and video input. The following code will enable you to load the HowTo100M
pretrained S3D Text-Video model from:
A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic and A. Zisserman,
End-to-End Learning of Visual Representations from Uncurated Instructional Videos.
https://arxiv.org/abs/1912.06430.
S3D-G was proposed by:
S. Xie, C. Sun, J. Huang, Z. Tu and K. Murphy,
Rethinking Spatiotemporal Feature Learning For Video Understanding.
https://arxiv.org/abs/1712.04851.
Tensorflow code: https://github.com/tensorflow/models/blob/master/research/slim/nets/s3dg.py
The S3D architecture was slightly modified with a space to depth trick for TPU
optimization.
"""
# # BEGIN PRIVATE
import re
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
class InceptionBlock(nn.Module):
def __init__(
self,
inpu_dim,
num_outputs_0_0a,
num_outputs_1_0a,
num_outputs_1_0b,
num_outputs_2_0a,
num_outputs_2_0b,
num_outputs_3_0b,
gating=True,
):
super(InceptionBlock, self).__init__()
self.conv_b0 = STConv3D(inpu_dim, num_outputs_0_0a, [1, 1, 1])
self.conv_b1_a = STConv3D(inpu_dim, num_outputs_1_0a, [1, 1, 1])
self.conv_b1_b = STConv3D(
num_outputs_1_0a, num_outputs_1_0b, [3, 3, 3], padding=1, separable=True
)
self.conv_b2_a = STConv3D(inpu_dim, num_outputs_2_0a, [1, 1, 1])
self.conv_b2_b = STConv3D(
num_outputs_2_0a, num_outputs_2_0b, [3, 3, 3], padding=1, separable=True
)
self.maxpool_b3 = th.nn.MaxPool3d((3, 3, 3), stride=1, padding=1)
self.conv_b3_b = STConv3D(inpu_dim, num_outputs_3_0b, [1, 1, 1])
self.gating = gating
self.output_dim = (
num_outputs_0_0a + num_outputs_1_0b + num_outputs_2_0b + num_outputs_3_0b
)
if gating:
self.gating_b0 = SelfGating(num_outputs_0_0a)
self.gating_b1 = SelfGating(num_outputs_1_0b)
self.gating_b2 = SelfGating(num_outputs_2_0b)
self.gating_b3 = SelfGating(num_outputs_3_0b)
def forward(self, inpu):
"""
Inception block.
"""
b0 = self.conv_b0(inpu)
b1 = self.conv_b1_a(inpu)
b1 = self.conv_b1_b(b1)
b2 = self.conv_b2_a(inpu)
b2 = self.conv_b2_b(b2)
b3 = self.maxpool_b3(inpu)
b3 = self.conv_b3_b(b3)
if self.gating:
b0 = self.gating_b0(b0)
b1 = self.gating_b1(b1)
b2 = self.gating_b2(b2)
b3 = self.gating_b3(b3)
return th.cat((b0, b1, b2, b3), dim=1)
class SelfGating(nn.Module):
def __init__(self, inpu_dim):
super(SelfGating, self).__init__()
self.fc = nn.Linear(inpu_dim, inpu_dim)
def forward(self, inpu_tensor):
"""
Feature gating as used in S3D-G.
