-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_save_warpnet_results.py
380 lines (306 loc) · 13.5 KB
/
train_save_warpnet_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from __future__ import division, print_function
import os, sys
sys.path.append(os.getcwd())
import json
import pdb
import random
import time
from os import path
import torch
from torch.utils.data import DataLoader, Dataset
import custom_transforms
import dataset
import models
from custom_criterions import FullSymLoss, MaskedMSELoss, SymLoss, TVLoss
from custom_utils import Meter, create_orig_xy_map, make_dir, weight_init
from opts import opt
from tensorboardX import SummaryWriter
from termcolor import colored
from torchvision import transforms
from torchvision.utils import save_image
from tqdm import tqdm
class Runner(object):
def __init__(self):
# self.writer = SummaryWriter(path.join("tb_logs", opt.exp_name))
self.startup()
self.prepare_data()
self.prepare_model()
self.prepare_optim()
self.prepare_losses()
self.load_checkpoint()
def __del__(self):
# self.writer.close()
pass
def run(self):
for e in range(self.last_epoch + 1, opt.max_epoch):
self.change_model_mode(True)
self.reset_ms()
self.train_one_epoch(e)
self.change_model_mode(False)
self.reset_ms()
self.test(e)
if (e + 1) % opt.save_epoch_freq == 0:
self.save_checkpoint(e)
print ()
def reset_ms(self):
for m in self.ms.values():
m.reset()
# one epoch train
def train_one_epoch(self, cur_e = 0):
device = self.device
for i_b, sb in enumerate(self.train_dl):
# if i_b > 100:
# break
gd = sb['guide'].to(device)
bl = sb['blur'].to(device)
gt = sb['gt'].to(device)
lm_mask = sb['lm_mask'].to(device)
lm_gt = sb['lm_gt'].to(device)
w_gd, grid = self.warpnet(bl, gd)
pt_l = opt.pt_l_w * self.point_crit(grid, lm_gt, lm_mask)
tv_l = opt.tv_l_w * self.tv_crit(grid - self.orig_xy_map)
sym_l = torch.Tensor([0]).to(device)
if opt.train_sym_dir:
sym_gt = sb['sym_l'].to(device)
sym_gd = sb['sym_r'].to(device)
# sym_l = opt.sym_l_w * self.sym_crit(grid, sym_gd)
sym_l = opt.sym_l_w * self.sym_crit(grid, sym_gt, sym_gd)
tot_l = pt_l + tv_l + sym_l
self.warpnet.zero_grad()
tot_l.backward()
self.optim.step()
self.ms['pt'].add(pt_l.item())
self.ms['tv'].add(tv_l.item())
self.ms['sym'].add(sym_l.item())
self.ms['tot'].add(tot_l.item())
self.i_batch_tot += 1
if i_b % opt.print_freq == 0:
print ('[Train]: %s [%d/%d] (%d/%d)\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tTot Loss=%.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
i_b,
self.train_BNPE,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['tot'].mean
)
)
if self.i_batch_tot % opt.disp_freq == 0:
self.writer.add_image('train/guide-gt-blur-warp', torch.cat([gd[:opt.disp_img_cnt], gt[:opt.disp_img_cnt], bl[:opt.disp_img_cnt], w_gd[:opt.disp_img_cnt]], 2), self.i_batch_tot)
self.writer.add_scalar('train/pt_loss', self.ms['pt'].mean, self.i_batch_tot)
self.writer.add_scalar('train/tv_loss', self.ms['tv'].mean, self.i_batch_tot)
self.writer.add_scalar('train/sym_loss', self.ms['sym'].mean, self.i_batch_tot)
print ('*' * 30)
print ('[Train]: %s [%d/%d]\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tTot Loss=%.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['tot'].mean
)
)
print ('*' * 30)
def test(self, cur_e = 0):
device = self.device
for i_b, sb in enumerate(self.test_dl):
with torch.no_grad():
gd = sb['guide'].to(device)
bl = sb['blur'].to(device)
