Skip to content

Latest commit

 

History

History
980 lines (698 loc) · 35.3 KB

plugins.rst

File metadata and controls

980 lines (698 loc) · 35.3 KB

Plugins

Datasette's plugin system allows additional features to be implemented as Python code (or front-end JavaScript) which can be wrapped up in a separate Python package. The underlying mechanism uses pluggy.

See :ref:`ecosystem_plugins` for a list of existing plugins, or take a look at the datasette-plugin topic on GitHub.

Things you can do with plugins include:

Installing plugins

If a plugin has been packaged for distribution using setuptools you can use the plugin by installing it alongside Datasette in the same virtual environment or Docker container.

You can also define one-off per-project plugins by saving them as plugin_name.py functions in a plugins/ folder and then passing that folder to datasette serve.

The datasette publish and datasette package commands both take an optional --install argument. You can use this one or more times to tell Datasette to pip install specific plugins as part of the process. You can use the name of a package on PyPI or any of the other valid arguments to pip install such as a URL to a .zip file:

datasette publish cloudrun mydb.db \
    --install=datasette-plugin-demos \
    --install=https://url-to-my-package.zip

Writing one-off plugins

The easiest way to write a plugin is to create a my_plugin.py file and drop it into your plugins/ directory. Here is an example plugin, which adds a new custom SQL function called hello_world() which takes no arguments and returns the string Hello world!.

from datasette import hookimpl

@hookimpl
def prepare_connection(conn):
    conn.create_function('hello_world', 0, lambda: 'Hello world!')

If you save this in plugins/my_plugin.py you can then start Datasette like this:

datasette serve mydb.db --plugins-dir=plugins/

Now you can navigate to http://localhost:8001/mydb and run this SQL:

select hello_world();

To see the output of your plugin.

Seeing what plugins are installed

You can see a list of installed plugins by navigating to the /-/plugins page of your Datasette instance - for example: https://fivethirtyeight.datasettes.com/-/plugins

You can also use the datasette plugins command:

$ datasette plugins
[
    {
        "name": "datasette_json_html",
        "static": false,
        "templates": false,
        "version": "0.4.0"
    }
]

If you run datasette plugins --all it will include default plugins that ship as part of Datasette:

$ datasette plugins --all
[
    {
        "name": "datasette.sql_functions",
        "static": false,
        "templates": false,
        "version": null
    },
    {
        "name": "datasette.publish.cloudrun",
        "static": false,
        "templates": false,
        "version": null
    },
    {
        "name": "datasette.facets",
        "static": false,
        "templates": false,
        "version": null
    },
    {
        "name": "datasette.publish.heroku",
        "static": false,
        "templates": false,
        "version": null
    }
]

You can add the --plugins-dir= option to include any plugins found in that directory.

Packaging a plugin

Plugins can be packaged using Python setuptools. You can see an example of a packaged plugin at https://github.com/simonw/datasette-plugin-demos

The example consists of two files: a setup.py file that defines the plugin:

from setuptools import setup

VERSION = '0.1'

setup(
    name='datasette-plugin-demos',
    description='Examples of plugins for Datasette',
    author='Simon Willison',
    url='https://github.com/simonw/datasette-plugin-demos',
    license='Apache License, Version 2.0',
    version=VERSION,
    py_modules=['datasette_plugin_demos'],
    entry_points={
        'datasette': [
            'plugin_demos = datasette_plugin_demos'
        ]
    },
    install_requires=['datasette']
)

And a Python module file, datasette_plugin_demos.py, that implements the plugin:

from datasette import hookimpl
import random


@hookimpl
def prepare_jinja2_environment(env):
    env.filters['uppercase'] = lambda u: u.upper()


@hookimpl
def prepare_connection(conn):
    conn.create_function('random_integer', 2, random.randint)

Having built a plugin in this way you can turn it into an installable package using the following command:

python3 setup.py sdist

This will create a .tar.gz file in the dist/ directory.

You can then install your new plugin into a Datasette virtual environment or Docker container using pip:

pip install datasette-plugin-demos-0.1.tar.gz

To learn how to upload your plugin to PyPI for use by other people, read the PyPA guide to Packaging and distributing projects.

Static assets

If your plugin has a static/ directory, Datasette will automatically configure itself to serve those static assets from the following path:

/-/static-plugins/NAME_OF_PLUGIN_PACKAGE/yourfile.js

See the datasette-plugin-demos repository for an example of how to create a package that includes a static folder.

Custom templates

If your plugin has a templates/ directory, Datasette will attempt to load templates from that directory before it uses its own default templates.

