-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
4098 lines (3256 loc) · 134 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt]{report}
\usepackage[left=2cm,right=2.6cm,top=2.6cm,bottom=3cm,a4paper]{geometry}
\renewcommand{\baselinestretch}{1.3}
\usepackage[utf8]{inputenc}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{extramarks}
\usepackage[inline]{enumitem}
\usepackage{linegoal}
\usepackage{amsmath,amssymb,latexsym,amsfonts, amsthm}
%\usepackage{verbatim}
\usepackage{xcolor}
%\usepackage{listings}
\usepackage{comment}
\usepackage{mathtools}
% \usepackage{kotex}
%\usepackage[math]{iwona}
\usepackage[tracking]{microtype}
\usepackage[sc,osf]{mathpazo}
%\usepackage{kpfonts}
\usepackage[all]{xy}
%\setlist[itemize]{label=\tiny\textbullet}
\renewcommand\labelitemi{$\vcenter{\hbox{\tiny$\bullet$}}$}
% Modify Chapter Headings
% Options: Sonny, Lenny, Glenn, Conny, Rejne, Bjarne, Bjornstrup
% \usepackage[Lenny]{fncychap}
% Modify Section Style
\usepackage[explicit]{titlesec}
\usepackage{soul}
%\definecolor{titleblue}{HTML}{4a7aa4}
\newbox\TitleUnderlineTestBox
\newcommand*\TitleUnderline[1]
{%
\bgroup
\setbox\TitleUnderlineTestBox\hbox{\colorbox{black}\strut}%
\setul{\dimexpr\dp\TitleUnderlineTestBox-.3ex\relax}{.3ex}%
\ul{#1}%
\egroup
}
\newcommand*\SectionNumberBox[1]
{%
\colorbox{black}
{%
\makebox[1.5em][c]
{%
\vspace{7mm}
\color{white}%
\strut
\csname the#1\endcsname
}
}%
\TitleUnderline{\ \ \ }%
}
\titleformat{\section}
{\Large\bfseries\sffamily\color{black}}
{\SectionNumberBox{section}}
{0pt}
{\TitleUnderline{#1}}
\usepackage{tikz}
\usepackage{tikz-cd}
\usetikzlibrary{arrows}
\usetikzlibrary{matrix}
% tableofcontents with clickable
\usepackage{color}
\usepackage{hyperref}
\hypersetup{
colorlinks=true, % make the links colored
linkcolor=blue, % color TOC links in blue
urlcolor=red, % color URLs in red
linktoc=all % 'all' will create links for everything in the TOC
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% New command
\newcommand{\R}{\mathbb{R}}
\renewcommand{\P}{\mathbb{P}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\G}{\mathcal{G}}
\newcommand{\E}{\mathbb{E}}
\renewcommand{\1}{\mathbb{1}}
\renewcommand{\O}{\Omega}
%\newcommand{\RP}{\mathbb{RP}}
%\newcommand{\Z}{\mathbb{Z}}
\renewcommand{\r}{\rightarrow}
%\newcommand{\g}{\gamma}
%\newcommand{\E}{\mathcal{E}}
%\renewcommand{\S}{\mathcal{S}}
%\newcommand{\T}{\mathcal{T}}
%\newcommand{\M}{\mathfrak{M}}
%\newcommand{\inft}{\int_{-\infty}`^\infty}
%\newcommand{\rk}{\text{rank }}
\renewcommand{\subset}{\subseteq}
\renewcommand{\supset}{\supseteq}
\newcommand{\ri}{\Rightarrow}
\newcommand{\bigslant}[2]{{\raisebox{.1em}{$#1$}\left/\raisebox{-.1em}{$#2$}\right.}}
\newcommand{\RNum}[1]{\uppercase\expandafter{\romannumeral #1\relax}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Theorem 지정해주는 곳
\newtheoremstyle{break}
{\topsep}{\topsep}%
{\itshape}{}%
{\bfseries}{}%
{\newline}{}%
\theoremstyle{break}
\newtheorem{thm}{Theorem}[section] % reset theorem numbering for each chapter
\newtheoremstyle{newdef}% name
{}% Space above, empty = `usual value'
{}% Space below
{}% Body font
{}% Indent amount (empty = no indent, \parindent = para indent)
{\bfseries}%Thm head font
{}% Punctuation after thm head
{\newline}% Space after thm head: \newline = linebreak
{}% Thm head spec
\theoremstyle{newdef}
\newtheorem{defn}[thm]{Definition} % definition numbers are dependent on theorem numbers
\newtheorem{pro}[thm]{Proposition}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{remark}
\newtheorem*{exmp}{Example} % no numbering example
\newtheorem*{lem}{Lemma}
\newtheorem*{rem}{Remark} % no numbering remark
\usepackage[toc]{appendix}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\begin{titlepage}
\centering
{\scshape\LARGE Seoul National University \par}
\vspace{1cm}
{\scshape\Large Lecture Note\par}
\vspace{5.5cm}
{\huge\bfseries Introduction to Stochastic \\Differential Equations\par}
\vspace{1.5cm}
\large Lecture by Seo Insuk \\
Notes taken by Lee Youngjae
\vfill
\vspace{1cm}\par
{\large \today\par}
\end{titlepage}
\setlength{\parindent}{0cm}
\tableofcontents
\setcounter{chapter}{-1}
\chapter{Introduction}
E-mail: \textit{[email protected], 27-212}\\
Office Hour: Tuesday 15:00 - 16:00
Grading
\begin{itemize}
\item Mid-terms 1 (15\%, 10/10 or 17)
\item Mid-terms 2 (15\%, 11/7)
\item Fianl-term (40\%)
\item Assignment (20\%, 8-10 times)
\item Attendance (10\%, absent: -2\%, late: -1\%)
\end{itemize}
Let $X$ be a standard normal random variable in $\R$.
i.e., $\mathbb{P}[X \in [a,b]] = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2}dx$.
(Central Limit Theorem) If $x_1, x_2, \cdots, x_n \in X, E(x_i) = m, Var(x_i) = \sigma^2$, then
$$
\frac{\frac{x_1-m}{\sigma}+\frac{x_2-m}{\sigma}+\cdots+\frac{x_n-m}{\sigma}}{\sqrt n} \rightarrow X
$$
In this class, we study dynamic version of this theorem.
