Datasette's plugin system allows additional features to be implemented as Python code (or front-end JavaScript) which can be wrapped up in a separate Python package. The underlying mechanism uses pluggy.
See :ref:`ecosystem_plugins` for a list of existing plugins, or take a look at the datasette-plugin topic on GitHub.
Things you can do with plugins include:
- Add visualizations to Datasette, for example datasette-cluster-map and datasette-vega.
- Make new custom SQL functions available for use within Datasette, for example datasette-haversine and datasette-jellyfish.
- Add template functions that can be called within your Jinja custom templates, for example datasette-render-markdown.
- Customize how database values are rendered in the Datasette interface, for example datasette-render-binary and datasette-pretty-json.
- Wrap the entire Datasette application in custom ASGI middleware to add new pages or implement authentication, for example datasette-auth-github.
If a plugin has been packaged for distribution using setuptools you can use the plugin by installing it alongside Datasette in the same virtual environment or Docker container.
You can also define one-off per-project plugins by saving them as
plugin_name.py
functions in a plugins/
folder and then passing that
folder to datasette serve
.
The datasette publish
and datasette package
commands both take an
optional --install
argument. You can use this one or more times to tell
Datasette to pip install
specific plugins as part of the process. You can
use the name of a package on PyPI or any of the other valid arguments to pip
install
such as a URL to a .zip
file:
datasette publish cloudrun mydb.db \ --install=datasette-plugin-demos \ --install=https://url-to-my-package.zip
The easiest way to write a plugin is to create a my_plugin.py
file and
drop it into your plugins/
directory. Here is an example plugin, which
adds a new custom SQL function called hello_world()
which takes no
arguments and returns the string Hello world!
.
from datasette import hookimpl
@hookimpl
def prepare_connection(conn):
conn.create_function('hello_world', 0, lambda: 'Hello world!')
If you save this in plugins/my_plugin.py
you can then start Datasette like
this:
datasette serve mydb.db --plugins-dir=plugins/
Now you can navigate to http://localhost:8001/mydb and run this SQL:
select hello_world();
To see the output of your plugin.
You can see a list of installed plugins by navigating to the /-/plugins
page of your Datasette instance - for example: https://fivethirtyeight.datasettes.com/-/plugins
You can also use the datasette plugins
command:
$ datasette plugins [ { "name": "datasette_json_html", "static": false, "templates": false, "version": "0.4.0" } ]
If you run datasette plugins --all
it will include default plugins that ship as part of Datasette:
$ datasette plugins --all [ { "name": "datasette.sql_functions", "static": false, "templates": false, "version": null }, { "name": "datasette.publish.cloudrun", "static": false, "templates": false, "version": null }, { "name": "datasette.facets", "static": false, "templates": false, "version": null }, { "name": "datasette.publish.heroku", "static": false, "templates": false, "version": null } ]
You can add the --plugins-dir=
option to include any plugins found in that directory.
Plugins can be packaged using Python setuptools. You can see an example of a packaged plugin at https://github.com/simonw/datasette-plugin-demos
The example consists of two files: a setup.py
file that defines the plugin:
from setuptools import setup
VERSION = '0.1'
setup(
name='datasette-plugin-demos',
description='Examples of plugins for Datasette',
author='Simon Willison',
url='https://github.com/simonw/datasette-plugin-demos',
license='Apache License, Version 2.0',
version=VERSION,
py_modules=['datasette_plugin_demos'],
entry_points={
'datasette': [
'plugin_demos = datasette_plugin_demos'
]
},
install_requires=['datasette']
)
And a Python module file, datasette_plugin_demos.py
, that implements the
plugin:
from datasette import hookimpl
import random
@hookimpl
def prepare_jinja2_environment(env):
env.filters['uppercase'] = lambda u: u.upper()
@hookimpl
def prepare_connection(conn):
conn.create_function('random_integer', 2, random.randint)
Having built a plugin in this way you can turn it into an installable package using the following command:
python3 setup.py sdist
This will create a .tar.gz
file in the dist/
directory.
You can then install your new plugin into a Datasette virtual environment or
Docker container using pip
:
pip install datasette-plugin-demos-0.1.tar.gz
To learn how to upload your plugin to PyPI for use by other people, read the PyPA guide to Packaging and distributing projects.