The priority order for template loading is:

  • templates from the --template-dir argument, if specified
  • templates from the templates/ directory in any installed plugins
  • default templates that ship with Datasette

See :ref:`customization` for more details on how to write custom templates, including which filenames to use to customize which parts of the Datasette UI.

Plugin configuration

Plugins can have their own configuration, embedded in a :ref:`metadata` file. Configuration options for plugins live within a "plugins" key in that file, which can be included at the root, database or table level.

Here is an example of some plugin configuration for a specific table:

{
    "databases: {
        "sf-trees": {
            "tables": {
                "Street_Tree_List": {
                    "plugins": {
                        "datasette-cluster-map": {
                            "latitude_column": "lat",
                            "longitude_column": "lng"
                        }
                    }
                }
            }
        }
    }
}

This tells the datasette-cluster-map column which latitude and longitude columns should be used for a table called Street_Tree_List inside a database file called sf-trees.db.

Secret configuration values

Any values embedded in metadata.json will be visible to anyone who views the /-/metadata page of your Datasette instance. Some plugins may need configuration that should stay secret - API keys for example. There are two ways in which you can store secret configuration values.

As environment variables. If your secret lives in an environment variable that is available to the Datasette process, you can indicate that the configuration value should be read from that environment variable like so:

{
    "plugins": {
        "datasette-auth-github": {
            "client_secret": {
                "$env": "GITHUB_CLIENT_SECRET"
            }
        }
    }
}

As values in separate files. Your secrets can also live in files on disk. To specify a secret should be read from a file, provide the full file path like this:

{
    "plugins": {
        "datasette-auth-github": {
            "client_secret": {
                "$file": "/secrets/client-secret"
            }
        }
    }
}

If you are publishing your data using the :ref:`datasette publish <cli_publish>` family of commands, you can use the --plugin-secret option to set these secrets at publish time. For example, using Heroku you might run the following command:

$ datasette publish heroku my_database.db \
    --name my-heroku-app-demo \
    --install=datasette-auth-github \
    --plugin-secret datasette-auth-github client_id your_client_id \
    --plugin-secret datasette-auth-github client_secret your_client_secret

Writing plugins that accept configuration

When you are writing plugins, you can access plugin configuration like this using the datasette.plugin_config() method. If you know you need plugin configuration for a specific table, you can access it like this:

plugin_config = datasette.plugin_config(
    "datasette-cluster-map", database="sf-trees", table="Street_Tree_List"
)

This will return the {"latitude_column": "lat", "longitude_column": "lng"} in the above example.

If it cannot find the requested configuration at the table layer, it will fall back to the database layer and then the root layer. For example, a user may have set the plugin configuration option like so:

{
    "databases: {
        "sf-trees": {
            "plugins": {
                "datasette-cluster-map": {
                    "latitude_column": "xlat",
                    "longitude_column": "xlng"
                }
            }
        }
    }
}

In this case, the above code would return that configuration for ANY table within the sf-trees database.

The plugin configuration could also be set at the top level of metadata.json:

{
    "title": "This is the top-level title in metadata.json",
    "plugins": {
        "datasette-cluster-map": {
            "latitude_column": "xlat",
            "longitude_column": "xlng"
        }
    }
}

Now that datasette-cluster-map plugin configuration will apply to every table in every database.

Plugin hooks

When you implement a plugin hook you can accept any or all of the parameters that are documented as being passed to that hook. For example, you can implement a render_cell plugin hook like this even though the hook definition defines more parameters than just value and column:

@hookimpl
def render_cell(value, column):
    if column == "stars":
        return "*" * int(value)

The full list of available plugin hooks is as follows.

prepare_connection(conn, database, datasette)

conn - sqlite3 connection object
The connection that is being opened
database - string
The name of the database
datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name)

This hook is called when a new SQLite database connection is created. You can use it to register custom SQL functions, aggregates and collations. For example:

from datasette import hookimpl
import random

@hookimpl
def prepare_connection(conn):
    conn.create_function('random_integer', 2, random.randint)

This registers a SQL function called random_integer which takes two arguments and can be called like this:

select random_integer(1, 10);

Examples: datasette-jellyfish, datasette-jq, datasette-haversine, datasette-rure

prepare_jinja2_environment(env)

env - jinja2 Environment
The template environment that is being prepared

This hook is called with the Jinja2 environment that is used to evaluate Datasette HTML templates. You can use it to do things like register custom template filters, for example:

from datasette import hookimpl

@hookimpl
def prepare_jinja2_environment(env):
    env.filters['uppercase'] = lambda u: u.upper()

You can now use this filter in your custom templates like so:

Table name: {{ table|uppercase }}

extra_css_urls(template, database, table, datasette)

template - string
The template that is being rendered, e.g. database.html
database - string or None
The name of the database
table - string or None
The name of the table
datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name)

Return a list of extra CSS URLs that should be included on the page. These can take advantage of the CSS class hooks described in :ref:`customization`.

