-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfilter.h
531 lines (475 loc) · 13.8 KB
/
filter.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// ---------------------------------------------------------------------------
// This file is part of reSID, a MOS6581 SID emulator engine.
// Copyright (C) 2004 Dag Lem <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// ---------------------------------------------------------------------------
#ifndef __FILTER_H__
#define __FILTER_H__
#include "siddefs.h"
#include "spline.h"
// ----------------------------------------------------------------------------
// The SID filter is modeled with a two-integrator-loop biquadratic filter,
// which has been confirmed by Bob Yannes to be the actual circuit used in
// the SID chip.
//
// Measurements show that excellent emulation of the SID filter is achieved,
// except when high resonance is combined with high sustain levels.
// In this case the SID op-amps are performing less than ideally and are
// causing some peculiar behavior of the SID filter. This however seems to
// have more effect on the overall amplitude than on the color of the sound.
//
// The theory for the filter circuit can be found in "Microelectric Circuits"
// by Adel S. Sedra and Kenneth C. Smith.
// The circuit is modeled based on the explanation found there except that
// an additional inverter is used in the feedback from the bandpass output,
// allowing the summer op-amp to operate in single-ended mode. This yields
// inverted filter outputs with levels independent of Q, which corresponds with
// the results obtained from a real SID.
//
// We have been able to model the summer and the two integrators of the circuit
// to form components of an IIR filter.
// Vhp is the output of the summer, Vbp is the output of the first integrator,
// and Vlp is the output of the second integrator in the filter circuit.
//
// According to Bob Yannes, the active stages of the SID filter are not really
// op-amps. Rather, simple NMOS inverters are used. By biasing an inverter
// into its region of quasi-linear operation using a feedback resistor from
// input to output, a MOS inverter can be made to act like an op-amp for
// small signals centered around the switching threshold.
//
// Qualified guesses at SID filter schematics are depicted below.
//
// SID filter
// ----------
//
// -----------------------------------------------
// | |
// | ---Rq-- |
// | | | |
// | ------------<A]-----R1--------- |
// | | | |
// | | ---C---| ---C---|
// | | | | | |
// | --R1-- ---R1-- |---Rs--| |---Rs--|
// | | | | | | | |
// ----R1--|-----[A>--|--R-----[A>--|--R-----[A>--|
// | | | |
// vi -----R1-- | | |
//
// vhp vbp vlp
//
//
// vi - input voltage
// vhp - highpass output
// vbp - bandpass output
// vlp - lowpass output
// [A> - op-amp
// R1 - summer resistor
// Rq - resistor array controlling resonance (4 resistors)
// R - NMOS FET voltage controlled resistor controlling cutoff frequency
// Rs - shunt resitor
// C - capacitor
//
//
//
// SID integrator
// --------------
//
// V+
//
// |
// |
// -----|
// | |
// | ||--
// -||
// ---C--- ||->
// | | |
// |---Rs-----------|---- vo
// | |
// | ||--
// vi ---- -----|------------||
// | ^ | ||->
// |___| | |
// ----- | |
// | | |
// |---R2-- |
// |
// R1 V-
// |
// |
//
// Vw
//
// ----------------------------------------------------------------------------
class RESID_API Filter
{
public:
Filter();
void enable_filter(bool enable);
void set_chip_model(chip_model model);
RESID_INLINE
void clock(sound_sample voice1, sound_sample voice2, sound_sample voice3,
sound_sample ext_in);
RESID_INLINE
void clock(cycle_count delta_t,
sound_sample voice1, sound_sample voice2, sound_sample voice3,
sound_sample ext_in);
void reset();
// Write registers.
void writeFC_LO(reg8);
void writeFC_HI(reg8);
void writeRES_FILT(reg8);
void writeMODE_VOL(reg8);
// SID audio output (16 bits).
sound_sample output();
// Spline functions.
void fc_default(const fc_point*& points, int& count);
PointPlotter<sound_sample> fc_plotter();
protected:
void set_w0();
void set_Q();
// Filter enabled.
bool enabled;
// Filter cutoff frequency.
reg12 fc;
// Filter resonance.
reg8 res;
// Selects which inputs to route through filter.
reg8 filt;
// Switch voice 3 off.
reg8 voice3off;
// Highpass, bandpass, and lowpass filter modes.
reg8 hp_bp_lp;
// Output master volume.
reg4 vol;
// Mixer DC offset.
sound_sample mixer_DC;
// State of filter.
sound_sample Vhp; // highpass
sound_sample Vbp; // bandpass
sound_sample Vlp; // lowpass
sound_sample Vnf; // not filtered
// Cutoff frequency, resonance.
sound_sample w0, w0_ceil_1, w0_ceil_dt;
sound_sample _1024_div_Q;
// Cutoff frequency tables.