If $(W_t)_{t\geq 0}$ be a fluctuation, then $(W_t)_{t\geq 0}$ be a random variable in $C[0,T]$
\begin{exmp}
$\frac{dX_t}{dt} = rX_t; dX_1 = rX_tdt$. Then, $X_t = X_0 e^{rt}$ (unrisky assets, bank)\\
$dX_t = rX_tdt + \sigma X_tdW_t$, $\sigma:$ volatility (risky assets, stock)
\end{exmp}
We will study:
\begin{enumerate}
\item Probability Space
\item Random Variable
\item Expectation
\end{enumerate}
Textbooks:
\begin{enumerate}
\item Stochastic Calculus for Finance \RNum{2} (Shreve), covering chapter 1-3 or 4
\item Introduction to Stochastic Integration (Hui-Hsiung Kuo)
\end{enumerate}
\part{Stochastic calculus for finance}
\chapter{General Probability Theory}
\section{Infinite Probability Spaces}
There are three elements consisting probability space:
\begin{itemize}
\item $S$: Sample space
\item $\mathcal{E}$: Family of events $\mathcal{E} \subset 2^S$ ($\sigma$-algebra in measure theory)
\item $\mathbb{P}$: probability $\Rightarrow \mathbb{P}(E)$ is defined for all $E \in \mathcal{E}$ ($\mu$ with $\mu(S)=1$)
\end{itemize}
\begin{exmp}
\begin{minipage}[t]{\linegoal}
\begin{enumerate}
\item Toss a coin twice (H for Head, T for Tail)\\
Then, $S = \{HH, HT, TT, TT\}$
\item Uniform random variable in $[0,1]^3$\\
Then, $S = [0,1]^3$.
If $E = [0,\frac{1}{2}]^3$, then $\mathbb{P}(E) = Vol(E) = \frac{1}{8}$\\
\end{enumerate}
\end{minipage}
How to define $\mathcal{E}$?\\
In example 2, let $\mathcal{E} = $ family of all subsets of $[0,1]^3$ naively.
But Banach-Tarski Paradox says there are disjoint sets $E,F$ with $\mathbb{P}(E\cup F) \neq \mathbb{P}(E) + \mathbb{P}(F)$ in this $\mathcal{E}$.
Therefore we cannot naively set $\mathcal{E}$ (Use measure theory)\\
In example 1, suppose that we cannot see the second flip.
If $\{HH\} \not\in \mathcal{E}$ and $\{HT, HH\}\in\mathcal{E}$, then $\mathcal{E} = \{\phi, \{HH,HT\}, \{TH,TT\}, \{HH,HT,TH,TT\}\}$
\end{exmp}
\begin{defn}[Measure]
Let $\Omega$ be a non-empty set and $\mathcal{F}$ be family of subsets of $\Omega$ with
\begin{enumerate}
\item $\phi \in \mathcal{F}$
\item $A \in \mathcal{F} \Rightarrow A^C \in \mathcal{F}$
\item $A_1, A_2, \cdots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^\infty A_i \in \mathcal{F}$.
\end{enumerate}
We say $\mathcal{F}$ as \textbf{$\sigma$-algebra} or \textbf{$\sigma$-field}, $A \in \mathcal{F}$ as \textbf{measurable}, and $\Omega$ as \textbf{measurable space}.
\end{defn}
\textit{Exercises.}
\leavevmode
\begin{enumerate}[label = \arabic*)]
\item $\Omega \in \mathcal{F}$
\item $A_1, A_2, \cdots \in \mathcal{F}$, then $A_1\cap A_2 \cdots \in \mathcal{F}$
\item $A_1, A_2, \cdots \in A_n \in \mathcal{F}$, then $A_1 \cup \cdots \cup A_n, A_1 \cap \cdots \cap A_n \in \mathcal{F}$.
\item $A, B \in \mathcal{F}$, then $A-B \in \mathcal{F}$
\end{enumerate}
\begin{defn}[Topological Space]
(See Rudin: \textit{Real and Complex Analysis, Chapter 1.})
Let $\Theta$ be non-empty set and $\tau$ be family of subsets of $\Theta$ with
\begin{enumerate}
\item $\phi, \Theta \in \tau$
\item $V_1, \cdots V_n \in \tau \Rightarrow V_1 \cap \cdots \cap V_n \in \tau$
\item $V_\alpha \in \tau \enspace \forall \alpha \in I \Rightarrow \bigcup_{\alpha\in I}V_\alpha \in \tau$.
\end{enumerate}
We say $V\in\tau$ be an \textbf{open set}, and $(\Theta,\tau)$ be a \textbf{topological space}.
\end{defn}
\begin{defn}[Measurable Function]
$f : (\Omega, \mathcal{F}) \rightarrow (\Theta, \tau)$ is \textbf{measurable} if
$f^{-1}(V) \in \mathcal{F} \enspace \forall V \in \tau$
\end{defn}
\begin{defn}[Positive Measure]
Let $\Omega$ be non-empty set and $\mathcal{F}$ be $\sigma$-algebra.
Then $\mu: \mathcal{F} \rightarrow [0,\infty]$ is called \textbf{measurable} if
\begin{enumerate}
\item $A_1, A_2, \cdots$: disjoint members of $\mathcal{F} \Rightarrow \mu(A_1\cup A_2\cup \cdots) = \sum_{i=1}^\infty \mu(A_i)$
\item $\mu(A) < \infty$ for some $A \in \mathcal{F}$,
\end{enumerate}
and $(\Omega, \mathcal{F}, \mu)$ is called a \textbf{measure space}.
\end{defn}
\begin{defn}[probability space, random variable]
\leavevmode
\vspace{-6mm}
\begin{enumerate}
\item $(\Omega, \mathcal{F}, \mathbb{P})$ is called a \textbf{probability space} if $\mathbb{P}(\Omega) = 1$.
\item $X$ is called a \textbf{random variable} if it is a function from $(\Omega, \mathcal{F}, \mathbb{P})$ to $\mathbb{R}$
\end{enumerate}
\end{defn}
% Note: Here the usage of the expression "be called as" is incorrect.
