-
Notifications
You must be signed in to change notification settings - Fork 7
/
wave.h
503 lines (445 loc) · 15.1 KB
/
wave.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// ---------------------------------------------------------------------------
// This file is part of reSID, a MOS6581 SID emulator engine.
// Copyright (C) 2004 Dag Lem <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// ---------------------------------------------------------------------------
#ifndef __WAVE_H__
#define __WAVE_H__
#include "siddefs.h"
// ----------------------------------------------------------------------------
// A 24 bit accumulator is the basis for waveform generation. FREQ is added to
// the lower 16 bits of the accumulator each cycle.
// The accumulator is set to zero when TEST is set, and starts counting
// when TEST is cleared.
// The noise waveform is taken from intermediate bits of a 23 bit shift
// register. This register is clocked by bit 19 of the accumulator.
// ----------------------------------------------------------------------------
class RESID_API WaveformGenerator
{
public:
WaveformGenerator();
void set_sync_source(WaveformGenerator*);
void set_chip_model(chip_model model);
RESID_INLINE void clock();
RESID_INLINE void clock(cycle_count delta_t);
RESID_INLINE void synchronize();
void reset();
void writeFREQ_LO(reg8);
void writeFREQ_HI(reg8);
void writePW_LO(reg8);
void writePW_HI(reg8);
void writeCONTROL_REG(reg8);
reg8 readOSC();
// 12-bit waveform output.
RESID_INLINE reg12 output();
protected:
const WaveformGenerator* sync_source;
WaveformGenerator* sync_dest;
// Tell whether the accumulator MSB was set high on this cycle.
bool msb_rising;
reg24 accumulator;
reg24 shift_register;
// Fout = (Fn*Fclk/16777216)Hz
reg16 freq;
// PWout = (PWn/40.95)%
reg12 pw;
// The control register right-shifted 4 bits; used for output function
// table lookup.
reg8 waveform;
// The remaining control register bits.
reg8 test;
reg8 ring_mod;
reg8 sync;
// The gate bit is handled by the EnvelopeGenerator.
// 16 possible combinations of waveforms.
RESID_INLINE reg12 output____();
RESID_INLINE reg12 output___T();
RESID_INLINE reg12 output__S_();
RESID_INLINE reg12 output__ST();
RESID_INLINE reg12 output_P__();
RESID_INLINE reg12 output_P_T();
RESID_INLINE reg12 output_PS_();
RESID_INLINE reg12 output_PST();
RESID_INLINE reg12 outputN___();
RESID_INLINE reg12 outputN__T();
RESID_INLINE reg12 outputN_S_();
RESID_INLINE reg12 outputN_ST();
RESID_INLINE reg12 outputNP__();
RESID_INLINE reg12 outputNP_T();
RESID_INLINE reg12 outputNPS_();
RESID_INLINE reg12 outputNPST();
// Sample data for combinations of waveforms.
static reg8 wave6581__ST[];
static reg8 wave6581_P_T[];
static reg8 wave6581_PS_[];
static reg8 wave6581_PST[];
static reg8 wave8580__ST[];
static reg8 wave8580_P_T[];
static reg8 wave8580_PS_[];
static reg8 wave8580_PST[];
reg8* wave__ST;
reg8* wave_P_T;
reg8* wave_PS_;
reg8* wave_PST;
friend class Voice;
friend class SID;
};
// ----------------------------------------------------------------------------
// Inline functions.
// The following functions are defined inline because they are called every
// time a sample is calculated.
// ----------------------------------------------------------------------------
#if RESID_INLINING || defined(__WAVE_CC__)
// ----------------------------------------------------------------------------
// SID clocking - 1 cycle.
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::clock()
{
// No operation if test bit is set.
if (test) {
return;
}
reg24 accumulator_prev = accumulator;
// Calculate new accumulator value;
accumulator += freq;
accumulator &= 0xffffff;
// Check whether the MSB is set high. This is used for synchronization.
msb_rising = !(accumulator_prev & 0x800000) && (accumulator & 0x800000);
// Shift noise register once for each time accumulator bit 19 is set high.
if (!(accumulator_prev & 0x080000) && (accumulator & 0x080000)) {
reg24 bit0 = ((shift_register >> 22) ^ (shift_register >> 17)) & 0x1;
shift_register <<= 1;
shift_register &= 0x7fffff;
shift_register |= bit0;
}
}
// ----------------------------------------------------------------------------
// SID clocking - delta_t cycles.
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::clock(cycle_count delta_t)
{
// No operation if test bit is set.
if (test) {
return;
}
reg24 accumulator_prev = accumulator;
// Calculate new accumulator value;
reg24 delta_accumulator = delta_t*freq;
accumulator += delta_accumulator;
accumulator &= 0xffffff;
// Check whether the MSB is set high. This is used for synchronization.
msb_rising = !(accumulator_prev & 0x800000) && (accumulator & 0x800000);
// Shift noise register once for each time accumulator bit 19 is set high.