If your plugin has a static/
directory, Datasette will automatically
configure itself to serve those static assets from the following path:
/-/static-plugins/NAME_OF_PLUGIN_PACKAGE/yourfile.js
See the datasette-plugin-demos repository for an example of how to create a package that includes a static folder.
If your plugin has a templates/
directory, Datasette will attempt to load
templates from that directory before it uses its own default templates.
The priority order for template loading is:
- templates from the
--template-dir
argument, if specified - templates from the
templates/
directory in any installed plugins - default templates that ship with Datasette
See :ref:`customization` for more details on how to write custom templates, including which filenames to use to customize which parts of the Datasette UI.
Plugins can have their own configuration, embedded in a :ref:`metadata` file. Configuration options for plugins live within a "plugins"
key in that file, which can be included at the root, database or table level.
Here is an example of some plugin configuration for a specific table:
{ "databases: { "sf-trees": { "tables": { "Street_Tree_List": { "plugins": { "datasette-cluster-map": { "latitude_column": "lat", "longitude_column": "lng" } } } } } } }
This tells the datasette-cluster-map
column which latitude and longitude columns should be used for a table called Street_Tree_List
inside a database file called sf-trees.db
.
Any values embedded in metadata.json
will be visible to anyone who views the /-/metadata
page of your Datasette instance. Some plugins may need configuration that should stay secret - API keys for example. There are two ways in which you can store secret configuration values.
As environment variables. If your secret lives in an environment variable that is available to the Datasette process, you can indicate that the configuration value should be read from that environment variable like so:
{ "plugins": { "datasette-auth-github": { "client_secret": { "$env": "GITHUB_CLIENT_SECRET" } } } }
As values in separate files. Your secrets can also live in files on disk. To specify a secret should be read from a file, provide the full file path like this:
{ "plugins": { "datasette-auth-github": { "client_secret": { "$file": "/secrets/client-secret" } } } }
If you are publishing your data using the :ref:`datasette publish <cli_publish>` family of commands, you can use the --plugin-secret
option to set these secrets at publish time. For example, using Heroku you might run the following command:
$ datasette publish heroku my_database.db \ --name my-heroku-app-demo \ --install=datasette-auth-github \ --plugin-secret datasette-auth-github client_id your_client_id \ --plugin-secret datasette-auth-github client_secret your_client_secret
When you are writing plugins, you can access plugin configuration like this using the datasette.plugin_config()
method. If you know you need plugin configuration for a specific table, you can access it like this:
plugin_config = datasette.plugin_config( "datasette-cluster-map", database="sf-trees", table="Street_Tree_List" )
This will return the {"latitude_column": "lat", "longitude_column": "lng"}
in the above example.
If it cannot find the requested configuration at the table layer, it will fall back to the database layer and then the root layer. For example, a user may have set the plugin configuration option like so:
{ "databases: { "sf-trees": { "plugins": { "datasette-cluster-map": { "latitude_column": "xlat", "longitude_column": "xlng" } } } } }
In this case, the above code would return that configuration for ANY table within the sf-trees
database.
The plugin configuration could also be set at the top level of metadata.json
:
{ "title": "This is the top-level title in metadata.json", "plugins": { "datasette-cluster-map": { "latitude_column": "xlat", "longitude_column": "xlng" } } }
Now that datasette-cluster-map
plugin configuration will apply to every table in every database.
When you implement a plugin hook you can accept any or all of the parameters that are documented as being passed to that hook. For example, you can implement a render_cell
plugin hook like this even though the hook definition defines more parameters than just value
and column
:
@hookimpl
def render_cell(value, column):
if column == "stars":
return "*" * int(value)
The full list of available plugin hooks is as follows.
conn
- sqlite3 connection object- The connection that is being opened
database
- string- The name of the database
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
This hook is called when a new SQLite database connection is created. You can use it to register custom SQL functions, aggregates and collations. For example:
from datasette import hookimpl
import random
@hookimpl
def prepare_connection(conn):
conn.create_function('random_integer', 2, random.randint)
This registers a SQL function called random_integer
which takes two
arguments and can be called like this:
select random_integer(1, 10);
Examples: datasette-jellyfish, datasette-jq, datasette-haversine, datasette-rure
env
- jinja2 Environment- The template environment that is being prepared
This hook is called with the Jinja2 environment that is used to evaluate Datasette HTML templates. You can use it to do things like register custom template filters, for example:
from datasette import hookimpl
@hookimpl
def prepare_jinja2_environment(env):
env.filters['uppercase'] = lambda u: u.upper()
You can now use this filter in your custom templates like so:
Table name: {{ table|uppercase }}
template
- string- The template that is being rendered, e.g.
database.html
database
- string or None- The name of the database
table
- string or None- The name of the table
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
Return a list of extra CSS URLs that should be included on the page. These can take advantage of the CSS class hooks described in :ref:`customization`.