% See: https://www.quora.com/What-is-the-difference-between-called-and-called-as
\underline{Next Class}
\begin{itemize}
\item Borel sets on $\mathbb{R}$ or $\mathbb{R}^d$
\item Lebesgue Measure
\item Lebesgue Integral (Define Expectation of random variable)
\end{itemize}
\vspace{5mm}
Last class, we define a sample space $\Omega$, a $\sigma$-algebra $\mathcal{F}$, and a (positive) measure $\mu : \mathcal{F} \rightarrow [0,\infty]$.
\vspace{5mm}
\textit{Exercises.}
\begin{itemize}
\item $A_1 \subset A_2 \subset \cdots \Rightarrow \mu(\bigcup_{i=1}^\infty A_i) = \lim_{n\rightarrow\infty}\mu(A_n)$
\item $A_1 \supset A_2 \supset \cdots, \mu(A_1) < \infty \Rightarrow \mu(\bigcap_{i=1}^\infty A_i) = \lim_{n\rightarrow\infty}\mu(A_n)$
\end{itemize}
% These are called continuity from below and continuity from above, resp.
\begin{thm}[Rudin 1.10]
Let $\mathcal{F}_0$ be a collection of subset of $\Omega$.
Then, $\exists! \mathcal{F}^*$ minimal $\sigma$-algebra containing $\mathcal F_0$.
\begin{proof}
Let $\{\mathcal{F}_\alpha, \alpha \in I\}$ be a family of $\sigma$-algebra containing $\mathcal{F}_0$.
Then, $\mathcal{F}^* = \bigcap_{\alpha\in I} F_\alpha$ satisfies the three condition:
1) contain $\mathcal{F}_0$
2) $\sigma$-algebra
3) minimal (trivial, $\mathcal{F}^* \subset \mathcal{F}_\alpha)$
\end{proof}
\end{thm}
\begin{defn}[Borel measurable]
$\mathcal{B}$ is a \textbf{Borel $\sigma$-algebra} on the topological space $(\Theta,\tau)$ if
$\mathcal{B}$ is a minimal $\sigma$-algebra containing $\tau$, and $B$ is a \textbf{Borel measurable} if $B \in \mathcal{B}$.
\end{defn}
\begin{rem}[Completion of measure space, Rudin 1.15]
\leavevmode\\
Consider an extension $(\Omega, \mathcal{F}, \mu) \rightarrow (\Omega, \overline{\mathcal{F}}, \mu)$ where
\begin{enumerate}
\item $\overline{\mathcal{F}} = \{ A \cup N : A \in \mathcal{F}, N \subset A_0 \in \mathcal{F}, \mu(A_0) = 0 \}$
\item $\mu(A \cup N) = \mu(A)$
\end{enumerate}
Then, (Check!)
\begin{enumerate}
\item (well-definedness) $A_1 \cup N_1 = A_2 \cup N_2 \Rightarrow \mu(A_1) = \mu(A_2)$
\item $\mu: \overline{\mathcal{F}}$ is $\sigma$-algebra.
\item $\mu : \overline{\mathcal{F}} \rightarrow [0,\infty]$ is a measure
\end{enumerate}
\end{rem}
\begin{exmp}
\leavevmode
\begin{enumerate}[label = \arabic*)]
\item $\mathbb{R}$
$$
\xymatrix@R+0.25em@C+2em{
\ar @{} [dr] |{}
\mathcal{F}_0 = \tau \ar[r]^{1.10} & \mathcal{B} \ar[r]^{\text{completion}} & \overline{\mathcal{B}}\\
\mathcal{L} \ar[r]^{\text{Rudin CH 2}} & \mathcal{L} \ar[r]^{\text{completion}} \ar[r] & \mathcal{L}
}
$$
\item $C[0,T] = \Omega = \{f ; f : [0,T] \rightarrow \mathbb{R}, \text{continuous}\}$.\\
Define $\mathcal{F}_0 = \{\bigcup_{t_1,t_2,\cdots,t_k}(A_1,A_2,\cdots,A_k)
: 0 \leq t_1 < t_2 < \cdots < t_k \leq T; A_1, \cdots A_k \in \overline{\mathcal{B}}
\}$.
We call $\{f \in C[0,T]: f(t_1) \in A_1, f(t_2) \in A_2, \cdots, f(t_k) \in A_k\}$ as \textbf{cylindrical set}.
Consider
% 깔끔하게좀 바꾸자
$$
\begin{aligned}
\mathcal{F}_0 &\overset{1.10}{\longrightarrow} &\mathcal{B} &\overset{\text{completion}}{\longrightarrow} &\overline{\mathcal{B}}\\
\mathbb{P}_{\text{BM}} &\overset{\text{KET}}{\longrightarrow} &\mathbb{P}_{\text{BM}} &\overset{\text{completion}}{\longrightarrow} &\mathbb{P}^*_{\text{BM}}
\end{aligned}
$$
(KET refers Kolmogorov's Extension Thm)
\end{enumerate}
\end{exmp}
\section{Random Variables and Distributions}
\begin{defn}
$f : \Omega \rightarrow \mathbb{R}$ is measurable if $f^{-1}(V) \in \mathcal{F}$ for any open set $V \subset \mathbb{R}$.
\end{defn}
\begin{rem}
$\mathcal{B}(\mathbb{R})$ = Borel $\sigma$-algebra in $\mathbb{R}$.
\end{rem}
\begin{rem}
If $f$: measurable, then $f^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}(\mathbb{R})$.
\begin{proof}
Let $G = \{ A \subset \mathbb{R} : f^{-1}(A) \in \mathcal{F} \}$.
Then, $\tau \subset G$, $G: \sigma$-algebra (check!), hence $\mathcal{B}(\mathbb{R}) \subset G$.
\end{proof}
\end{rem}
\begin{defn}
\leavevmode
\vspace{-6mm}
\begin{itemize}
\item $(\Omega, \mathcal{F}, \mathbb{P})$ is a \textbf{probability space} if $(\mathbb{P}(\Omega) = 1$.
\item $X$ is a \textbf{random variable} if $X : \Omega \rightarrow \mathbb{R}$ is measurable.
