-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_wgan_validator_clean.py
432 lines (355 loc) · 14.4 KB
/
train_wgan_validator_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# only part gan uncond 3
# cond 6 [wg, gt/res]
# local + part
from __future__ import print_function, division
from opts import opt
from tensorboardX import SummaryWriter
import json
from termcolor import colored
import torch
import torch.nn as nn
import custom_transforms
import dataset
from torch.utils.data import Dataset, DataLoader
import models
from custom_utils import weight_init, create_orig_xy_map, Meter, make_face_region_batch, make_parts_region_batch, print_inter_grad, calc_gradient_penalty, debug_info, dotdict
from custom_criterions import MaskedMSELoss, TVLoss, SymLoss, VggFaceLoss
import random
from os import path
from torchvision import transforms
import pdb
import time
from tqdm import tqdm
import torchvision.datasets as datasets
import numpy as np
import validator_models as v_models
from torchvision.utils import make_grid
from custom_utils import dict2list
if opt.hpc_version:
num = 4
torch.set_num_threads(num)
real_label = 1
fake_label = 0
def noisy_real_label():
return random.randint(7, 12) / 10
def noisy_fake_label():
return random.randint(0, 3) / 10
# 单独为 validator gan 设置的超参
config = {
'nz': 128, # size of the latent z vector
'max_imgs_to_show': 80,
# 'dataset': 'mnist', # 'mnist', 'cifar10', 'anime'
# 'dataset': 'cifar10',
'dataset': 'anime',
}
config = dotdict(config)
print (config)
# pdb.set_trace()
class Runner(object):
def __init__(self):
self.writer = SummaryWriter(path.join("tb_logs", opt.exp_name))
self.startup()
self.prepare_data()
self.prepare_model()
self.prepare_optim()
self.prepare_losses()
self.load_checkpoint()
def __del__(self):
self.writer.close()
def run(self):
self.reset_ms()
for e in range(self.last_epoch + 1, opt.max_epoch):
self.change_model_mode(True)
# self.reset_ms()
self.train_one_epoch(e)
if (e + 1) % opt.save_epoch_freq == 0:
self.save_checkpoint(e)
print ()
def reset_ms(self):
for m in self.ms.values():
m.reset()
def train_G(self):
global noise, fake, label
label = torch.full_like(label, real_label)
############################
# (2) Update G network
###########################
# to avoid computation
for netD in self.models[1:]:
for p in netD.parameters():
p.requires_grad = False
noise = torch.randn(real.size(0), config.nz).to(device)
fake = self.G(noise)
output = self.D(fake)
if opt.use_WGAN:
err_G = output.mean()
else:
err_G = self.D_crit(output, label)
G_l = err_G
adv_l = G_l
tot_l = adv_l
self.G.zero_grad()
tot_l.backward()
self.optim.step()
# logging
self.ms['G'].add(G_l.item())
def train_Ds(self, end_flag):
############################
# (1) Update D network
###########################
global label
for netD in self.models[1:]:
for p in netD.parameters():
p.requires_grad = True
## D
### train with real
self.D.zero_grad()
output = self.D(real)
# pdb.set_trace()
if opt.use_WGAN:
err_D_real = output.mean()
else:
label = torch.full_like(label, noisy_real_label())
err_D_real = self.D_crit(output, label)
# pdb.set_trace()
err_D_real.backward()
### train with fake
output = self.D(fake.detach())
if opt.use_WGAN:
err_D_fake = output.mean() * (-1)
else:
label = torch.full_like(label, noisy_fake_label())
err_D_fake = self.D_crit(output, label)
err_D_fake.backward()
if opt.use_WGAN_GP:
gp = calc_gradient_penalty(self.D, real.data, fake.data)
# gp = calc_gradient_penalty_mnist(self.D, real.data, fake.data)
gp_l = opt.gp_lambda * gp
# if end_flag:
# self.ms['gp'].add(gp_l.item())
gp_l.backward()
if opt.use_WGAN:
# 注意这里是+, 因为errGD_D_fake本身就带有了-号
err_D = err_D_real + err_D_fake
wasserstein_dis = - err_D
if opt.use_WGAN_GP:
err_D += gp_l
else:
err_D = (err_D_real + err_D_fake) / 2
self.optimD.step()
if opt.use_WGAN and not opt.use_WGAN_GP:
debug_info ('Weight Clipping!')