// FC is an 11 bit register.
sound_sample f0_6581[2048];
sound_sample f0_8580[2048];
sound_sample* f0;
static fc_point f0_points_6581[];
static fc_point f0_points_8580[];
fc_point* f0_points;
int f0_count;
friend class SID;
};
// ----------------------------------------------------------------------------
// Inline functions.
// The following functions are defined inline because they are called every
// time a sample is calculated.
// ----------------------------------------------------------------------------
#if RESID_INLINING || defined(__FILTER_CC__)
// ----------------------------------------------------------------------------
// SID clocking - 1 cycle.
// ----------------------------------------------------------------------------
RESID_INLINE
void Filter::clock(sound_sample voice1,
sound_sample voice2,
sound_sample voice3,
sound_sample ext_in)
{
// Scale each voice down from 20 to 13 bits.
voice1 >>= 7;
voice2 >>= 7;
// NB! Voice 3 is not silenced by voice3off if it is routed through
// the filter.
if (voice3off && !(filt & 0x04)) {
voice3 = 0;
}
else {
voice3 >>= 7;
}
ext_in >>= 7;
// This is handy for testing.
if (!enabled) {
Vnf = voice1 + voice2 + voice3 + ext_in;
Vhp = Vbp = Vlp = 0;
return;
}
// Route voices into or around filter.
// The code below is expanded to a switch for faster execution.
// (filt1 ? Vi : Vnf) += voice1;
// (filt2 ? Vi : Vnf) += voice2;
// (filt3 ? Vi : Vnf) += voice3;
sound_sample Vi;
switch (filt) {
default:
case 0x0:
Vi = 0;
Vnf = voice1 + voice2 + voice3 + ext_in;
break;
case 0x1:
Vi = voice1;
Vnf = voice2 + voice3 + ext_in;
break;
case 0x2:
Vi = voice2;
Vnf = voice1 + voice3 + ext_in;
break;
case 0x3:
Vi = voice1 + voice2;
Vnf = voice3 + ext_in;
break;
case 0x4:
Vi = voice3;
Vnf = voice1 + voice2 + ext_in;
break;
case 0x5:
Vi = voice1 + voice3;
Vnf = voice2 + ext_in;
break;
case 0x6:
Vi = voice2 + voice3;
Vnf = voice1 + ext_in;
break;
case 0x7:
Vi = voice1 + voice2 + voice3;
Vnf = ext_in;
break;
case 0x8:
Vi = ext_in;
Vnf = voice1 + voice2 + voice3;
break;
case 0x9:
Vi = voice1 + ext_in;
Vnf = voice2 + voice3;
break;
case 0xa:
Vi = voice2 + ext_in;
Vnf = voice1 + voice3;
break;
case 0xb:
Vi = voice1 + voice2 + ext_in;
Vnf = voice3;
break;
case 0xc:
Vi = voice3 + ext_in;
Vnf = voice1 + voice2;
break;
case 0xd:
Vi = voice1 + voice3 + ext_in;
Vnf = voice2;
break;
case 0xe:
Vi = voice2 + voice3 + ext_in;
Vnf = voice1;
break;
case 0xf:
Vi = voice1 + voice2 + voice3 + ext_in;
Vnf = 0;
break;
}
// delta_t = 1 is converted to seconds given a 1MHz clock by dividing
// with 1 000 000.
// Calculate filter outputs.
// Vhp = Vbp/Q - Vlp - Vi;
// dVbp = -w0*Vhp*dt;
// dVlp = -w0*Vbp*dt;
sound_sample dVbp = (w0_ceil_1*Vhp >> 20);
sound_sample dVlp = (w0_ceil_1*Vbp >> 20);
Vbp -= dVbp;
Vlp -= dVlp;
Vhp = (Vbp*_1024_div_Q >> 10) - Vlp - Vi;
}
// ----------------------------------------------------------------------------
// SID clocking - delta_t cycles.
// ----------------------------------------------------------------------------
RESID_INLINE
void Filter::clock(cycle_count delta_t,
sound_sample voice1,
sound_sample voice2,
sound_sample voice3,
sound_sample ext_in)
{
// Scale each voice down from 20 to 13 bits.
voice1 >>= 7;
voice2 >>= 7;
// NB! Voice 3 is not silenced by voice3off if it is routed through
// the filter.
if (voice3off && !(filt & 0x04)) {
voice3 = 0;
}
else {
voice3 >>= 7;
}
ext_in >>= 7;
// Enable filter on/off.
// This is not really part of SID, but is useful for testing.