\end{itemize}
\end{defn}
\begin{exmp}
\leavevmode
\begin{enumerate}
\item Toss a coin Twice.\\
$\Omega = \{HH,HT,TH,TT\}$,
$\mathcal{F} = 2^\Omega = \{$all subsets of $\Omega\}$,
$\mathbb{P}(A) = \frac{1}{4}|A|, \enspace A \in \mathcal{F}$.\\
Then, $X = $ the number of $H$'s is a random variable with $X(HH) = 2, X(HT)=X(TH)=1, X(TT)=1$.
\item Uniform random variable in $[0,1]$\\
$\Omega= [0,1]$,
$\mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subset [0,1]\}$,
$\mathbb{P}(B) = \mathcal{L}(B)$ ($\mathbb{P}([0,1]) = \mathcal{L}([0,1]) = 1$).\\
Then, $X : [0,1] \rightarrow \mathbb{R}$ with $X(x) = 1$ is a (uniform) random variable in $[0,1]$.
\end{enumerate}
\end{exmp}
\begin{rem}
$\mathcal{L}$: Lebesgue measure on $\mathbb{R}$. i.e.,$\mathcal{L}(a,b) = b-a$.
Then, $\mathcal{L}(\{a\}) = 0$\\
$(\because
\{a\} = \bigcap_{i=1}^\infty (a-\frac{1}{n}, a+\frac{1}{n})
\Rightarrow \mathcal{L}(\{a\}) = \lim_{n\rightarrow\infty} \mathcal{L}((a-\frac{1}{n}, a+\frac{1}{n})) = 0
)$\\
Similarly, $\mathcal{L}([a,b]) = \mathcal{L}([a,b)) = \mathcal{L}((a,b]) = b-a$,
$\mathcal{L}(\mathbb{Q}) = \sum_{q \in \mathbb{Q}}\mathcal{L}(\{q\}) = 0$.
\end{rem}
Return to uniform random variable,
$$\mathbb{P}[X \in (a,b)] = \mathbb{P}[\{x : X(x) \in (a,b)\}] = \mathbb{P}[(a,b)] = b-a.$$
\begin{defn}[Distribution measure on $X$]
$X$ is a random variable in $(\Omega, \mathcal{F}, \mathbb{P})$.
$\mu_X$ is a \textbf{distribution measure} on $X$ if $\mu_X$ is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that
$$
\mu_X(B) = \mathbb{P}[X \in B]
= \mathbb{P}[\{\omega : X(\omega) \in B\}]
= \mathbb{P}[X^{-1}(B)] \ \forall B \in \mathcal{B}(\mathbb{R})
$$
\end{defn}
\begin{defn}[Probability density function]
$f$ is a \textbf{probability density function} of $X$ if $\mu_X((a,b)) = \int_a^b f(x)dx$
\end{defn}
\begin{rem}
There is a measure with no pdf: Dirac measure
\end{rem}
\begin{rem}
Lebesgue-Radon-Nikodym decomposition implies that any measure can be decomposed as density part and singular part.
\end{rem}
\begin{exmp}[Standard Normal random variable]
\leavevmode\\
Let $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.
Define $F : (0,1) \rightarrow \mathbb{R}$ by $F(x) = N^{-1}(x)$ for $N(X) = \int_{-\infty}^x \phi(y)dy$.\\
Let $\Omega = (0,1), \mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subset (0,1)\}, \mathbb{P}(A) = \mathcal{L}(A) : A \in \mathcal{B}(\mathbb{R})$.\\
Then, $Y : \Omega \ni x \mapsto F(x) \in \mathbb{R}$ is a random variable with
$$
\begin{aligned}
\mathbb{P}[Y \in (a,b)]
&= \mathbb{P}[\{x : Y(x) \in (a,b)\}]\\
&= \mathbb{P}[\{x \in (N(a),N(b))\}]\\
&= N(b)-N(a) = \int_a^b \phi(x)dx,
\end{aligned}
$$
and a density function is $\phi$.
\end{exmp}
\vspace{5mm}
Previous Question: In the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variable $X : \Omega \rightarrow \mathbb{R}$, the random element or random realization $\omega \in \Omega$ is a element of events in sample space.
For example, $\omega = HHTTH$ is a random element in tossing a coin five times, and $X(\omega) = 3$. ($X(\omega)$ = \# of Heads)\\
In the previous example(Standard Normal random variable), define $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}(0,1), \mathbb{P})$, $\mathbb{P}((a,b)) = b-a$, $F(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}}e^{-y^2/2}dy$, $X : (0,1) \ni \omega \mapsto F^{-1}(\omega) \in \mathbb{R}$.
Then, $X$ is called a standard normal random variable.
\section{Expectations}
In the following, let $\Omega = (\Omega, \mathcal{F}, \mathbb{P})$.
Let $X : \Omega \rightarrow \mathbb{R}$.
Then the expection $\mathbb{E}(X)$ is a mean of $X(\omega)$ with respect to the randomness of $\omega$ (given by $\mathbb{P}$)
\begin{defn}[Lebesgue Integration]
$(\Omega, \mathcal{F}, \mu)$ is a measure space, and $f : \Omega \rightarrow \mathbb{R}$ is a measurable function.
\begin{enumerate}[label = (\arabic*)]
\item $f : \Omega \rightarrow [0,\infty)$\\
Let $0 = y_0 < y_1 < y_2 < \cdots \rightarrow \mathbb{R}$ be a partition of $[0,\infty)$,\\
$\Pi = \{y_0, y_1, y_2, \cdots\}$ : $\|\Pi\| = \sup_{i\geq 1}|y_i-y_{i-1}|$, and\\
$\text{LS}_\pi = \sum_{i=0}^\infty y_i \mu[f^{-1}([y_i,y_{i+1}))]$.\\
In Rudin's book, $\lim_{\|\Pi\|\rightarrow 0} \text{LS}_\Pi$ converges to an element belonging to $[0,\infty]$.\\
Now, $\int fd\mu := \lim_{\|\Pi\|\rightarrow 0}\text{LS}_{\Pi}$ is called a \textbf{Lebesgue Integral}.
\item $f : \Omega \rightarrow \mathbb{R}$\\
Let $f^+ = \max\{f,0\} \geq 0$, and $f^- = -\min\{f,0\} \geq 0$.
Then, $f = f^+ - f^-$, and $|f| = f^+ + f^-$.
If $\int f^+d\mu < \infty$ and $\int f^- d\mu < \infty$, then we say $f$ is Lebesgue integrable and $f \in L^1(\mu)$.