This can be a list of URLs:
from datasette import hookimpl
@hookimpl
def extra_css_urls():
return [
'https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css'
]
Or a list of dictionaries defining both a URL and an SRI hash:
from datasette import hookimpl
@hookimpl
def extra_css_urls():
return [{
'url': 'https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css',
'sri': 'sha384-9gVQ4dYFwwWSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiu1FwO5qRGvFXOdJZ4',
}]
Examples: datasette-cluster-map, datasette-vega
Same arguments as extra_css_urls
.
This works in the same way as extra_css_urls()
but for JavaScript. You can
return either a list of URLs or a list of dictionaries:
from datasette import hookimpl
@hookimpl
def extra_js_urls():
return [{
'url': 'https://code.jquery.com/jquery-3.3.1.slim.min.js',
'sri': 'sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo',
}]
You can also return URLs to files from your plugin's static/
directory, if
you have one:
from datasette import hookimpl
@hookimpl
def extra_js_urls():
return [
'/-/static-plugins/your-plugin/app.js'
]
Examples: datasette-cluster-map, datasette-vega
publish
- Click publish command group- The Click command group for the
datasette publish
subcommand
This hook allows you to create new providers for the datasette publish
command. Datasette uses this hook internally to implement the default now
and heroku
subcommands, so you can read
their source
to see examples of this hook in action.
Let's say you want to build a plugin that adds a datasette publish my_hosting_provider --api_key=xxx mydatabase.db
publish command. Your implementation would start like this:
from datasette import hookimpl
from datasette.publish.common import add_common_publish_arguments_and_options
import click
@hookimpl
def publish_subcommand(publish):
@publish.command()
@add_common_publish_arguments_and_options
@click.option(
"-k",
"--api_key",
help="API key for talking to my hosting provider",
)
def my_hosting_provider(
files,
metadata,
extra_options,
branch,
template_dir,
plugins_dir,
static,
install,
plugin_secret,
version_note,
title,
license,
license_url,
source,
source_url,
about,
about_url,
api_key,
):
# Your implementation goes here
Examples: datasette-publish-fly, datasette-publish-now
Lets you customize the display of values within table cells in the HTML table view.
value
- string, integer or None- The value that was loaded from the database
column
- string- The name of the column being rendered
table
- string or None- The name of the table - or
None
if this is a custom SQL query database
- string- The name of the database
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
If your hook returns None
, it will be ignored. Use this to indicate that your hook is not able to custom render this particular value.
If the hook returns a string, that string will be rendered in the table cell.
If you want to return HTML markup you can do so by returning a jinja2.Markup
object.
Datasette will loop through all available render_cell
hooks and display the value returned by the first one that does not return None
.
Here is an example of a custom render_cell()
plugin which looks for values that are a JSON string matching the following format:
{"href": "https://www.example.com/", "label": "Name"}
If the value matches that pattern, the plugin returns an HTML link element:
from datasette import hookimpl
import jinja2
import json
@hookimpl
def render_cell(value):
# Render {"href": "...", "label": "..."} as link
if not isinstance(value, str):
return None
stripped = value.strip()
if not stripped.startswith("{") and stripped.endswith("}"):
return None
try:
data = json.loads(value)
except ValueError:
return None
if not isinstance(data, dict):
return None
if set(data.keys()) != {"href", "label"}:
return None
href = data["href"]
if not (
href.startswith("/") or href.startswith("http://")
or href.startswith("https://")
):
return None
return jinja2.Markup('<a href="{href}">{label}</a>'.format(
href=jinja2.escape(data["href"]),
label=jinja2.escape(data["label"] or "") or " "
))
Examples: datasette-render-binary, datasette-render-markdown
Extra JavaScript to be added to a <script>
block at the end of the <body>
element on the page.
template
- string- The template that is being rendered, e.g.
database.html
database
- string or None- The name of the database, or
None
if the page does not correspond to a database (e.g. the root page) table
- string or None- The name of the table, or
None
if the page does not correct to a table view_name
- string- The name of the view being displayed. (index, database, table, and row are the most important ones.)