"""
spatiotemporal_average = th.mean(inpu_tensor, dim=[2, 3, 4])
weights = self.fc(spatiotemporal_average)
weights = th.sigmoid(weights)
return weights[:, :, None, None, None] * inpu_tensor
# noinspection PyUnboundLocalVariable
class STConv3D(nn.Module):
def __init__(
self, inpu_dim, output_dim, kernel_size, stride=1, padding=0, separable=False
):
super(STConv3D, self).__init__()
self.separable = separable
self.relu = nn.ReLU(inplace=True)
assert len(kernel_size) == 3
if separable and kernel_size[0] != 1:
spatial_kernel_size = [1, kernel_size[1], kernel_size[2]]
temporal_kernel_size = [kernel_size[0], 1, 1]
if isinstance(stride, list) and len(stride) == 3:
spatial_stride = [1, stride[1], stride[2]]
temporal_stride = [stride[0], 1, 1]
else:
spatial_stride = [1, stride, stride]
temporal_stride = [stride, 1, 1]
if isinstance(padding, list) and len(padding) == 3:
spatial_padding = [0, padding[1], padding[2]]
temporal_padding = [padding[0], 0, 0]
else:
spatial_padding = [0, padding, padding]
temporal_padding = [padding, 0, 0]
if separable:
self.conv1 = nn.Conv3d(
inpu_dim,
output_dim,
kernel_size=spatial_kernel_size,
stride=spatial_stride,
padding=spatial_padding,
bias=False,
)
self.bn1 = nn.BatchNorm3d(output_dim)
self.conv2 = nn.Conv3d(
output_dim,
output_dim,
kernel_size=temporal_kernel_size,
stride=temporal_stride,
padding=temporal_padding,
bias=False,
)
self.bn2 = nn.BatchNorm3d(output_dim)
else:
self.conv1 = nn.Conv3d(
inpu_dim,
output_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=False,
)
self.bn1 = nn.BatchNorm3d(output_dim)
def forward(self, inpu):
out = self.relu(self.bn1(self.conv1(inpu)))
if self.separable:
out = self.relu(self.bn2(self.conv2(out)))
return out
class MaxPool3dTFPadding(th.nn.Module):
def __init__(self, kernel_size, stride=None, padding="SAME"):
super(MaxPool3dTFPadding, self).__init__()
if padding == "SAME":
padding_shape = self._get_padding_shape(kernel_size, stride)
self.padding_shape = padding_shape
self.pad = th.nn.ConstantPad3d(padding_shape, 0)
self.pool = th.nn.MaxPool3d(kernel_size, stride, ceil_mode=True)
def _get_padding_shape(self, filter_shape, stride):
def _pad_top_bottom(filter_dim_, stride_val_):
pad_along = max(filter_dim_ - stride_val_, 0)
pad_top_ = pad_along // 2
pad_bottom_ = pad_along - pad_top_
return pad_top_, pad_bottom_
padding_shape = []
for filter_dim, stride_val in zip(filter_shape, stride):
pad_top, pad_bottom = _pad_top_bottom(filter_dim, stride_val)
padding_shape.append(pad_top)
padding_shape.append(pad_bottom)
depth_top = padding_shape.pop(0)
depth_bottom = padding_shape.pop(0)
padding_shape.append(depth_top)
padding_shape.append(depth_bottom)
return tuple(padding_shape)
def forward(self, inp):
inp = self.pad(inp)
out = self.pool(inp)
return out
class Sentence_Embedding(nn.Module):
def __init__(
self,
embd_dim,
num_embeddings=66250,
word_embedding_dim=300,
token_to_word_path="dict.npy",
max_words=16,
output_dim=2048,
):
super(Sentence_Embedding, self).__init__()
self.word_embd = nn.Embedding(num_embeddings, word_embedding_dim)
self.fc1 = nn.Linear(word_embedding_dim, output_dim)
self.fc2 = nn.Linear(output_dim, embd_dim)
self.word_to_token = {}
self.max_words = max_words
token_to_word = np.load(token_to_word_path)
for i, t in enumerate(token_to_word):
self.word_to_token[t] = i + 1
def _zero_pad_tensor_token(self, tensor, size):
if len(tensor) >= size:
return tensor[:size]
else:
zero = th.zeros(size - len(tensor)).long()
return th.cat((tensor, zero), dim=0)
def _split_text(self, sentence):
w = re.findall(r"[\w']+", str(sentence))
return w