// On slow CPUs it may be necessary to bypass the filter to lower the CPU
// load.
if (!enabled) {
Vnf = voice1 + voice2 + voice3 + ext_in;
Vhp = Vbp = Vlp = 0;
return;
}
// Route voices into or around filter.
// The code below is expanded to a switch for faster execution.
// (filt1 ? Vi : Vnf) += voice1;
// (filt2 ? Vi : Vnf) += voice2;
// (filt3 ? Vi : Vnf) += voice3;
sound_sample Vi;
switch (filt) {
default:
case 0x0:
Vi = 0;
Vnf = voice1 + voice2 + voice3 + ext_in;
break;
case 0x1:
Vi = voice1;
Vnf = voice2 + voice3 + ext_in;
break;
case 0x2:
Vi = voice2;
Vnf = voice1 + voice3 + ext_in;
break;
case 0x3:
Vi = voice1 + voice2;
Vnf = voice3 + ext_in;
break;
case 0x4:
Vi = voice3;
Vnf = voice1 + voice2 + ext_in;
break;
case 0x5:
Vi = voice1 + voice3;
Vnf = voice2 + ext_in;
break;
case 0x6:
Vi = voice2 + voice3;
Vnf = voice1 + ext_in;
break;
case 0x7:
Vi = voice1 + voice2 + voice3;
Vnf = ext_in;
break;
case 0x8:
Vi = ext_in;
Vnf = voice1 + voice2 + voice3;
break;
case 0x9:
Vi = voice1 + ext_in;
Vnf = voice2 + voice3;
break;
case 0xa:
Vi = voice2 + ext_in;
Vnf = voice1 + voice3;
break;
case 0xb:
Vi = voice1 + voice2 + ext_in;
Vnf = voice3;
break;
case 0xc:
Vi = voice3 + ext_in;
Vnf = voice1 + voice2;
break;
case 0xd:
Vi = voice1 + voice3 + ext_in;
Vnf = voice2;
break;
case 0xe:
Vi = voice2 + voice3 + ext_in;
Vnf = voice1;
break;
case 0xf:
Vi = voice1 + voice2 + voice3 + ext_in;
Vnf = 0;
break;
}
// Maximum delta cycles for the filter to work satisfactorily under current
// cutoff frequency and resonance constraints is approximately 8.
cycle_count delta_t_flt = 8;
while (delta_t) {
if (delta_t < delta_t_flt) {
delta_t_flt = delta_t;
}
// delta_t is converted to seconds given a 1MHz clock by dividing
// with 1 000 000. This is done in two operations to avoid integer
// multiplication overflow.
// Calculate filter outputs.
// Vhp = Vbp/Q - Vlp - Vi;
// dVbp = -w0*Vhp*dt;
// dVlp = -w0*Vbp*dt;
sound_sample w0_delta_t = w0_ceil_dt*delta_t_flt >> 6;
sound_sample dVbp = (w0_delta_t*Vhp >> 14);
sound_sample dVlp = (w0_delta_t*Vbp >> 14);
Vbp -= dVbp;
Vlp -= dVlp;
Vhp = (Vbp*_1024_div_Q >> 10) - Vlp - Vi;
delta_t -= delta_t_flt;
}
}
// ----------------------------------------------------------------------------
// SID audio output (20 bits).
// ----------------------------------------------------------------------------
RESID_INLINE
sound_sample Filter::output()
{
// This is handy for testing.
if (!enabled) {
return (Vnf + mixer_DC)*static_cast<sound_sample>(vol);
}
// Mix highpass, bandpass, and lowpass outputs. The sum is not
// weighted, this can be confirmed by sampling sound output for
// e.g. bandpass, lowpass, and bandpass+lowpass from a SID chip.
// The code below is expanded to a switch for faster execution.
// if (hp) Vf += Vhp;
// if (bp) Vf += Vbp;
// if (lp) Vf += Vlp;
sound_sample Vf;
switch (hp_bp_lp) {
default:
case 0x0:
Vf = 0;
break;
case 0x1:
Vf = Vlp;
break;
case 0x2:
Vf = Vbp;
break;
case 0x3:
Vf = Vlp + Vbp;
break;
case 0x4:
Vf = Vhp;
break;
case 0x5:
Vf = Vlp + Vhp;
break;
case 0x6:
Vf = Vbp + Vhp;
break;
case 0x7:
Vf = Vlp + Vbp + Vhp;
break;
}
// Sum non-filtered and filtered output.
// Multiply the sum with volume.
return (Vnf + Vf + mixer_DC)*static_cast<sound_sample>(vol);
}
#endif // RESID_INLINING || defined(__FILTER_CC__)
#endif // not __FILTER_H__