This can be a list of URLs:

from datasette import hookimpl

@hookimpl
def extra_css_urls():
    return [
        'https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css'
    ]

Or a list of dictionaries defining both a URL and an SRI hash:

from datasette import hookimpl

@hookimpl
def extra_css_urls():
    return [{
        'url': 'https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css',
        'sri': 'sha384-9gVQ4dYFwwWSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiu1FwO5qRGvFXOdJZ4',
    }]

Examples: datasette-cluster-map, datasette-vega

extra_js_urls(template, database, table, datasette)

Same arguments as extra_css_urls.

This works in the same way as extra_css_urls() but for JavaScript. You can return either a list of URLs or a list of dictionaries:

from datasette import hookimpl

@hookimpl
def extra_js_urls():
    return [{
        'url': 'https://code.jquery.com/jquery-3.3.1.slim.min.js',
        'sri': 'sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo',
    }]

You can also return URLs to files from your plugin's static/ directory, if you have one:

from datasette import hookimpl

@hookimpl
def extra_js_urls():
    return [
        '/-/static-plugins/your-plugin/app.js'
    ]

Examples: datasette-cluster-map, datasette-vega

publish_subcommand(publish)

publish - Click publish command group
The Click command group for the datasette publish subcommand

This hook allows you to create new providers for the datasette publish command. Datasette uses this hook internally to implement the default now and heroku subcommands, so you can read their source to see examples of this hook in action.

Let's say you want to build a plugin that adds a datasette publish my_hosting_provider --api_key=xxx mydatabase.db publish command. Your implementation would start like this:

from datasette import hookimpl
from datasette.publish.common import add_common_publish_arguments_and_options
import click


@hookimpl
def publish_subcommand(publish):
    @publish.command()
    @add_common_publish_arguments_and_options
    @click.option(
        "-k",
        "--api_key",
        help="API key for talking to my hosting provider",
    )
    def my_hosting_provider(
        files,
        metadata,
        extra_options,
        branch,
        template_dir,
        plugins_dir,
        static,
        install,
        plugin_secret,
        version_note,
        title,
        license,
        license_url,
        source,
        source_url,
        about,
        about_url,
        api_key,
    ):
        # Your implementation goes here

Examples: datasette-publish-fly, datasette-publish-now

render_cell(value, column, table, database, datasette)

Lets you customize the display of values within table cells in the HTML table view.

value - string, integer or None
The value that was loaded from the database
column - string
The name of the column being rendered
table - string or None
The name of the table - or None if this is a custom SQL query
database - string
The name of the database
datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name)

If your hook returns None, it will be ignored. Use this to indicate that your hook is not able to custom render this particular value.

If the hook returns a string, that string will be rendered in the table cell.

If you want to return HTML markup you can do so by returning a jinja2.Markup object.

Datasette will loop through all available render_cell hooks and display the value returned by the first one that does not return None.

Here is an example of a custom render_cell() plugin which looks for values that are a JSON string matching the following format:

{"href": "https://www.example.com/", "label": "Name"}

If the value matches that pattern, the plugin returns an HTML link element:

from datasette import hookimpl
import jinja2
import json


@hookimpl
def render_cell(value):
    # Render {"href": "...", "label": "..."} as link
    if not isinstance(value, str):
        return None
    stripped = value.strip()
    if not stripped.startswith("{") and stripped.endswith("}"):
        return None
    try:
        data = json.loads(value)
    except ValueError:
        return None
    if not isinstance(data, dict):
        return None
    if set(data.keys()) != {"href", "label"}:
        return None
    href = data["href"]
    if not (
        href.startswith("/") or href.startswith("http://")
        or href.startswith("https://")
    ):
        return None
    return jinja2.Markup('<a href="{href}">{label}</a>'.format(
        href=jinja2.escape(data["href"]),
        label=jinja2.escape(data["label"] or "") or "&nbsp;"
    ))

Examples: datasette-render-binary, datasette-render-markdown

extra_body_script(template, database, table, view_name, datasette)

Extra JavaScript to be added to a <script> block at the end of the <body> element on the page.

template - string
The template that is being rendered, e.g. database.html
database - string or None
The name of the database, or None if the page does not correspond to a database (e.g. the root page)
table - string or None
The name of the table, or None if the page does not correct to a table
view_name - string
The name of the view being displayed. (index, database, table, and row are the most important ones.)
datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name)

The template, database and table options can be used to return different code depending on which template is being rendered and which database or table are being processed.

