-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathrnn_spn.py
334 lines (273 loc) · 10.4 KB
/
rnn_spn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""
File to reproduce the results for RNN-SPN
"""
from __future__ import division
import numpy as np
import theano.tensor as T
import theano
theano.config.floatX = 'float32'
import lasagne
from repeatlayer import Repeat
from confusionmatrix import ConfusionMatrix
import os
import uuid
import logging
import argparse
np.random.seed(1234)
parser = argparse.ArgumentParser()
parser.add_argument("-lr", type=str, default="0.0005")
parser.add_argument("-decayinterval", type=int, default=10)
parser.add_argument("-decayfac", type=float, default=1.5)
parser.add_argument("-nodecay", type=int, default=30)
parser.add_argument("-optimizer", type=str, default='rmsprop')
parser.add_argument("-dropout", type=float, default=0.0)
parser.add_argument("-downsample", type=float, default=3.0)
args = parser.parse_args()
output_folder = "logs/RNN_SPN" + str(uuid.uuid4())[:18].replace('-', '_')
if not os.path.exists(output_folder):
os.makedirs(output_folder)
logger = logging.getLogger('')
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(os.path.join(output_folder, "results.log"), mode='w')
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(message)s')
ch.setFormatter(formatter)
fh.setFormatter(formatter)
logger.addHandler(ch)
logger.addHandler(fh)
logger.info('#'*80)
for name, val in sorted(vars(args).items()):
sep = " "*(35 - len(name))
logger.info("#{}{}{}".format(name, sep, val))
logger.info('#'*80)
np.random.seed(123)
TOL = 1e-5
num_batch = 100
dim = 100
num_rnn_units = 256
num_classes = 10
NUM_EPOCH = 300
LR = float(args.lr)
MONITOR = False
MAX_NORM = 5.0
LOOK_AHEAD = 50
org_drp = args.dropout
sh_drp = theano.shared(lasagne.utils.floatX(args.dropout))
M = T.matrix()
W_ini = lasagne.init.GlorotUniform()
W_ini_gru = lasagne.init.GlorotUniform()
W_proc_ini = lasagne.init.GlorotUniform()
W_class_init = lasagne.init.GlorotUniform()
from sys import platform as _platform
if _platform == "linux" or _platform == "linux2":
mnist_sequence = "mnist_sequence3_sample_8distortions_9x9.npz"
from lasagne.layers import dnn
conv = dnn.Conv2DDNNLayer
pool = lasagne.layers.MaxPool2DLayer
elif _platform == "darwin":
mnist_sequence = "mnist_sequence3_sample_8distortions_9x9.npz"
conv = lasagne.layers.Conv2DLayer
pool = lasagne.layers.MaxPool2DLayer
print conv
print "Filename:", mnist_sequence
data = np.load(mnist_sequence)
x_train, y_train = data['X_train'].reshape((-1, dim, dim)), data['y_train']
x_valid, y_valid = data['X_valid'].reshape((-1, dim, dim)), data['y_valid']
x_test, y_test = data['X_test'].reshape((-1, dim, dim)), data['y_test']
Xt = x_train[:num_batch]
batches_train = x_train.shape[0] // num_batch
batches_valid = x_valid.shape[0] // num_batch
num_steps = y_train.shape[1]
sym_x = T.tensor3()
sym_y = T.imatrix()
# setup network
l_in = lasagne.layers.InputLayer((None, dim, dim))
l_dim = lasagne.layers.DimshuffleLayer(l_in, (0, 'x', 1, 2))
l_pool0_loc = pool(l_dim, pool_size=(2, 2))
l_conv0_loc = conv(l_pool0_loc, num_filters=20, filter_size=(3, 3),