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
The template
, database
and table
options can be used to return different code depending on which template is being rendered and which database or table are being processed.
The datasette
instance is provided primarily so that you can consult any plugin configuration options that may have been set, using the datasette.plugin_config(plugin_name)
method documented above.
The string that you return from this function will be treated as "safe" for inclusion in a <script>
block directly in the page, so it is up to you to apply any necessary escaping.
Example: datasette-cluster-map
Extra template variables that should be made available in the rendered template context.
template
- string- The template that is being rendered, e.g.
database.html
database
- string or None- The name of the database, or
None
if the page does not correspond to a database (e.g. the root page) table
- string or None- The name of the table, or
None
if the page does not correct to a table view_name
- string- The name of the view being displayed. (index, database, table, and row are the most important ones.)
request
- object- The current HTTP :ref:`internals_request`.
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
This hook can return one of three different types:
- Dictionary
- If you return a dictionary its keys and values will be merged into the template context.
- Function that returns a dictionary
- If you return a function it will be executed. If it returns a dictionary those values will will be merged into the template context.
- Function that returns an awaitable function that returns a dictionary
- You can also return a function which returns an awaitable function which returns a dictionary.
Datasette runs Jinja2 in async mode, which means you can add awaitable functions to the template scope and they will be automatically awaited when they are rendered by the template.
Here's an example plugin that returns an authentication object from the ASGI scope:
@hookimpl
def extra_template_vars(request):
return {
"auth": request.scope.get("auth")
}
This example returns an awaitable function which adds a list of hidden_table_names
to the context:
@hookimpl
def extra_template_vars(datasette, database):
async def hidden_table_names():
if database:
db = datasette.databases[database]
return {"hidden_table_names": await db.hidden_table_names()}
else:
return {}
return hidden_table_names
And here's an example which adds a sql_first(sql_query)
function which executes a SQL statement and returns the first column of the first row of results:
@hookimpl
def extra_template_vars(datasette, database):
async def sql_first(sql, dbname=None):
dbname = dbname or database or next(iter(datasette.databases.keys()))
return (await datasette.execute(dbname, sql)).rows[0][0]
return {"sql_first": sql_first}
You can then use the new function in a template like so:
SQLite version: {{ sql_first("select sqlite_version()") }}
Examples: datasette-search-all, datasette-template-sql
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
Registers a new output renderer, to output data in a custom format. The hook function should return a dictionary, or a list of dictionaries, of the following shape:
@hookimpl
def register_output_renderer(datasette):
return {
"extension": "test",
"render": render_demo,
"can_render": can_render_demo, # Optional
}
This will register render_demo
to be called when paths with the extension .test
(for example /database.test
, /database/table.test
, or /database/table/row.test
) are requested.
render_demo
is a Python function. It can be a regular function or an async def render_demo()
awaitable function, depending on if it needs to make any asynchronous calls.
can_render_demo
is a Python function (or async def
function) which acepts the same arguments as render_demo
but just returns True
or False
. It lets Datasette know if the current SQL query can be represented by the plugin - and hence influnce if a link to this output format is displayed in the user interface. If you omit the "can_render"
key from the dictionary every query will be treated as being supported by the plugin.
When a request is received, the "render"
callback function is called with zero or more of the following arguments. Datasette will inspect your callback function and pass arguments that match its function signature.
datasette
- :ref:`internals_datasette`- For accessing plugin configuration and executing queries.
columns
- list of strings- The names of the columns returned by this query.
rows
- list ofsqlite3.Row
objects- The rows returned by the query.
sql
- string- The SQL query that was executed.
query_name
- string or None- If this was the execution of a :ref:`canned query <canned_queries>`, the name of that query.
database
- string- The name of the database.
table
- string or None- The table or view, if one is being rendered.
request
- :ref:`internals_request`- The incoming HTTP request.
view_name
- string- The name of the current view being called.
index
,database
,table
, androw
are the most important ones.
The callback function can return None
, if it is unable to render the data, or a dictionary with the following keys:
body
- string or bytes, optional- The response body, default empty
content_type
- string, optional- The Content-Type header, default
text/plain
status_code
- integer, optional- The HTTP status code, default 200
headers
- dictionary, optional- Extra HTTP headers to be returned in the response.