The Lebesgue integral of $f = \int fd\mu$ is defined as $\int f^+ d\mu - \int f^- d\mu$
\end{enumerate}
\end{defn}
\begin{rem}
\leavevmode
\begin{enumerate}
\item $\int f^+ d\mu < \infty$ and $\int f^- d\mu = \infty$, then $\int fd\mu = -\infty$.
The others are defined similarly.
\item $f \in L^1(\mu) \Leftrightarrow \int |f|d\mu < \infty$.
\end{enumerate}
\end{rem}
\begin{exmp}[Riemann vs Lebesgue Integral (p19-22)]
\leavevmode
\begin{itemize}
\item $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{L})$ Lebesgue measure where $\mathcal{L}((a,b)) = b-a$.
\item $f : \mathbb{R} \rightarrow \mathbb{R} \in L^1(\mathcal{L})$
\item (Def) $A \subset \mathbb{R}$, $\int_A fd\mu := \int f \mathbb{1}_A d\mu$, where $\mathbb{1}_A(x) = 1$ if $x \in A$, and $0$ otherwise.
\end{itemize}
If $f$ is Riemann integrable, then $\int_{[a,b]} fd\mathcal{L} = \int_a^b fdx$.
Riemann integral is a limit of approximation by a partition of $x$-axis.
On the other hand, Lebesgue integral is a limit of approximation by a partition of $y$-axis with preimage.
Partition of $x$-axis is sensitive to fluctuation and restricted to Euclidean space, while partition of $y$-axis is not.
For example, $f(x) = \mathbb{1}_\mathbb{Q}(x)$ is Lebesgue integrable, but it is not Riemann integrable since it is sensitive to fluctuation.
\end{exmp}
\begin{defn}[Almost everywhere, 1.1.5 in Textbook]
$P(x)$ is a property at $x \in \mathbb{R}$.
We say $P$ holds \textbf{almost everywhere} (or a.e.) in $\mathbb{R}$ if and only if
$\mathcal{L}(\{x:P(x)$ does not hold $\} = 0$.
\end{defn}
\begin{exmp}
$f(x) = [x]$ is continuous almost everywhere.
\end{exmp}
\begin{thm}
$f$ is Riemann integrable if and only if $f$ is continuous a.e.
\end{thm}
\textit{Exercises.} $f = g$ a.e. $\Rightarrow \int fd\mathcal{L} = \int g d\mathcal{L}$.
\begin{defn}[Almost surely]
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
The event $A (\in \mathcal{F})$ occurs \textbf{almost surely} (a.s.) if $\mathbb{P}(A) = 1$.
\end{defn}
\begin{exmp}
Let $X$ be a uniform random variable in $(0,1)$.
Let $A = \{ X(\omega) \neq \frac{1}{2}\}$; $\mathbb{P}(A) = 1$.
\end{exmp}
\begin{defn}[Expectation, 1.3.3. in Textbook]
\textbf{Expectation} of $X : \Omega \rightarrow \mathbb{R}$ is defined by
$$\mathbb{E}(X) := \int_\Omega X d\mathbb{P} \quad \text{if} \quad \int_{\Omega}|X|d\mathbb{P} < \infty$$
\end{defn}
\begin{thm}[1.3.4 in Textbook]
\leavevmode
\vspace{-6mm}
\begin{enumerate}
\item $X$ takes finite number of values $\{x_1,x_2, \cdots, x_n\} \Rightarrow \mathbb{E}(X) = \sum_{i=1}^n x_i\mathbb{P}(X = x_i)$
\item $X, Y$: random variables, $E(|X|), E(|Y|) < \infty$,
\begin{enumerate}[label = (\roman*)]
\item $X \leq Y$ a.s. (i.e. $\mathbb{P}[\{X(\omega) \leq Y(\omega)\}]=1$), then $\mathbb{E}(X) \leq \mathbb{E}(Y)$
\item $X = Y$ a.s. $\Rightarrow \mathbb{E}(X) = \mathbb{E}(Y)$
\end{enumerate}
\item $X, Y$: random variables, $\mathbb{E}(|X|), \mathbb{E}(|Y|) < \infty \Rightarrow \mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}(X) + \beta \mathbb{E}(Y)$.
\item Jensen's Inequality: $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is a convex function $\Rightarrow \phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X))$\\
(\textit{cf.} $\phi(t) = t^2$)
\end{enumerate}
\begin{proof}[Proof of 4.]
Define $S_\phi = \{(a,b) \in \mathbb{R}^2 : a + bt \leq \phi(t) \enspace \forall t\}$.
Then $\forall t \in \mathbb{R}, \phi(t) = \sup_{(a,b) \in S_\phi} \{a+bt\}$.
In fact, it is a equivalent condition. Now,
$$
\begin{aligned}
\phi(\mathbb{E}[X]) &= \sup_{a,b\in S_\phi} \{a + b\mathbb{E}[X]\}\\
&= \sup_{a,b \in S_\phi} \mathbb{E}[a+bX]\\
&\leq \mathbb{E}[\sup_{a,b\in S_\phi}(a+bX)] = \mathbb{E}[\phi(X)] \quad (\text{Check!})
\end{aligned}
$$
\end{proof}
\end{thm}
\begin{exmp}[Dirac Measure in $\mathbb{R}$]
$(\mathbb{R}, \mathcal{B}(\mathbb{R}), \delta_y) \enspace (y \in \mathbb{R})$ is a probability space with $\delta_y(A) = 1$ if $y \in A$, and $0$ otherwise.
Then, $\int_\mathbb{R} fd\delta_y = f(y)$ (Check!)
% The standard expression is 'a measure "on" a space', not "in"
\vspace{6mm}
Consider modeling: $X$: random variable such that probability of $x_i = p_i$ with $\sum_{i=1}^n p_i = 1$.
Then, $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ with $\mu = \sum_{i=1}^n p_i\delta_{x_i}$ is a probability space, and $P(X = x_i) = p_i$ for $X : \mathbb{R} \ni \omega \mapsto \omega \in \mathbb{R}$: Example of thm 1.3.4.