def _words_to_token(self, words):
words = [
self.word_to_token[word] for word in words if word in self.word_to_token
]
if words:
we = self._zero_pad_tensor_token(th.LongTensor(words), self.max_words)
return we
else:
return th.zeros(self.max_words).long()
def _words_to_ids(self, x):
split_x = [self._words_to_token(self._split_text(sent.lower())) for sent in x]
return th.stack(split_x, dim=0)
def forward(self, x):
x = self._words_to_ids(x)
x = self.word_embd(x)
x = F.relu(self.fc1(x))
x = th.max(x, dim=1)[0]
x = self.fc2(x)
return {'text_embedding': x}
class S3D(nn.Module):
def __init__(self, dict_path, num_classes=512, gating=True, space_to_depth=True):
super(S3D, self).__init__()
self.num_classes = num_classes
self.gating = gating
self.space_to_depth = space_to_depth
if space_to_depth:
self.conv1 = STConv3D(
24, 64, [2, 4, 4], stride=1, padding=(1, 2, 2), separable=False
)
else:
self.conv1 = STConv3D(
3, 64, [3, 7, 7], stride=2, padding=(1, 3, 3), separable=False
)
self.conv_2b = STConv3D(64, 64, [1, 1, 1], separable=False)
self.conv_2c = STConv3D(64, 192, [3, 3, 3], padding=1, separable=True)
self.gating = SelfGating(192)
self.maxpool_2a = MaxPool3dTFPadding(
kernel_size=(1, 3, 3), stride=(1, 2, 2), padding="SAME"
)
self.maxpool_3a = MaxPool3dTFPadding(
kernel_size=(1, 3, 3), stride=(1, 2, 2), padding="SAME"
)
self.mixed_3b = InceptionBlock(192, 64, 96, 128, 16, 32, 32)
self.mixed_3c = InceptionBlock(
self.mixed_3b.output_dim, 128, 128, 192, 32, 96, 64
)
self.maxpool_4a = MaxPool3dTFPadding(
kernel_size=(3, 3, 3), stride=(2, 2, 2), padding="SAME"
)
self.mixed_4b = InceptionBlock(
self.mixed_3c.output_dim, 192, 96, 208, 16, 48, 64
)
self.mixed_4c = InceptionBlock(
self.mixed_4b.output_dim, 160, 112, 224, 24, 64, 64
)
self.mixed_4d = InceptionBlock(
self.mixed_4c.output_dim, 128, 128, 256, 24, 64, 64
)
self.mixed_4e = InceptionBlock(
self.mixed_4d.output_dim, 112, 144, 288, 32, 64, 64
)
self.mixed_4f = InceptionBlock(
self.mixed_4e.output_dim, 256, 160, 320, 32, 128, 128
)
self.maxpool_5a = self.maxPool3d_5a_2x2 = MaxPool3dTFPadding(
kernel_size=(2, 2, 2), stride=(2, 2, 2), padding="SAME"
)
self.mixed_5b = InceptionBlock(
self.mixed_4f.output_dim, 256, 160, 320, 32, 128, 128
)
self.mixed_5c = InceptionBlock(
self.mixed_5b.output_dim, 384, 192, 384, 48, 128, 128
)
self.fc = nn.Linear(self.mixed_5c.output_dim, num_classes)
self.text_module = Sentence_Embedding(num_classes,
token_to_word_path=dict_path)
def _space_to_depth(self, inpu):
"""
3D space to depth trick for TPU optimization.
"""
B, C, T, H, W = inpu.shape
inpu = inpu.view(B, C, T // 2, 2, H // 2, 2, W // 2, 2)
inpu = inpu.permute(0, 3, 5, 7, 1, 2, 4, 6)
inpu = inpu.contiguous().view(B, 8 * C, T // 2, H // 2, W // 2)
return inpu
def forward(self, inpus):
"""
Defines the S3DG base architecture.
"""
if self.space_to_depth:
inpus = self._space_to_depth(inpus)
net = self.conv1(inpus)
if self.space_to_depth:
# we need to replicate 'SAME' tensorflow padding
net = net[:, :, 1:, 1:, 1:]
net = self.maxpool_2a(net)
net = self.conv_2b(net)
net = self.conv_2c(net)
if self.gating:
net = self.gating(net)
net = self.maxpool_3a(net)
net = self.mixed_3b(net)
net = self.mixed_3c(net)
net = self.maxpool_4a(net)
net = self.mixed_4b(net)
net = self.mixed_4c(net)
net = self.mixed_4d(net)
net = self.mixed_4e(net)
net = self.mixed_4f(net)
net = self.maxpool_5a(net)
net = self.mixed_5b(net)
net_all = self.mixed_5c(net)
net = th.mean(net_all, dim=[2, 3, 4])
return {'video_embedding': self.fc(net), 'mixed_5c': net, 'before_mean': net_all}
if __name__ == "__main__":
main()