// Bit 19 is set high each time 2^20 (0x100000) is added to the accumulator.
reg24 shift_period = 0x100000;
while (delta_accumulator) {
if (delta_accumulator < shift_period) {
shift_period = delta_accumulator;
// Determine whether bit 19 is set on the last period.
// NB! Requires two's complement integer.
if (shift_period <= 0x080000) {
// Check for flip from 0 to 1.
if (((accumulator - shift_period) & 0x080000) || !(accumulator & 0x080000))
{
break;
}
}
else {
// Check for flip from 0 (to 1 or via 1 to 0) or from 1 via 0 to 1.
if (((accumulator - shift_period) & 0x080000) && !(accumulator & 0x080000))
{
break;
}
}
}
// Shift the noise/random register.
// NB! The shift is actually delayed 2 cycles, this is not modeled.
reg24 bit0 = ((shift_register >> 22) ^ (shift_register >> 17)) & 0x1;
shift_register <<= 1;
shift_register &= 0x7fffff;
shift_register |= bit0;
delta_accumulator -= shift_period;
}
}
// ----------------------------------------------------------------------------
// Synchronize oscillators.
// This must be done after all the oscillators have been clock()'ed since the
// oscillators operate in parallel.
// Note that the oscillators must be clocked exactly on the cycle when the
// MSB is set high for hard sync to operate correctly. See SID::clock().
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::synchronize()
{
// A special case occurs when a sync source is synced itself on the same
// cycle as when its MSB is set high. In this case the destination will
// not be synced. This has been verified by sampling OSC3.
if (msb_rising && sync_dest->sync && !(sync && sync_source->msb_rising)) {
sync_dest->accumulator = 0;
}
}
// ----------------------------------------------------------------------------
// Output functions.
// NB! The output from SID 8580 is delayed one cycle compared to SID 6581,
// this is not modeled.
// ----------------------------------------------------------------------------
// No waveform:
// Zero output.
//
RESID_INLINE
reg12 WaveformGenerator::output____()
{
return 0x000;
}
// Triangle:
// The upper 12 bits of the accumulator are used.
// The MSB is used to create the falling edge of the triangle by inverting
// the lower 11 bits. The MSB is thrown away and the lower 11 bits are
// left-shifted (half the resolution, full amplitude).
// Ring modulation substitutes the MSB with MSB EOR sync_source MSB.
//
RESID_INLINE
reg12 WaveformGenerator::output___T()
{
reg24 msb = (ring_mod ? accumulator ^ sync_source->accumulator : accumulator)
& 0x800000;
return ((msb ? ~accumulator : accumulator) >> 11) & 0xfff;
}
// Sawtooth:
// The output is identical to the upper 12 bits of the accumulator.
//
RESID_INLINE
reg12 WaveformGenerator::output__S_()
{
return accumulator >> 12;
}
// Pulse:
// The upper 12 bits of the accumulator are used.
// These bits are compared to the pulse width register by a 12 bit digital
// comparator; output is either all one or all zero bits.
// NB! The output is actually delayed one cycle after the compare.
// This is not modeled.
//
// The test bit, when set to one, holds the pulse waveform output at 0xfff
// regardless of the pulse width setting.
//
RESID_INLINE
reg12 WaveformGenerator::output_P__()
{
return (test || (accumulator >> 12) >= pw) ? 0xfff : 0x000;
}
// Noise:
// The noise output is taken from intermediate bits of a 23-bit shift register
// which is clocked by bit 19 of the accumulator.
// NB! The output is actually delayed 2 cycles after bit 19 is set high.
// This is not modeled.
//
// Operation: Calculate EOR result, shift register, set bit 0 = result.
//
// ----------------------->---------------------
// | |
// ----EOR---- |
// | | |
// 2 2 2 1 1 1 1 1 1 1 1 1 1 |
// Register bits: 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 <---
// | | | | | | | |
// OSC3 bits : 7 6 5 4 3 2 1 0
//
// Since waveform output is 12 bits the output is left-shifted 4 times.
//
RESID_INLINE
reg12 WaveformGenerator::outputN___()
{
return
((shift_register & 0x400000) >> 11) |
((shift_register & 0x100000) >> 10) |
((shift_register & 0x010000) >> 7) |
((shift_register & 0x002000) >> 5) |
((shift_register & 0x000800) >> 4) |
((shift_register & 0x000080) >> 1) |
((shift_register & 0x000010) << 1) |
((shift_register & 0x000004) << 2);
}
// Combined waveforms:
// By combining waveforms, the bits of each waveform are effectively short
// circuited. A zero bit in one waveform will result in a zero output bit
// (thus the infamous claim that the waveforms are AND'ed).