A simple example of an output renderer callback function:
def render_demo():
return {
"body": "Hello World"
}
Here is a more complex example:
async def render_demo(datasette, columns, rows):
db = datasette.get_database()
result = await db.execute("select sqlite_version()")
first_row = " | ".join(columns)
lines = [first_row]
lines.append("=" * len(first_row))
for row in rows:
lines.append(" | ".join(row))
return {
"body": "\n".join(lines),
"content_type": "text/plain; charset=utf-8",
"headers": {"x-sqlite-version": result.first()[0]},
}
And here is an example can_render
function which returns True
only if the query results contain the columns atom_id
, atom_title
and atom_updated
:
def can_render_demo(columns):
return {"atom_id", "atom_title", "atom_updated"}.issubset(columns)
Examples: datasette-atom, datasette-ics
Return a list of additional Facet subclasses to be registered.
Each Facet subclass implements a new type of facet operation. The class should look like this:
class SpecialFacet(Facet):
# This key must be unique across all facet classes:
type = "special"
async def suggest(self):
# Use self.sql and self.params to suggest some facets
suggested_facets = []
suggested_facets.append({
"name": column, # Or other unique name
# Construct the URL that will enable this facet:
"toggle_url": self.ds.absolute_url(
self.request, path_with_added_args(
self.request, {"_facet": column}
)
),
})
return suggested_facets
async def facet_results(self):
# This should execute the facet operation and return results, again
# using self.sql and self.params as the starting point
facet_results = {}
facets_timed_out = []
# Do some calculations here...
for column in columns_selected_for_facet:
try:
facet_results_values = []
# More calculations...
facet_results_values.append({
"value": value,
"label": label,
"count": count,
"toggle_url": self.ds.absolute_url(self.request, toggle_path),
"selected": selected,
})
facet_results[column] = {
"name": column,
"results": facet_results_values,
"truncated": len(facet_rows_results) > facet_size,
}
except QueryInterrupted:
facets_timed_out.append(column)
return facet_results, facets_timed_out
See datasette/facets.py for examples of how these classes can work.
The plugin hook can then be used to register the new facet class like this:
@hookimpl
def register_facet_classes():
return [SpecialFacet]
Return an ASGI middleware wrapper function that will be applied to the Datasette ASGI application.
This is a very powerful hook. You can use it to manipulate the entire Datasette response, or even to configure new URL routes that will be handled by your own custom code.
You can write your ASGI code directly against the low-level specification, or you can use the middleware utilites provided by an ASGI framework such as Starlette.
This example plugin adds a x-databases
HTTP header listing the currently attached databases:
from datasette import hookimpl
from functools import wraps
@hookimpl
def asgi_wrapper(datasette):
def wrap_with_databases_header(app):
@wraps(app)
async def add_x_databases_header(scope, recieve, send):
async def wrapped_send(event):
if event["type"] == "http.response.start":
original_headers = event.get("headers") or []
event = {
"type": event["type"],
"status": event["status"],
"headers": original_headers + [
[b"x-databases",
", ".join(datasette.databases.keys()).encode("utf-8")]
],
}
await send(event)
await app(scope, recieve, wrapped_send)
return add_x_databases_header
return wrap_with_databases_header
Examples: datasette-auth-github, datasette-search-all, datasette-media
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
, or to execute SQL queries. request
- object- The current HTTP :ref:`internals_request`.
This is part of Datasette's authentication and permissions system. The function should attempt to authenticate an actor (either a user or an API actor of some sort) based on information in the request.
If it cannot authenticate an actor, it should return None
. Otherwise it should return a dictionary representing that actor.
datasette
- :ref:`internals_datasette`- You can use this to access plugin configuration options via
datasette.plugin_config(your_plugin_name)
, or to execute SQL queries. actor
- dictionary- The current actor, as decided by :ref:`plugin_actor_from_request`.
action
- string- The action to be performed, e.g.
"edit-table"
. resource_type
- string- The type of resource being acted on, e.g.
"table"
. resource
- string- An identifier for the individual resource, e.g. the name of the table.
Called to check that an actor has permission to perform an action on a resource. Can return True
if the action is allowed, False
if the action is not allowed or None
if the plugin does not have an opinion one way or the other.