w_gd, grid = self.warpnet(bl, gd)
pt_l = torch.Tensor([0]).to(device)
if opt.test_landmark_dir:
lm_mask = sb['lm_mask'].to(device)
lm_gt = sb['lm_gt'].to(device)
pt_l = opt.pt_l_w * self.point_crit(grid, lm_gt, lm_mask)
tv_l = opt.tv_l_w * self.tv_crit(grid - self.orig_xy_map)
sym_l = torch.Tensor([0]).to(device)
if opt.test_sym_dir:
sym_gt = sb['sym_l'].to(device)
sym_gd = sb['sym_r'].to(device)
# sym_l = opt.sym_l_w * self.sym_crit(grid, sym_gd)
sym_l = opt.sym_l_w * self.sym_crit(grid, sym_gt, sym_gd)
tot_l = pt_l + tv_l + sym_l
self.ms['pt'].add(pt_l.item())
self.ms['tv'].add(tv_l.item())
self.ms['sym'].add(sym_l.item())
self.ms['tot'].add(tot_l.item())
if i_b % opt.print_freq == 0:
print ('[Test]: %s [%d/%d] (%d/%d)\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tTot Loss=%.12f' % (
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
i_b,
self.test_BNPE,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['tot'].mean
)
)
print ('=' * 30)
print ('[Test]: %s [%d/%d]\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tTot Loss=%.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['tot'].mean
)
)
print ('=' * 30)
def prepare_losses(self):
ms = {}
ms['sym'] = Meter()
ms['pt'] = Meter()
ms['tv'] = Meter()
ms['tot'] = Meter()
self.ms = ms
if opt.train_sym_dir:
# self.sym_crit = SymLoss(opt.C)
self.sym_crit = FullSymLoss(opt.C)
self.point_crit = MaskedMSELoss()
self.tv_crit = TVLoss()
def load_checkpoint(self):
if not opt.load_checkpoint:
return
ckpt = torch.load(opt.load_checkpoint)
self.warpnet.load_state_dict(ckpt['model'])
self.optim.load_state_dict(ckpt['optim'])
self.last_epoch = ckpt['epoch']
self.i_batch_tot = ckpt['i_batch_tot']
print ('Load ckpt from %s' % opt.load_checkpoint)
# print ('Cont Train from Epoch %2d' % (self.last_epoch + 1))
if not opt.load_checkpoint_B:
return
ckpt_B = torch.load(opt.load_checkpoint_B)
self.warpnet_B.load_state_dict(ckpt_B['model'])
print ('Load ckpt B from %s' % opt.load_checkpoint_B)
if not opt.load_checkpoint_C:
return
ckpt_C = torch.load(opt.load_checkpoint_C)
self.warpnet_C.load_state_dict(ckpt_C['model'])
print ('Load ckpt C from %s' % opt.load_checkpoint_C)
if not opt.load_checkpoint_D:
return
ckpt_D = torch.load(opt.load_checkpoint_D)
self.warpnet_D.load_state_dict(ckpt_D['model'])
print ('Load ckpt D from %s' % opt.load_checkpoint_D)
if not opt.load_checkpoint_E:
return
ckpt_E = torch.load(opt.load_checkpoint_E)
self.warpnet_E.load_state_dict(ckpt_E['model'])
print ('Load ckpt E from %s' % opt.load_checkpoint_E)
def save_checkpoint(self, cur_e = 0):
ckpt_file = path.join(opt.checkpoint_dir, 'ckpt_%03d.pt' % (cur_e + 1))
print ('Save Model to %s ... ' % ckpt_file)
torch.save({
'epoch': cur_e,
'i_batch_tot': self.i_batch_tot,
'model': self.warpnet.state_dict(),
'optim': self.optim.state_dict(),
}, ckpt_file)
def change_model_mode(self, train = True):
if train:
self.warpnet.train()
else:
self.warpnet.eval()
def prepare_optim(self):
betas = (opt.beta1, 0.999)
self.optim = torch.optim.Adam(self.warpnet.parameters(), lr = opt.lr, betas = betas)
def prepare_model(self):
self.warpnet = models.GFRNet_warpnet()
self.warpnet.to(self.device)
self.warpnet.apply(weight_init)
self.warpnet_B = models.GFRNet_warpnet()
self.warpnet_B.to(self.device)
self.warpnet_B.apply(weight_init)
self.warpnet_C = models.GFRNet_warpnet()
self.warpnet_C.to(self.device)
self.warpnet_C.apply(weight_init)