\end{exmp}
\textit{Summary:}
\begin{itemize}
\item Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$
\item Random variables: $X: \Omega \rightarrow \mathbb{R}$
\item Expectation: $E(X) = \int Xd\mathbb{P}$
\end{itemize}
\section{Convention of Integrals}
We will use this section when we define the Brownian motion.
\begin{defn}
\leavevmode
\vspace{-6mm}
\begin{enumerate}[label = (\arabic*)]
\item
Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and
$f, f_1, f_2, \cdots$ be measurable ($\Omega \rightarrow \mathbb{R}$).
Then, $f_n \rightarrow f$ \textbf{almost everywhere} (a.e.) if
$$
\mu[\{\omega:(f_n(\omega))_{n=1}^\infty \text{ does not converge to } f(\omega)\}] = 0
$$
\item
Let ($\Omega, \mathcal{F}, \mathbb{P}$) be a probability space, $X, X_1, X_2, \cdots$ be random variables.
Then, $X_n \rightarrow X$ \textbf{almost surely} (a.s.) if
$$\mathbb{P}[\{\omega: (X_n(\omega))_{n=1}^\infty \text{ does not converge to } X(\omega)\}] = 0$$
\end{enumerate}
\end{defn}
\textit{Question:}
$f_n \rightarrow $ a.e. Then, $\int f_nd\mu \rightarrow \int fd\mu$?
$X_n \rightarrow X$ a.s. Then, $\mathbb{E}[X_n] \rightarrow \mathbb{E}[X]$?
\begin{thm}[Monotone Convergence Theorem. 1.4.5 in Textbook]
$0 \leq f_1 \leq f_2 \leq \cdots$(or decreasing), and $f_n \rightarrow f$ a.e.
Then, $\int f_nd\mu \rightarrow \int fd\mu$.
\end{thm}
\begin{thm}[Dominated Convergence Theorem. 1.4.9 in Textbook]
$\exists g \in L^1(\mu)$ such that $|f_n| \leq g$ for all $n$, and $f_n \rightarrow f$ a.e.
Then, $\int f_n d\mu \rightarrow \int f d\mu$.
\end{thm}
\begin{cor}
$\exists Y \in L^1(\mathbb{P})$ such that $|X_n| \leq Y$ for all $n$, and $X_n \rightarrow X$ a.s.
Then, $\mathbb{E}[X_n] \rightarrow \mathbb{E}[X]$.
\end{cor}
\begin{exmp}
Let $f_n(x) =
\begin{cases}
n^2x & \text{if } 0 \leq x \leq \frac{1}{n},\\
-n^2x + n & \text{if } \frac{1}{n} < x \leq \frac{2}{n},\\
0 & \text{otherwise}.
\end{cases}
$
Then, $f_n \rightarrow 0$ a.e. and $\int f_n dx = 1$.
\end{exmp}
\section{Computation of Expectations}
\textbf{Notation:} ($X : \Omega \ni \omega \mapsto X(\omega) \in \mathbb{R}$)
\begin{itemize}
\item $\mathbb{E}[X] = \int X d\mathbb{P} = \int_\Omega X(\omega) d\mathbb{P}(\omega)$
\item $\int_B X(\omega)d\mathbb{P}(\omega) := \int \mathbb{1}_B(\omega) X(\omega) d\mathbb{P}(\omega)$
\end{itemize}
\textbf{Recall:} $X$: random variable, $\mu_X$: distribution measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
$\mu_X(B) = \mathbb{P}(X \in B)$.
\begin{thm}
$g \in L^1(\mu_X)$.
Then,
$\mathbb{E}[g(X)] = \int_\mathbb{R} g(x)d\mu_X(x) (:= \int g d\mu_X)$.
\begin{exmp}
$g(x) = x$.
$\int |x| d\mu_X(x) < \infty \Rightarrow \mathbb{E}[X] = \int xd\mu_X(x)$.
\end{exmp}
\begin{proof}
First, prove the thm holds for $g \geq 0$, then prove for general $g$ by $g = g^+ - g^-$.
\begin{enumerate}[label = (\arabic*)]
\item $g = \mathbb{1}_B$\\
By thm 1.3.4. (1), $E[\mathbb{1}_B(X)] = 1 \cdot \mathbb{P}[\mathbb{1}_B(X) = 1] = \mathbb{P}(X\in B) = \mu_X(B)
= \int \mathbb{1}_B(x) d\mu_X(x)$.
\item $g = \sum_{k=1}^n \alpha_k \mathbb{1}_{B_k}$\\
Trivial by linearity.
\item $g \geq 0$\\
By MCT.
See \textit{Rudin} chapter 1 for details.
\end{enumerate}
\end{proof}
\end{thm}
\textbf{Recall:} $X:$ random variable, $X$ has density function $f_X$ if
$$
\begin{aligned}
\mu_X((a,b)) &= \int_a^b f_X(x)dx \enspace \forall a,b.\\
\mu_X(B) &= \int_B f_Xd\mathcal{L} = \int_B f_X(x) d\mathcal{L}(x) = \int_B f_X(x)dx.
\end{aligned}
$$
\begin{thm}
$g \in L^1(\mu_X)$.
Then, $E(g(X)) = \int_\mathbb{R} g(x)f_X(x)dx$.
\begin{exmp}
Let $X$ be standard normal. i.e., $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ (regardless what $X$ be).
Then, $E(X^4) = \int_\mathbb{R} x^4 \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = 3$.
\end{exmp}
\end{thm}
\chapter{Information and Conditioning}
\section{Information and $\sigma$-algebras}
\begin{exmp}
Toss a coin Three times.
$\Omega = \{ HHH, HHT, \cdots, TTT\}$.\\
$A_H = \{ HHH, HHT, HTH, HTT\}$,
$A_T = \{ THT, THT, TTH, TTT\}$.\\
Let $\mathcal{F}(1) = \{ \phi, \Omega, A_H, A_T\}$ so that
it is a $\sigma$-algebra containing the randomness up to time 1.\\
Similarly, define $A_{HH}, A_{HT}, A_{TH}, A_{TT}$.\\
Let $\mathcal{F}(2) = \{ \phi, \Omega, A_{HH}, A_{HT}, A_{TH}, A_{TT}, A_{HH} \cup A_{HT}, \cdots, A_{TT}^C\}$
so that it is a $\sigma$-algebra containing the randomness up to time 2, and define $\mathcal{F}(0)$ similarly, and let $\mathcal{F}(0) = \{ \phi, \Omega\}$.\\
Then, $\mathcal{F}(0) \subset \mathcal{F}(1) \subset \mathcal{F}(2) \subset \mathcal{F}(3)$.