name='l_conv0_loc', W=W_ini)
l_pool1_loc = pool(l_conv0_loc, pool_size=(2, 2))
l_conv1_loc = conv(l_pool1_loc, num_filters=20, filter_size=(3, 3),
name='l_conv1_loc', W=W_ini)
l_conv1_loc = lasagne.layers.DropoutLayer(l_conv1_loc, p=sh_drp)
l_pool2_loc = pool(l_conv1_loc, pool_size=(2, 2))
l_conv2_loc = conv(l_pool2_loc, num_filters=20, filter_size=(3, 3),
name='l_conv2_loc', W=W_ini)
l_repeat_loc = Repeat(l_conv2_loc, n=num_steps)
l_gru = lasagne.layers.GRULayer(l_repeat_loc, num_units=num_rnn_units,
unroll_scan=True)
l_shp = lasagne.layers.ReshapeLayer(l_gru, (-1, num_rnn_units)) # (96, 256)
b = np.zeros((2, 3), dtype='float32')
b[0, 0] = 1
b[1, 1] = 1
# From gru hid to A
l_A_net = lasagne.layers.DenseLayer(
l_shp,
num_units=6,
name='A_net',
b=b.flatten(),
W=lasagne.init.Constant(0.0),
nonlinearity=lasagne.nonlinearities.identity)
l_conv_to_transform = lasagne.layers.ReshapeLayer(
Repeat(l_dim, n=num_steps), [-1] + list(l_dim.output_shape[-3:]))
l_transform = lasagne.layers.TransformerLayer(
incoming=l_conv_to_transform,
localization_network=l_A_net,
downsample_factor=args.downsample)
l_conv0_out = conv(l_transform, num_filters=32, filter_size=(3, 3),
name='l_conv0_out', W=W_ini)
l_pool1_out = pool(l_conv0_out, pool_size=(2, 2))
l_drp1_out = lasagne.layers.DropoutLayer(l_pool1_out, p=sh_drp)
l_conv1_out = conv(l_drp1_out, num_filters=32, filter_size=(3, 3),
name='l_conv1_out', W=W_ini)
l_pool2_out = pool(l_conv1_out, pool_size=(2, 2))
l_drp2_out = lasagne.layers.DropoutLayer(l_pool2_out, p=sh_drp)
l_conv2_out = conv(l_drp2_out, num_filters=32, filter_size=(3, 3),
name='l_conv2_out', W=W_ini)
#print l_pool0_out.output_shape
print l_conv0_out.output_shape
print l_conv1_out.output_shape
print l_pool1_out.output_shape
print l_pool2_out.output_shape
print l_conv2_out.output_shape
#print lasagne.layers.get_output(l_conv3_out, sym_x).eval({sym_x: Xt}).shape
#assert False
l_class1 = lasagne.layers.DenseLayer(
l_conv2_out, num_units=400,
W=W_class_init,
name='class1')
l_lin_out = lasagne.layers.DenseLayer(
l_class1, num_units=num_classes,
W=W_class_init,
name='class2',
nonlinearity=lasagne.nonlinearities.softmax)
l_out = l_lin_out
output_train = lasagne.layers.get_output(
l_out, sym_x, deterministic=False)
output_eval, l_A_eval = lasagne.layers.get_output(
[l_out, l_A_net], sym_x, deterministic=True)
# cost
output_flat = T.reshape(output_train, (-1, num_classes))
cost = T.nnet.categorical_crossentropy(output_flat+TOL, sym_y.flatten())
cost = T.mean(cost)
all_params = lasagne.layers.get_all_params(l_out, trainable=True)
trainable_params = lasagne.layers.get_all_params(l_out, trainable=True)
for p in trainable_params:
print p.name
all_grads = T.grad(cost, trainable_params)
all_grads = [T.clip(g, -1, 1) for g in all_grads]
sh_lr = theano.shared(lasagne.utils.floatX(LR))
# adam works with lr 0.001
updates, norm = lasagne.updates.total_norm_constraint(
all_grads, max_norm=MAX_NORM, return_norm=True)
if args.optimizer == 'rmsprop':
updates = lasagne.updates.rmsprop(updates, trainable_params,
learning_rate=sh_lr)
elif args.optimizer == 'adam':
updates = lasagne.updates.adam(updates, trainable_params,