self.warpnet_D = models.GFRNet_warpnet()
self.warpnet_D.to(self.device)
self.warpnet_D.apply(weight_init)
self.warpnet_E = models.GFRNet_warpnet()
self.warpnet_E.to(self.device)
self.warpnet_E.apply(weight_init)
def prepare_data(self):
train_degradation_tsfm = custom_transforms.DegradationModel()
test_degradation_tsfm = custom_transforms.DegradationModel()
# train_degradation_tsfm = custom_transforms.DegradationModel("train degradation")
# test_degradation_tsfm = custom_transforms.DegradationModel("test degradation")
to_tensor_tsfm = custom_transforms.ToTensor()
train_tsfms = [
train_degradation_tsfm,
to_tensor_tsfm
]
test_tsfms = [
test_degradation_tsfm,
to_tensor_tsfm
]
train_tsfm_c = transforms.Compose(train_tsfms)
test_tsfm_c = transforms.Compose(test_tsfms)
self.train_dataset = dataset.FaceDataset(opt.train_img_dir, opt.train_landmark_dir, opt.train_sym_dir, None, None, opt.flip_prob, train_tsfm_c, False)
self.train_dl = DataLoader(self.train_dataset, batch_size = opt.batch_size, shuffle = True, num_workers = opt.num_workers)
self.train_BNPE = len(self.train_dl)
self.test_dataset = dataset.FaceDataset(opt.test_img_dir, opt.test_landmark_dir, opt.test_sym_dir, None, None, -1, test_tsfm_c, True)
self.test_dl = DataLoader(self.test_dataset, batch_size = opt.batch_size, shuffle = False, num_workers = opt.num_workers)
self.test_BNPE = len(self.test_dl)
if opt.load_sbt_dir:
self.load_dataset = dataset.LoadFaceDataset(opt.load_sbt_dir, load_tsfm_c)
self.load_dl = DataLoader(self.load_dataset, batch_size = opt.batch_size, shuffle = False, num_workers = opt.num_workers)
self.load_BNPE = len(self.load_dl)
else:
self.load_dataset = self.test_dataset
self.load_dl = self.test_dl
self.load_BNPE = self.test_BNPE
def startup(self):
# random seed
if opt.manual_seed is None:
opt.manual_seed = random.randint(1, 10000)
print("Random Seed: ", opt.manual_seed)
random.seed(opt.manual_seed)
torch.manual_seed(opt.manual_seed)
# device
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
self.device = torch.device("cuda:0" if torch.cuda.is_available() and opt.cuda else "cpu")
print ('Use device: %s' % self.device)
# save_configs
configs = json.dumps(vars(opt), indent=2)
print (colored(configs, 'green'))
# self.writer.add_text('Configs', configs, 0)
opts_json_path = path.join(opt.checkpoint_dir, 'opts.json')
with open(opts_json_path, 'w') as f:
print ('Save opts to %s' % opts_json_path)
f.write(configs)
# aux vars
self.last_epoch = -1
self.i_batch_tot = 0
self.orig_xy_map = create_orig_xy_map().to(self.device)
def save_warpnet_test_results(self):
self.change_model_mode(False)
device = self.device
make_dir(opt.str_dir)
for i_b, sb in tqdm(enumerate(self.load_dl)):
with torch.no_grad():
gd = sb['guide'].to(device)
bl = sb['blur'].to(device)
gt = sb['gt'].to(device)
fn = list(map(path.basename, sb['img_path']))
n_fn = [path.join(opt.str_dir, f_name) for f_name in fn]
w_gd, grid = self.warpnet(bl, gd)
w_gd_B, grid_B = self.warpnet_B(bl, gd)
w_gd_C, grid_C = self.warpnet_C(bl, gd)
w_gd_D, grid_D = self.warpnet_D(bl, gd)
w_gd_E, grid_E = self.warpnet_E(bl, gd)
bs = gd.size(0)
for b_id in tqdm(range(bs)):
save_image(torch.cat([gd[b_id], gt[b_id], w_gd[b_id], w_gd_B[b_id], w_gd_C[b_id], w_gd_D[b_id], w_gd_E[b_id]], 0).view(7, 3, opt.img_size, opt.img_size), n_fn[b_id], padding = 0)
runner = Runner()
# runner.run()
runner.save_warpnet_test_results()