Let $X_t =$ \# of heads until time $t$.
Then, $X_t$ is $\mathcal{F}(t)$-measurable for each $t$.\\
Now, $\{ X_1 = 1\} = \{ \omega: X_1(\omega) = 1 \} = A_H$, and $\{X_1 = 0\} = \{ \omega : X_1(\omega) = 0\} = A_T$.
\end{exmp}
% 시간이 지나면서 random variable의 값이 계속 바뀌는데, 시점 t에서 주식 값이 evolute하느냐를 판단을 하고 싶다.
% 이 상황에서는 X_t와 함께 증가하는 \sigma-algebra가 필요하다.
% 시점 t에서 필요한 정보를 모아놓은 것이 sigma-algebra가 된다
% X_t는 시점 t까지의 information만 모아놓은 것.
% 우리는 X_t가 discrete한 경우가 아니라 주식처럼 X_t가 continuous한 경우를 다룬다
% 이를 확률미분방정식으로 나타내고 이걸 배운다.
\begin{defn}[$\sigma$-algebra generated by $X$]
$\Omega$ is a set, $X : \Omega \rightarrow \mathbb{R}$.
$\sigma(X) = \{ A \subset \Omega : A = X^{-1}(B)$ for some $B \in \mathcal{B}(\mathbb{R})\}$.
Then, $\sigma(X)$ is a $\sigma-$algebra(exercise) and it is called a \textbf{$\sigma$-algebra generated by} $X$.
\end{defn}
\begin{rem}
$X$ is a random variable in $(\Omega, \sigma(X))$.\\
$X$ is a random variable in $(\Omega, \mathcal{F})$, then $\sigma(X) \subset \mathcal{F}$ (exercise)
\end{rem}
\begin{defn}[$\mathcal{F}$-measurable]
$(\Omega, \mathcal{F})$: measure space.
$X : \Omega \rightarrow \mathbb{R}$.
$X$ is called \textbf{$\mathcal{F}$-measurable} if $\sigma(X) \subset \mathcal{F}$.
i.e., $X$: measurable with respect to $(\Omega, \mathcal{F}$).
\end{defn}
In example, $X(t)$ is $\mathcal{F}(t)$-measurable $\forall t$ (check!)\\
\textit{cf.} $X(t) : \Omega \rightarrow \mathbb{R}$.
$(X(t))^{-1}(B) \in \mathcal{F}(t) \enspace \forall B \in \mathcal{B}(\mathbb{R})$.\\
Enough to check $(X(t))^{-1}(\{0\}), (X(t))^{-1}(\{1\}), \cdots, (X(t))^{-1}(\{t\})$.\\
$\mathcal{F}(t)$ has enough information to determine $X(t)$ in the sense that
$\{\omega: (X(t))(\omega) \in B\} \in \mathcal{F}(t) \enspace \forall B \in \mathcal{B}(\mathbb{R})$.
\begin{defn}[Filtration, Stochastic Process]
$\Omega$: non-empty set, $T > 0$.
\begin{enumerate}
\item If $\mathcal{F}(t)$ is a $\sigma$-algebra $\forall t \in [0,T] \in T$ and $s < t \Rightarrow \mathcal{F}(s) \subset \mathcal{F}(t)$,
then $(\mathcal{F}(t) : t \in [0,T])$ is called a \textbf{filtration}
\item If $X(t) : \Omega \rightarrow \mathbb{R}$ is $\mathcal{F}(t)$-measurable $\forall t \in [0,T]$,
then $(X(t) : t \in [0,T])$ is called \textbf{Stochastic Process adopted to the filtration} $\mathcal{F}(t)$.
\end{enumerate}
\end{defn}
\section{Independence}
%\section{Conditional Expectation}
$X : \Omega \rightarrow \mathbb{R}$, $\mathcal{F}$: $\sigma$-algebra on $\Omega$.
\begin{enumerate}
\item $\mathcal{F}$ has full information to determine $X \Rightarrow X$ is $\mathcal{F}$-measurable. (2.1)
\item $\mathcal{F}$ has no information to determine $X \Rightarrow X$ is independent to $\mathcal{F}$. (2.2)
\item $\mathcal{F}$ has a partition information to determine $X \Rightarrow$ (2.3)
\end{enumerate}
\begin{defn}[independent]
$(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.
$A, B \in \mathcal{F}$ is \textbf{independent} if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$.
\end{defn}
\textit{Question:} $X, Y$ are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$.
If $X, Y$ are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, but the converse does not hold.
\begin{defn}
$(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.
$\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ are sub $\sigma$-algebras of $\mathcal{F}$.
$X, Y : \Omega \rightarrow \mathbb{R}$ are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$.
\begin{enumerate}
\item $\mathcal{G}, \mathcal{H}$: independent iff $\P(A\cap B) = \P(A) \P(B) \enspace \forall A \in \mathcal{G}, B \in \mathcal{H}$.
\item $X, Y$: independent iff $\sigma(X), \sigma(Y)$ are independent.
\item $X, \mathcal{G}$: independent iff $\sigma(X), \mathcal{G}$ are independent.
\end{enumerate}
\end{defn}
\begin{defn}
$(\O, \F, \P)$ is a probability space.\\
$\mathcal{G}_1, \mathcal{G}_2, \cdots \mathcal{G}_n, \cdots$: sub $\sigma$-algebra of $\F$.
$X_1, X_2, \cdots, X_n, \cdots$: random variable in $(\O, \F, \P)$.
\begin{enumerate}
\item $\mathcal{G}_1, \cdots, \mathcal{G}_2$ are independent iff $\P(A_1 \cap \cdots \cap A_n) = \P(A_1) \cdots \P(A_n)$ for $A_1 \in \mathcal{G}_1, \cdots, A_n \in \mathcal{G}_n$.
\item $X_1, \cdots, X_n$ are independent iff $\sigma(X_1) \sim \sigma(X_n)$ are independent.
\item $\mathcal{G}_1, \mathcal{G}_2, \cdots$ are independent iff $\mathcal{G}_1 \sim \mathcal{G}_n$ are independent $\forall n$.