for netD in self.models[1:]:
for p in netD.parameters():
p.data.clamp_(opt.clamp_lower, opt.clamp_upper)
# logging
if end_flag:
self.ms['D'].add(err_D.item())
if opt.use_WGAN:
self.ms['dis'].add(wasserstein_dis.item())
if opt.use_WGAN_GP:
self.ms['gp'].add(gp_l.item())
def prepare_all_gans_data(self):
global noise, fake, real, label
sb = data_iter.next()
real, _ = sb
real = real.to(device)
batch_size = real.size(0)
with torch.no_grad():
noise = torch.randn(batch_size, config.nz).to(device)
fake = self.G(noise)
label = torch.full((batch_size,), real_label, device=device)
# one epoch train
def train_one_epoch(self, cur_e = 0):
global device, data_iter
device = self.device
data_iter = iter(self.train_dl)
i_b = 0
# exhausted_flag = False
while i_b < self.train_BNPE:
# if i_b > 100:
# break
# pdb.set_trace()
if self.gen_iterations < 25 or self.gen_iterations % 500 == 0:
Diters = 100
else:
Diters = opt.Diters
range_obj = range(Diters)
if not opt.hpc_version:
range_obj = tqdm(range_obj)
remain_data = self.train_BNPE - i_b
if remain_data < Diters:
# debug_info = print
print ("Exhausted data, early finish one epoch! (not update G)")
break
for iter_of_d in range_obj:
# if i_b >= self.train_BNPE:
# exhausted_flag = True
# break
self.prepare_all_gans_data()
i_b += 1
self.train_Ds(end_flag = (iter_of_d == Diters - 1))
# if exhausted_flag:
# break
self.train_G()
self.gen_iterations += 1
print ('gen_iter', self.gen_iterations)
if self.gen_iterations % opt.print_freq == 0:
print ('[Train]: %s [%d/%d] (%d/%d) <%d>\tGAN Loss: [%.12f/%.12f]\tGP Loss: %.12f\tWasserstein Distance: %.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
i_b,
self.train_BNPE,
self.gen_iterations,
self.ms['G'].mean,
self.ms['D'].mean,
self.ms['gp'].mean,
self.ms['dis'].mean,
)
)
# displaying
if self.gen_iterations % opt.disp_freq == 0:
# self.writer.add_image('train/real-fake', torch.cat([real.view(-1, 1, 28, 28)[:opt.disp_img_cnt], fake.view(-1, 1, 28, 28)[:opt.disp_img_cnt]], 2), self.i_batch_tot)
self.writer.add_image('train/real', make_grid(real[:config.max_imgs_to_show], nrow = 10 if config.dataset == 'mnist' else 8, padding = 0, normalize = True), self.gen_iterations)
self.writer.add_image('train/fake', make_grid(fake[:config.max_imgs_to_show], nrow = 10 if config.dataset == 'mnist' else 8, padding = 0, normalize = True), self.gen_iterations)
self.writer.add_scalar('train/G', self.ms['G'].mean, self.gen_iterations)
self.writer.add_scalar('train/D', self.ms['D'].mean, self.gen_iterations)
if opt.use_WGAN_GP:
self.writer.add_scalar('train/gp', self.ms['gp'].mean, self.gen_iterations)
self.writer.add_scalar('train/wasserstein_dis', self.ms['dis'].mean, self.gen_iterations)
print ('*' * 30)
print ('The Data of Epoch %d is Exhausted!' % cur_e)
# print ('[Train]: %s [%d/%d]\tGAN Loss: [%.12f/%.12f]\tGP Loss: %.12f\tWasserstein Distance: %.12f' % (
# time.strftime("%m-%d %H:%M:%S", time.localtime()),
# cur_e,
# opt.max_epoch,
# self.ms['G'].mean,
# self.ms['D'].mean,
# self.ms['gp'].mean,
# self.ms['dis'].mean,
# )
# )
# print ('*' * 30)
# self.writer.add_scalar('train/epoch/G', self.ms['G'].mean, cur_e)
# self.writer.add_scalar('train/epoch/D', self.ms['D'].mean, cur_e)
# if opt.use_WGAN_GP:
# self.writer.add_scalar('train/epoch/gp', self.ms['gp'].mean, cur_e)
# self.writer.add_scalar('train/epoch/wasserstein_dis', self.ms['dis'].mean, cur_e)
def prepare_losses(self):
ms = {}
keys = ['G', 'D', 'dis', 'gp']
for key in keys:
ms[key] = Meter()
self.ms = ms
if not opt.use_WGAN:
self.D_crit = nn.BCELoss()
def load_checkpoint(self):
# if not (opt.load_checkpoint or opt.load_warpnet):
if not opt.load_checkpoint:
return
if opt.load_checkpoint:
ckpt = torch.load(opt.load_checkpoint)
self.G.load_state_dict(ckpt['model'])
self.D.load_checkpoint(ckpt['model_D'])
self.optim.load_state_dict(ckpt['optim'])
self.optimD.load_state_dict(ckpt['optim_D'])
self.last_epoch = ckpt['epoch']
# self.i_batch_tot = ckpt['i_batch_tot']
self.gen_iterations = ckpt['gen_iterations']
print ('Cont Train from Epoch %2d' % (self.last_epoch + 1))
def save_checkpoint(self, cur_e = 0):
ckpt_file = path.join(opt.checkpoint_dir, 'ckpt_%03d.pt' % (cur_e + 1))
print ('Save Model to %s ... ' % ckpt_file)
ckpt_dict = {
'epoch': cur_e,
# 'i_batch_tot': self.i_batch_tot,
'gen_iterations': self.gen_iterations,
'model': self.G.state_dict(),
'model_D': self.D.state_dict(),
'optim': self.optim.state_dict(),
'optim_D': self.optimD.state_dict(),
}
torch.save(ckpt_dict, ckpt_file)
def change_model_mode(self, train = True):
if train:
for m in self.models:
m.train()
else:
for m in self.models:
m.eval()
def prepare_optim(self):
if opt.adam:
# print ('Enable adam!')
betas = (opt.beta1, 0.999)
self.optim = torch.optim.Adam(self.G.parameters(), lr = opt.lr, betas = betas)
self.optimD = torch.optim.Adam(self.D.parameters(), lr = opt.lr, betas = betas)
else: # RMSProp
# print ('Enable RMSProp!')
self.optim = torch.optim.RMSprop(self.G.parameters(), lr = opt.lr)
self.optimD = torch.optim.RMSprop(self.D.parameters(), lr = opt.lr)
def prepare_model(self):
device = self.device
if config.dataset == 'mnist':
self.G = v_models.MNIST_Generator()
elif config.dataset == 'cifar10':
self.G = v_models.CIFAR10_Generator()
elif config.dataset == 'anime':
self.G = v_models.ANIME_Generator()
self.G.to(device)
self.G.apply(weight_init)
if config.dataset == 'mnist':
self.D = v_models.MNIST_Discriminator()
elif config.dataset == 'cifar10':
self.D = v_models.CIFAR10_Discriminator()
elif config.dataset == 'anime':
self.D = v_models.ANIME_Discriminator()
self.D.to(device)
self.D.apply(weight_init)
self.models = [self.G, self.D]
def prepare_data(self):
if config.dataset == 'mnist':
trainset = datasets.MNIST(root='./playground/validator_data/mnist', train=True, download=False, transform=transforms.Compose([
transforms.ToTensor()
]))
elif config.dataset == 'cifar10':
trainset = datasets.CIFAR10(root='./playground/validator_data/cifar10', train=True, download=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
elif config.dataset == 'anime':
trainset = datasets.ImageFolder('./playground/validator_data/anime', transform=transforms.Compose([
# transforms.Resize((48, 48)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
self.train_dataset = trainset
self.train_dl = DataLoader(self.train_dataset, batch_size = opt.batch_size, shuffle = True, num_workers = opt.num_workers)
self.train_BNPE = len(self.train_dl)
def startup(self):
# random seed
if opt.manual_seed is None:
opt.manual_seed = random.randint(1, 10000)
print("Random Seed: ", opt.manual_seed)
random.seed(opt.manual_seed)
torch.manual_seed(opt.manual_seed)
# device
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
self.device = torch.device("cuda:0" if torch.cuda.is_available() and opt.cuda else "cpu")
print ('Use device: %s' % self.device)
# save_configs
configs = json.dumps(vars(opt), indent=2)
print (colored(configs, 'green'))
# self.writer.add_text('Configs', configs, 0)
self.writer.add_text('Configs', dict2list(vars(opt)), 0)
opts_json_path = path.join(opt.checkpoint_dir, 'opts.json')
with open(opts_json_path, 'w') as f:
print ('Save Opts to %s' % opts_json_path)
f.write(configs)
# aux vars
self.last_epoch = -1
# self.i_batch_tot = 0
self.gen_iterations = 0
runner = Runner()
runner.run()