The datasette instance is provided primarily so that you can consult any plugin configuration options that may have been set, using the datasette.plugin_config(plugin_name) method documented above.

The string that you return from this function will be treated as "safe" for inclusion in a <script> block directly in the page, so it is up to you to apply any necessary escaping.

Example: datasette-cluster-map

extra_template_vars(template, database, table, view_name, request, datasette)

Extra template variables that should be made available in the rendered template context.

template - string
The template that is being rendered, e.g. database.html
database - string or None
The name of the database, or None if the page does not correspond to a database (e.g. the root page)
table - string or None
The name of the table, or None if the page does not correct to a table
view_name - string
The name of the view being displayed. (index, database, table, and row are the most important ones.)
request - object
The current HTTP :ref:`internals_request`.
datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name)

This hook can return one of three different types:

Dictionary
If you return a dictionary its keys and values will be merged into the template context.
Function that returns a dictionary
If you return a function it will be executed. If it returns a dictionary those values will will be merged into the template context.
Function that returns an awaitable function that returns a dictionary
You can also return a function which returns an awaitable function which returns a dictionary.

Datasette runs Jinja2 in async mode, which means you can add awaitable functions to the template scope and they will be automatically awaited when they are rendered by the template.

Here's an example plugin that returns an authentication object from the ASGI scope:

@hookimpl
def extra_template_vars(request):
    return {
        "auth": request.scope.get("auth")
    }

This example returns an awaitable function which adds a list of hidden_table_names to the context:

@hookimpl
def extra_template_vars(datasette, database):
    async def hidden_table_names():
        if database:
            db = datasette.databases[database]
            return {"hidden_table_names": await db.hidden_table_names()}
        else:
            return {}
    return hidden_table_names

And here's an example which adds a sql_first(sql_query) function which executes a SQL statement and returns the first column of the first row of results:

@hookimpl
def extra_template_vars(datasette, database):
    async def sql_first(sql, dbname=None):
        dbname = dbname or database or next(iter(datasette.databases.keys()))
        return (await datasette.execute(dbname, sql)).rows[0][0]
    return {"sql_first": sql_first}

You can then use the new function in a template like so:

SQLite version: {{ sql_first("select sqlite_version()") }}

Examples: datasette-search-all, datasette-template-sql

register_output_renderer(datasette)

datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name)

Registers a new output renderer, to output data in a custom format. The hook function should return a dictionary, or a list of dictionaries, of the following shape:

@hookimpl
def register_output_renderer(datasette):
    return {
        "extension": "test",
        "render": render_demo,
        "can_render": can_render_demo,  # Optional
    }

This will register render_demo to be called when paths with the extension .test (for example /database.test, /database/table.test, or /database/table/row.test) are requested.

render_demo is a Python function. It can be a regular function or an async def render_demo() awaitable function, depending on if it needs to make any asynchronous calls.

can_render_demo is a Python function (or async def function) which acepts the same arguments as render_demo but just returns True or False. It lets Datasette know if the current SQL query can be represented by the plugin - and hence influnce if a link to this output format is displayed in the user interface. If you omit the "can_render" key from the dictionary every query will be treated as being supported by the plugin.

When a request is received, the "render" callback function is called with zero or more of the following arguments. Datasette will inspect your callback function and pass arguments that match its function signature.

datasette - :ref:`internals_datasette`
For accessing plugin configuration and executing queries.
columns - list of strings
The names of the columns returned by this query.
rows - list of sqlite3.Row objects
The rows returned by the query.
sql - string
The SQL query that was executed.
query_name - string or None
If this was the execution of a :ref:`canned query <canned_queries>`, the name of that query.
database - string
The name of the database.
table - string or None
The table or view, if one is being rendered.
request - :ref:`internals_request`
The incoming HTTP request.
view_name - string
The name of the current view being called. index, database, table, and row are the most important ones.

The callback function can return None, if it is unable to render the data, or a dictionary with the following keys:

body - string or bytes, optional
The response body, default empty
content_type - string, optional
The Content-Type header, default text/plain
status_code - integer, optional
The HTTP status code, default 200
headers - dictionary, optional
Extra HTTP headers to be returned in the response.