learning_rate=sh_lr)
if MONITOR:
add_output = all_grads + updates.values()
f_train = theano.function([sym_x, sym_y], [cost, output_train, norm
] + add_output,
updates=updates)
else:
f_train = theano.function([sym_x, sym_y], [cost, output_train, norm],
updates=updates)
f_eval = theano.function([sym_x],
[output_eval, l_A_eval.reshape((-1, num_steps, 6))])
best_valid = 0
look_count = LOOK_AHEAD
cost_train_lst = []
last_decay = 0
for epoch in range(NUM_EPOCH):
# eval train
shuffle = np.random.permutation(x_train.shape[0])
if epoch < 5:
sh_drp.set_value(lasagne.utils.floatX((epoch)*org_drp/5.0))
else:
sh_drp.set_value(lasagne.utils.floatX(org_drp))
for i in range(batches_train):
idx = shuffle[i*num_batch:(i+1)*num_batch]
x_batch = x_train[idx]
y_batch = y_train[idx]
train_out = f_train(x_batch, y_batch)
cost_train, _, train_norm = train_out[:3]
if MONITOR:
print str(i) + "-"*44 + "GRAD NORM \t UPDATE NORM \t PARAM NORM"
all_mon = train_out[3:]
grd_mon = train_out[:len(all_grads)]
upd_mon = train_out[len(all_grads):]
for pm, gm, um in zip(trainable_params, grd_mon, upd_mon):
if '.b' not in pm.name:
pad = (40-len(pm.name))*" "
print "%s \t %.5e \t %.5e \t %.5e" % (
pm.name + pad,
np.linalg.norm(gm),
np.linalg.norm(um),
np.linalg.norm(pm.get_value())
)
cost_train_lst += [cost_train]
conf_train = ConfusionMatrix(num_classes)
for i in range(x_train.shape[0] // 1000):
probs_train, _ = f_eval(x_train[i*1000:(i+1)*1000])
preds_train_flat = probs_train.reshape((-1, num_classes)).argmax(-1)
conf_train.batch_add(
y_train[i*1000:(i+1)*1000].flatten(),
preds_train_flat
)
if last_decay > args.decayinterval and epoch > args.nodecay:
last_decay = 0
old_lr = sh_lr.get_value(sh_lr)
new_lr = old_lr / args.decayfac
sh_lr.set_value(lasagne.utils.floatX(new_lr))
print "Decay lr from %f to %f" % (float(old_lr), float(new_lr))
else:
last_decay += 1
# valid
conf_valid = ConfusionMatrix(num_classes)
for i in range(batches_valid):
x_batch = x_valid[i*num_batch:(i+1)*num_batch]
y_batch = y_valid[i*num_batch:(i+1)*num_batch]
probs_valid, _ = f_eval(x_batch)
preds_valid_flat = probs_valid.reshape((-1, num_classes)).argmax(-1)
conf_valid.batch_add(
y_batch.flatten(),
preds_valid_flat
)
# test
conf_test = ConfusionMatrix(num_classes)
batches_test = x_test.shape[0] // num_batch
all_y, all_preds = [], []
for i in range(batches_test):
x_batch = x_test[i*num_batch:(i+1)*num_batch]
y_batch = y_test[i*num_batch:(i+1)*num_batch]
probs_test, A_test = f_eval(x_batch)
preds_test_flat = probs_test.reshape((-1, num_classes)).argmax(-1)
conf_test.batch_add(
y_batch.flatten(),
preds_test_flat
)
all_y += [y_batch]
all_preds += [probs_test.argmax(-1)]
logger.info(
"Epoch {} Acc Valid {}, Acc Train = {}, Acc Test = {}".format(
epoch,
conf_valid.accuracy(),
conf_train.accuracy(),
conf_test.accuracy())
)
np.savez(os.path.join(output_folder, "res_test"),
probs=probs_test, preds=probs_test.argmax(-1),
x=x_batch, y=y_batch, A=A_test,
all_y=np.vstack(all_y),
all_preds=np.vstack(all_preds))
if conf_valid.accuracy() > best_valid:
best_valid = conf_valid.accuracy()
look_count = LOOK_AHEAD
else:
look_count -= 1
if look_count <= 0:
break