// However, a zero bit in one waveform will also affect the neighboring bits
// in the output. The reason for this has not been determined.
//
// Example:
//
// 1 1
// Bit # 1 0 9 8 7 6 5 4 3 2 1 0
// -----------------------
// Sawtooth 0 0 0 1 1 1 1 1 1 0 0 0
//
// Triangle 0 0 1 1 1 1 1 1 0 0 0 0
//
// AND 0 0 0 1 1 1 1 1 0 0 0 0
//
// Output 0 0 0 0 1 1 1 0 0 0 0 0
//
//
// This behavior would be quite difficult to model exactly, since the SID
// in this case does not act as a digital state machine. Tests show that minor
// (1 bit) differences can actually occur in the output from otherwise
// identical samples from OSC3 when waveforms are combined. To further
// complicate the situation the output changes slightly with time (more
// neighboring bits are successively set) when the 12-bit waveform
// registers are kept unchanged.
//
// It is probably possible to come up with a valid model for the
// behavior, however this would be far too slow for practical use since it
// would have to be based on the mutual influence of individual bits.
//
// The output is instead approximated by using the upper bits of the
// accumulator as an index to look up the combined output in a table
// containing actual combined waveform samples from OSC3.
// These samples are 8 bit, so 4 bits of waveform resolution is lost.
// All OSC3 samples are taken with FREQ=0x1000, adding a 1 to the upper 12
// bits of the accumulator each cycle for a sample period of 4096 cycles.
//
// Sawtooth+Triangle:
// The sawtooth output is used to look up an OSC3 sample.
//
// Pulse+Triangle:
// The triangle output is right-shifted and used to look up an OSC3 sample.
// The sample is output if the pulse output is on.
// The reason for using the triangle output as the index is to handle ring
// modulation. Only the first half of the sample is used, which should be OK
// since the triangle waveform has half the resolution of the accumulator.
//
// Pulse+Sawtooth:
// The sawtooth output is used to look up an OSC3 sample.
// The sample is output if the pulse output is on.
//
// Pulse+Sawtooth+Triangle:
// The sawtooth output is used to look up an OSC3 sample.
// The sample is output if the pulse output is on.
//
RESID_INLINE
reg12 WaveformGenerator::output__ST()
{
return wave__ST[output__S_()] << 4;
}
RESID_INLINE
reg12 WaveformGenerator::output_P_T()
{
return (wave_P_T[output___T() >> 1] << 4) & output_P__();
}
RESID_INLINE
reg12 WaveformGenerator::output_PS_()
{
return (wave_PS_[output__S_()] << 4) & output_P__();
}
RESID_INLINE
reg12 WaveformGenerator::output_PST()
{
return (wave_PST[output__S_()] << 4) & output_P__();
}
// Combined waveforms including noise:
// All waveform combinations including noise output zero after a few cycles.
// NB! The effects of such combinations are not fully explored. It is claimed
// that the shift register may be filled with zeroes and locked up, which
// seems to be true.
// We have not attempted to model this behavior, suffice to say that
// there is very little audible output from waveform combinations including
// noise. We hope that nobody is actually using it.
//
RESID_INLINE
reg12 WaveformGenerator::outputN__T()
{
return 0;
}
RESID_INLINE
reg12 WaveformGenerator::outputN_S_()
{
return 0;
}
RESID_INLINE
reg12 WaveformGenerator::outputN_ST()
{
return 0;
}
RESID_INLINE
reg12 WaveformGenerator::outputNP__()
{
return 0;
}
RESID_INLINE
reg12 WaveformGenerator::outputNP_T()
{
return 0;
}
RESID_INLINE
reg12 WaveformGenerator::outputNPS_()
{
return 0;
}
RESID_INLINE
reg12 WaveformGenerator::outputNPST()
{
return 0;
}
// ----------------------------------------------------------------------------
// Select one of 16 possible combinations of waveforms.
// ----------------------------------------------------------------------------
RESID_INLINE
reg12 WaveformGenerator::output()
{
// It may seem cleaner to use an array of member functions to return
// waveform output; however a switch with inline functions is faster.
switch (waveform) {
default:
case 0x0:
return output____();
case 0x1:
return output___T();
case 0x2:
return output__S_();
case 0x3:
return output__ST();
case 0x4:
return output_P__();
case 0x5:
return output_P_T();
case 0x6:
return output_PS_();
case 0x7:
return output_PST();
case 0x8:
return outputN___();
case 0x9:
return outputN__T();
case 0xa:
return outputN_S_();
case 0xb:
return outputN_ST();
case 0xc:
return outputNP__();
case 0xd:
return outputNP_T();
case 0xe:
return outputNPS_();
case 0xf:
return outputNPST();
}
}
#endif // RESID_INLINING || defined(__WAVE_CC__)
#endif // not __WAVE_H__