A simple example of an output renderer callback function:

def render_demo():
    return {
        "body": "Hello World"
    }

Here is a more complex example:

async def render_demo(datasette, columns, rows):
    db = datasette.get_database()
    result = await db.execute("select sqlite_version()")
    first_row = " | ".join(columns)
    lines = [first_row]
    lines.append("=" * len(first_row))
    for row in rows:
        lines.append(" | ".join(row))
    return {
        "body": "\n".join(lines),
        "content_type": "text/plain; charset=utf-8",
        "headers": {"x-sqlite-version": result.first()[0]},
    }

And here is an example can_render function which returns True only if the query results contain the columns atom_id, atom_title and atom_updated:

def can_render_demo(columns):
    return {"atom_id", "atom_title", "atom_updated"}.issubset(columns)

Examples: datasette-atom, datasette-ics

register_facet_classes()

Return a list of additional Facet subclasses to be registered.

Each Facet subclass implements a new type of facet operation. The class should look like this:

class SpecialFacet(Facet):
    # This key must be unique across all facet classes:
    type = "special"

    async def suggest(self):
        # Use self.sql and self.params to suggest some facets
        suggested_facets = []
        suggested_facets.append({
            "name": column, # Or other unique name
            # Construct the URL that will enable this facet:
            "toggle_url": self.ds.absolute_url(
                self.request, path_with_added_args(
                    self.request, {"_facet": column}
                )
            ),
        })
        return suggested_facets

    async def facet_results(self):
        # This should execute the facet operation and return results, again
        # using self.sql and self.params as the starting point
        facet_results = {}
        facets_timed_out = []
        # Do some calculations here...
        for column in columns_selected_for_facet:
            try:
                facet_results_values = []
                # More calculations...
                facet_results_values.append({
                    "value": value,
                    "label": label,
                    "count": count,
                    "toggle_url": self.ds.absolute_url(self.request, toggle_path),
                    "selected": selected,
                })
                facet_results[column] = {
                    "name": column,
                    "results": facet_results_values,
                    "truncated": len(facet_rows_results) > facet_size,
                }
            except QueryInterrupted:
                facets_timed_out.append(column)

        return facet_results, facets_timed_out

See datasette/facets.py for examples of how these classes can work.

The plugin hook can then be used to register the new facet class like this:

@hookimpl
def register_facet_classes():
    return [SpecialFacet]

asgi_wrapper(datasette)

Return an ASGI middleware wrapper function that will be applied to the Datasette ASGI application.

This is a very powerful hook. You can use it to manipulate the entire Datasette response, or even to configure new URL routes that will be handled by your own custom code.

You can write your ASGI code directly against the low-level specification, or you can use the middleware utilites provided by an ASGI framework such as Starlette.

This example plugin adds a x-databases HTTP header listing the currently attached databases:

from datasette import hookimpl
from functools import wraps


@hookimpl
def asgi_wrapper(datasette):
    def wrap_with_databases_header(app):
        @wraps(app)
        async def add_x_databases_header(scope, recieve, send):
            async def wrapped_send(event):
                if event["type"] == "http.response.start":
                    original_headers = event.get("headers") or []
                    event = {
                        "type": event["type"],
                        "status": event["status"],
                        "headers": original_headers + [
                            [b"x-databases",
                            ", ".join(datasette.databases.keys()).encode("utf-8")]
                        ],
                    }
                await send(event)
            await app(scope, recieve, wrapped_send)
        return add_x_databases_header
    return wrap_with_databases_header

Examples: datasette-auth-github, datasette-search-all, datasette-media

actor_from_request(datasette, request)

datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name), or to execute SQL queries.
request - object
The current HTTP :ref:`internals_request`.

This is part of Datasette's authentication and permissions system. The function should attempt to authenticate an actor (either a user or an API actor of some sort) based on information in the request.

If it cannot authenticate an actor, it should return None. Otherwise it should return a dictionary representing that actor.

permission_allowed(datasette, actor, action, resource_type, resource_identifier)

datasette - :ref:`internals_datasette`
You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name), or to execute SQL queries.
actor - dictionary
The current actor, as decided by :ref:`plugin_actor_from_request`.
action - string
The action to be performed, e.g. "edit-table".
resource_type - string
The type of resource being acted on, e.g. "table".
resource - string
An identifier for the individual resource, e.g. the name of the table.

Called to check that an actor has permission to perform an action on a resource. Can return True if the action is allowed, False if the action is not allowed or None if the plugin does not have an opinion one way or the other.