\item $X_1, X_2, \cdots$ are independent iff $X_1 \sim X_n$ are independent $\forall n$.
\end{enumerate}
\end{defn}
\begin{exmp}
Toss a coin three times.
\begin{enumerate}
\item $X(2), X(3)$ are not independent.\\
$\P(\{X(2) = 2\} \cap \{ X(3) = 1\}) \neq \P(X(2) = 2)\P(X(3)=1)$.
\item $X(2), X(3)-X(2)$ are independent.\\
Why: $X(2)$ is an information at tossing first, second times, and $X(3)$ is an information at tossing third time.
\end{enumerate}
\end{exmp}
\begin{defn}[Joint distribution]
$(\O, \F, \P)$ is a probability space. $X, Y$ are random variables in $\Omega$.
$(X, Y) : \O \ni \omega \mapsto (X(\omega), Y(\omega)) \in \R^2$
\begin{enumerate}
\item Joint Distribution Measure in $\R^2$\\
$\mu_{X,Y}(C) = \P((X,Y) \in C) $
for $C \in \mathcal{B}(\R^2)$.\\
(Note: We checked that $\{\omega : (X(\omega), Y(\omega)) \in C \} \in \mathcal{F}$ in real analysis.)
\item Joint Cumulative Distribution Function\\
$F_{X,Y}(a,b) = \P( X \leq a, Y \leq b) = \mu_{X,Y} ((-\infty, a] \times (-\infty, b])$ (check!)
\item Joint Probability Distribution Function\\
If $f_{X,Y} : \R^2 \r \R$ is Borel-measurable and satisfies
$\mu_{X,Y}(A\times B) = \int_B\int_A f_{X,Y}(x,y)dxdy$ for all $A, B \in \mathcal{B}(\R)$, then $f_{X,Y}$ is called a joint probability density function (jpdf)
\end{enumerate}
\end{defn}
\begin{thm}
$(\O,\F,\P)$ is a probability space, $X, Y$ are random variables in $\Omega$. Then, the followings are equivalent.
\begin{enumerate}[label=(\roman*)]
\item $X,Y$ are independent
\item $\mu_{X,Y}(A\times B) = \mu_X(A)\mu_Y(B) \enspace \forall A,B \in \mathcal{B}(\R)$
\item $F_{X,Y}(a,b) = F_X(a)F_Y(b) \enspace \forall a,b\in\R$
\item $\mathbb{E}[e^{uX+vY}] = \mathbb{E}[e^{uX}] \mathbb{E}[e^{vY}]$
\end{enumerate}
\end{thm}
\begin{rem}
If JPDF $f_{X,Y}$ exists, then (i) to (iv) $\Leftrightarrow f_{X,Y}(x,y) = f_X(x)f_Y(y)$ a.e.
\end{rem}
\begin{thm}
$X,Y$ are independent if and only if
$f, g : \R \r \R$ Borel-measurable, $\mathbb{E}[|f(X)g(Y)|] < \infty$ implies that
$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$.
\end{thm}
\begin{rem}
$f(x) = g(x) = x$ : $\mathbb{E}[|XY|] < \infty \Rightarrow \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
\end{rem}
\begin{proof}
Details are exercises.
\begin{enumerate}[label = (\arabic*)]
\item $f = \mathbb{1}_A, g = \mathbb{1}_B$
\item $f, g$ are simple functions
\item $f, g \geq 0$
\item $f, g$ are general.
\end{enumerate}
\end{proof}
\underline{Review}\\
$\mathcal{G, H}$ are independent if
$\forall A \in \mathcal{G}, B \in \mathcal{H} \Rightarrow \P(A \cap B) = \P(A)\P(B).$\\
$X, Y$ are independent if $\sigma(X), \sigma(Y)$ are independent.\\
* $\sigma(X) = \{A \in \Omega : A = X^{-1}(B) \text{ for some } B \in \mathcal{B}(\R)\}$.\\
* $\mu_{X,Y}(C) = \P((X,Y) \in C) \enspace \forall C \in \mathcal{B}(\R^2)$.
\vspace{5mm}
Thm. T.F.A.E.C:
\begin{enumerate}
\item $X,Y$ are independent
\item $\mu_{X,Y}(A\times B) = \mu_X(A)\mu_Y(B)$
\item $\F_{X,Y}(x,y) = \F_X(x)\F_Y(y)$
\item (If JPDF $f_{X,Y}$ exists) $f_{X,Y}(x,y) = f_X(x)f_Y(y)$
\end{enumerate}
\begin{thm}
$(\O,\F,\P)$ is a probability space. $X,Y$ are independent random variables, $f, g : \R \r \R$ are Borel measurable.
Then, $f(X), g(Y)$ are independent.
\begin{proof}
$A \in \sigma(f(X))$;
$A = (f\circ X)^{-1}(B)$ for some $B \in \mathcal{\R}
= X^{-1}(f^{-1}(B)) \in \sigma(X)$.\\
$\therefore \sigma(f(X)) \subset \sigma(X)$, $\sigma(g(Y)) \subset \sigma(Y)
\Rightarrow \sigma(f(X)), \sigma(g(Y))$ are independent.
\end{proof}
\end{thm}
\begin{cor}
$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X))\mathbb{E}(g(Y)]$.
\end{cor}
\begin{defn}
$X,Y$ are random variables in $(\O,\F,\P)$.
\begin{enumerate}
\item $Var(X) = \E[(X-\E[X])^2] = \E[X^2] - \E[X]^2$
\item $std(X) = \sqrt{Var(X)}$
\item $Cov(X,Y) = \E[XY] - \E[X]\E[Y]$
\item $corr(X,Y) = cov(X,Y) / (std(X)std(Y))$
\end{enumerate}
\end{defn}
\begin{exmp}
\leavevmode
\vspace{-6mm}
\begin{itemize}
\item $X$: standard normal random variable $(N(0,1^2))$
\item $\P(Z = 1) = \P(Z = -1) = \frac{1}{2}$ ($X,Z$ are independent)
\item $Y = XZ $. Then
\begin{enumerate}[label = \arabic*)]
\item Y is standard normal,
\item $corr(X,Y) = 0$.
\item $X,Y$ are not independent.
\end{enumerate}
\end{itemize}